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Abstract 1 

Knowledge about extreme water levels is essential for efficient planning and design of coastal 2 

infrastructure. This study uses a high-resolution (~ 60 m) coupled ADvanced CIRCulation+ 3 

Simulating WAves Nearshore (ADCIRC+SWAN) modeling system to estimate extreme water 4 

levels in the coastal waters of King Abdullah Economic City (KAEC), Saudi Arabia, located on 5 

the central eastern coast of the Red Sea. High spatial- (5-km) and temporal- (hourly) resolution 6 

meteorological fields are generated to drive the model, along with open ocean tides. The 7 

characteristics of extreme water levels in the region are subsequently described based on the 8 

validated model simulations. The central Red Sea is characterized by a low-tidal regime and 9 

meteorological events contribute significantly to total water levels: meteorological surges cause 10 

water level increases of up to 75 cm inside the KAEC lagoon. An extreme value analysis based on 11 

annual maxima of hindcast water level data is conducted and the results suggest that the inferred 12 

100-year water levels are about 80 cm inside the KAEC lagoon. It is also shown that projected sea 13 

level rise would reduce the average recurrence intervals of extreme water levels along the KAEC 14 

coastline. 15 

Keywords: Red Sea; Saudi Arabia; King Abdullah Economic City; Extreme sea levels; 16 

Meteorological surges; Return periods. 17 
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1. Introduction 1 

Knowledge about extreme water level characteristics and their impacts is crucial to minimize 2 

associated risks and develop effective plans and mitigation measures. Determining the probability 3 

of extreme events is also necessary for coastal application aspects, and conducting a frequency 4 

analysis of extreme water levels is useful when designing various coastal structures (Mclnnes et 5 

al., 2003). In this respect, long-term tide gauge data can be analyzed to estimate the risk of flooding 6 

using various statistical analysis techniques (Haigh et al., 2010). However, long-term tide gauge 7 

data for the Red Sea are limited, and advanced numerical model outputs are the main source of 8 

information to obtain long-term water level data.  9 

The Red Sea is an elongated semi-enclosed marginal sea in the Indian Ocean (Figure 1). It 10 

connects to the Gulf of Aden in the south via a narrow strait called Bab-el-Mandeb, which has a 11 

width of 25 km and maximum depth of only 137 m at the Hanish Sill. In the north, the basin 12 

branches into two smaller Gulfs; the Gulf of Suez and Gulf of Aqaba. Several studies on surface 13 

winds over the Red Sea have been conducted over the past (Langodan et al., 2017; 14 

Viswanadhapalli et al., 2017), and four major systems controlling the wind patterns over the sea 15 

have been suggested; North-northwest (NNW) winds, South-southeast (SSE) winds, Tokar Gap 16 

wind jet and mountain-gap winds in the northern Red Sea. NNW winds blow during May–October 17 

over the entire Red Sea, and the remnants of storms over the eastern Mediterranean often promote 18 

wind speeds of about 15 m/s. During the winter months, and particularly between November and 19 

April, SSE winds blow over the southern Red Sea (below 18˚N). These winds are an extension of 20 

northeasterly monsoon winds blowing over the Arabian Sea, and they are channeled into the 21 

southern Red Sea by the orography surrounding the Gulf of Aden and the southern Red Sea. The 22 

existence of both NNW winds in the north and SSE winds in the south creates a convergence zone 23 
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at around 18°N (Langodan et al., 2015). In addition to these two prominent wind systems, there 1 

are two other small-scale systems in the Red Sea that result from intense flows through the narrow 2 

valleys cutting across the mountain ridges bordering the sea. The most prominent is the Tokar Gap 3 

wind jet, which is located at approximately 18 °N off the African coast. In the northern Red Sea, 4 

the mountain-gap winds usually originate from the Arabian subcontinent and gush westward.  5 

Semidiurnal tides dominate in the Red Sea and the tidal amplitudes are small owing to the 6 

restricted connection to the larger ocean (Pugh et al., 2019). The maximum spring tidal range is 7 

about 1 m in the northern most parts of the Gulf of Suez and near Perim Island in the southern Red 8 

Sea (Pugh et al. 2019). However, in the central Red Sea, the tidal range drops to 0.2 m where the 9 

tidal amphidrome is present (Madah et al., 2015; Gharbi et al., 2018). Even so, the tidal phase has 10 

significant impact on total water level as a storm event occurring during a high tide causes higher 11 

inundation than the same event during a low tide (Antony et al., 2020). In a small tidal regime such 12 

as that of the Red Sea, water level changes due to meteorological forces can be significant. The 13 

meteorological surges are caused by two main processes: variations of wind and atmospheric 14 

pressure (Pugh and Woodworth, 2014). A change in atmospheric pressure causes the water level 15 

to change: there is a rise in the water level with a decrease in pressure, and the opposite occurs 16 

when the pressure increases (an approximate quantification of the change in water level is 1 cm 17 

for a 1 mb change in pressure). Wind plays a major role in generating surges in coastal waters 18 

(Murty and El-Sabh, 1992). In particular, strong winds in the onshore direction cause water to pile 19 

up toward the coast, and generate surges and coastal floods. Local geographical features of coastal 20 

regions, as in the shallow waters and funnel-shaped bays, further enhance surges. The study by 21 

Churchill et al. (2018) using bottom pressure and altimeter data reported that weather-band (~4–22 

30 days) sea level variations in the Red Sea exhibit a uniform basin-wide nature. They also reported 23 
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that the amplitude of weather-band signals is higher than those of tidal and seasonal sea levels, and 1 

that these signals are associated with winds over the southern Red Sea. 2 

 Wave setup refers to the increase in water level due to the presence of breaking waves 3 

(Nielsen,1988) and it has been shown to be an important contributor to extreme water levels during 4 

storm events (Murty et al., 2014; Samiksha et al., 2017; Krien et al., 2017). Previous studies have 5 

reported that wave setup can be significant over fringing reefs with a steep fore reef (e.g., Vetter 6 

et al., 2010). Wave setup can be a potential contributor to the extremes in the Red Sea as many of 7 

its coastal areas are characterized by fringing reefs.   8 

The monthly mean sea level is higher in winter than summer, and this is mainly driven by 9 

the winds over the Red Sea (Safianos and Johns, 2001). The weather-band sea level fluctuations 10 

are frequent during winter months (Churchill et al., 2018) and high background sea level during 11 

the same period can elevate the total sea levels. Variations in sea level do occur on interannual 12 

timescales in relation to the regional climate phenomena such as the El Niño Southern Oscillation, 13 

the Indian Ocean Dipole, etc., which also contribute to the extreme sea level variability (Antony 14 

et al., 2016). Such variations in the sea level are reported in the case of the Red Sea (Manasrah et 15 

a., 2009; Alawad et al., 2019; Abdulla and Al-Subhi, 2020). In addition, mean sea level rise from 16 

global climate change is also a pressing concern for coastal regions. Long-term tide gauge 17 

measurements indicate a global mean sea level rise of about 1.7 mm/yr over the last century and 18 

an increased mean sea level rise of 3.2 mm/yr over the past two decades (Church et al., 2013). 19 

Previous studies suggested that the primary cause of the increase in extreme sea levels is the rising 20 

mean sea level (e.g., Woodworth and Blackman, 2004). The Red Sea is not exempt from rising sea 21 

levels (Pugh and Abualnaja, 2015) and associated impacts (El-Raey, 2010). Another potential 22 

factor that can influence the extremes sea levels is the mesoscale eddies (Firing and Merrifield, 23 
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2004). The Red Sea is characterized by mesoscale eddies lasting several weeks (Zhan et al., 2014). 1 

These eddies also elevate the coastal sea level occasionally (Churchill et al., 2018).    2 

To the best of our knowledge, extreme water levels have not been investigated yet in the 3 

Red Sea. Here we analyze the extreme water level characteristics in the vicinity of King Abdullah 4 

Economic City (KAEC) in the central eastern Red Sea (Figure 1). KAEC (https://www.kaec.net) 5 

is located in the western Kingdom of Saudi Arabia (KSA), approximately 100 km north of Jeddah. 6 

The developing city covers an area of 181 km2, has a coastline of 40 km, and is designed to 7 

accommodate two million people (Moser et al., 2015). It comprises King Abdullah Port, which is 8 

the largest port on the Red Sea, the Coastal Communities residential districts, the Haramain 9 

Railway district, and the Industrial Valley. KAEC is surrounded by numerous fringing and 10 

offshore coral reef systems on the ocean side, and includes a shallow lagoon that extends about 9 11 

km from its entrance to the inner most point at the southern end (Figure 1c).  12 

We investigate the characteristics of extreme water levels in the near-shore regions of 13 

KAEC based on high-resolution long-term hindcast data generated using a state-of-the-art coupled 14 

tide-surge-wave modeling system. Determining water levels with certain return periods (average 15 

recurrence intervals) is a widely used and an effective method for assessing the potential risk of 16 

coastal hazards and their impact on the design of coastal and offshore facilities and planning harbor 17 

operations. The potential risk of extreme water levels occurring throughout the region is also 18 

assessed by estimating the return periods of extreme water levels. The remainder of this paper is 19 

organized as follows: Section 2 describes the data and methodology, including the coupled 20 

modeling system, observational data, and evaluation methods; Section 3 presents the results and 21 

discussion; and Section 4 summarizes our main findings. 22 
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2. Data and methods 1 

2.1 Modeling framework 2 

The water levels along the KAEC coastline are simulated using a coupled tide-surge-wave 3 

modeling system configured on an unstructured grid. The coupled system includes the two-4 

dimensional (2D) depth-averaged ADCIRC model (version 50.99.13, Luettich et al., 1992; 5 

Luettich and Westerink, 2004) to simulate meteorological surge and tides, and SWAN (version 6 

40.91, Booij et al., 1999) to simulate ocean waves. Coupling ADCIRC with SWAN provides the 7 

added advantage of considering the contribution of wind waves to the total water level, in addition 8 

to wind, pressure, and tide-induced changes. Although three-dimensional (3D) hydrodynamic 9 

models are now widely used, implementing them at coastal scales resolutions and given the 10 

considerable run times for over long-term periods remain computationally very demanding. 2D 11 

models have the advantage of providing reliable water level simulation at reasonable 12 

computational cost. The model domain covers the entire Red Sea and the Gulf of Aden, and the 13 

open boundary extends into the Arabian Sea to include open ocean tides (Figure 1a). High 14 

resolution light detection and ranging (LiDAR) is used to estimate the bathymetry of coastal waters 15 

(up to a depth of 30 m) in the vicinity of KAEC. This dataset is combined with data from the 16 

General Bathymetric Chart of the Oceans (available at a resolution of 30 arc seconds) for the rest 17 

of the domain. The LiDAR survey was conducted in 2009 and has an accuracy of ±10 cm.  18 

An unstructured triangular mesh of 92,215 nodes (180,695 elements) is implemented in the 19 

study, and the mesh is designed with a fine resolution near the coast and a coarse resolution in the 20 

deep water. The model grid resolution is about 60 m near the KAEC coastline, 5 km within the 21 

Red Sea, and increasing to 60 km near the open boundary. The boundary tides are obtained from 22 

a global model, Finite Element Solution 2012 (Carrère et al., 2012), and the major tidal 23 
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constituents (M2, S2, K2, N2, K1, O1, P1, and Q1) are prescribed at the open boundary. The bottom 1 

stress formulation in the model is quadratic in nature, with friction coefficient of 0.0025. The 2 

horizontal eddy viscosity is set to 5 m2/s. ADCIRC and SWAN use the same unstructured mesh, 3 

and the coupling mechanism involves the transfer of wave radiation stress gradients from SWAN 4 

to ADCIRC, and water levels and currents from ADCIRC to SWAN (Dietrich et al., 2011). 5 

ADCIRC+SWAN simulations are conducted using atmospheric and tidal forcing in blocks of one 6 

month periods with an additional five days ramp-up period for a total of 31 years (1985–2015). 7 

The outputs are stored at hourly intervals for further analysis. 8 

2.2 Atmospheric forcing 9 

The coupled model is forced with hourly wind components (u and v at a height of 10 m) and mean 10 

seal level pressure extracted from the Red Sea atmospheric reanalysis (Dasari et al., 2019a, 2019b; 11 

Viswanadhapalli et al., 2017), generated using the Advanced Research Weather Research and 12 

Forecasting model (WRF, Skamarock et al., 2008), at a 5 km horizontal resolution and available 13 

over a 31 years period between 1985 and 2015. The WRF model is implemented with two, two-14 

way nested domains with horizontal resolutions of 15 and 5 km, respectively, and 51 vertical 15 

levels, and it is initialized using the European Centre for Medium-Range Weather Forecasts 16 

(ECMWF) Interim reanalysis data (ERA-I) available at a horizontal resolution of 0.75° (Dee et al., 17 

2011). All available satellite and in-situ observations in the region are assimilated into WRF using 18 

the consecutive re-initialization method as described by Viswanadhapalli et al. (2017) and 19 

Langodan et al. (2014, 2016), where daily initialized simulations are conducted for a 36-h period 20 

starting at 12:00 UTC each day; the first 12-h period is neglected as the spin up time, and the 21 

remaining 24-h data are combined to generate long-term (1985-2015) high-resolution atmospheric 22 

reanalysis. This data was widely used in several Red Sea studies and was extensively validated 23 



9 
 

with the in-situ and remote sensing observations (e.g., Viswanadhapalli et al., 2017, 2019a, 2019b; 1 

Dasari et al., 2019a, 2019b).  2 

2.3 Tide gauge data 3 

The Red Sea is a data-scarce region, and only a limited number of tide gauge observations are 4 

available to validate the model simulations. We use observations collected during the 5 

oceanographic and meteorological measurement program conducted by Fugro Global 6 

Environmental and Ocean Sciences Ltd during December 2006 to February 2007 in the coastal 7 

waters of KAEC. Measurements are taken at 10 m interval at five locations shown in Figure 1c. 8 

The tidal constituents are determined from one month-data (21 January 2007 to 20 February 2007) 9 

obtained at these five locations and they are used for site-specific validation of the modeled tides. 10 

We also use tide gauge data collected at hourly interval at Rabigh (Figure 1b) to validate the 11 

modeled total water levels. The data are provided by the	Saudi General Commission for Survey 12 

for a period from 1 January 2011 to 31 December 2013. 100% data are available at all locations 13 

and observations are quality controlled during post-processing to identify and remove anomalous 14 

values before comparison.  15 

2.4 Validation methodology 16 

The agreement between the observed and the corresponding modeled tidal constituent, derived 17 

through a harmonic analysis, is evaluated based on the modulus of the complex difference (Mayet 18 

et al., 2013):  19 

|∆𝑧|= | Aoeiϕo– Ameiϕm|,  (1) 20 

where Ao, Am, and ϕo, ϕm are the observed and modeled amplitudes and phases, respectively. 21 
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The total error for all constituents at one site is given as:  1 

σs = $!
"
∑ |∆𝑧|"#!"#$%&%'(#% .   (2) 2 

The total water level time series from the observations and model outputs are compared by 3 

computing the root mean square error (RMSE) and correlation coefficient (r). 4 

2.5 Extreme value analysis 5 

Different methods have been proposed to estimate the probability of extreme water levels (such as 6 

Unnikrishnan et al., 2004; Haigh et al., 2010; Arns et al., 2013), and there is no universal method 7 

for conducting an extreme value analysis (EVA) (Haigh et al., 2010). The most common method 8 

is based on annual maxima of water levels that are fitted a Gumbel distribution or Generalized 9 

Extreme Value (GEV) distribution (Kirezci et al., 2020). One limitation of this annual maxima 10 

approach is that it uses only one value per year. The data are therefore not fully used in the analysis 11 

as several other extremes could occur within a year that are higher than other years maxima. Two 12 

other methods were introduced to overcome this issue; the peak over threshold (POT) method and 13 

the r-largest method. In the POT method, extremes above a specified threshold are fitted to the 14 

generalized pareto distribution whereas in the second method r-largest values per year are 15 

considered and fitted to the GEV distribution. Though these two methods include larger number 16 

of events per year, there is no consent in the community about one approach over another. The 17 

annual maxima method was indeed suggested to provide reliable estimates of probability curves 18 

when 30 or more years of data are used (Bernier et al., 2007; Wahl et al., 2017).  19 
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In this study, we conducted an EVA based on 31-year data set using the annual maxima 1 

method and the GEV distribution. This method was selected as it performed better than the other 2 

tested methods with our data set.    3 

The GEV distribution function is defined as:  4 

𝐺(𝑧) = 	𝑒𝑥𝑝 *− ,1 + 𝜉 0
𝑧 − 𝜇
𝜎 23

!"
# 4,																(3) 5 

where 𝜎 is a scale parameter, 𝜇 is the location parameter, 𝜉 is the shape parameter, and the annual 6 

maximum water levels are z.  7 

The return level Zm, corresponding to a return period m (say, 50-yr), can be determined as: 8 

  𝑍! =  µ − σ
"
81 − ,− log 01 − 1

𝑚23
−𝜉
9 .																										(4)	

				
   9 

The EVA is conducted using the extRemes package (Gilleland and Katz, 2016) 10 

implemented in the statistical language, R (http://www.r-project.org/). The parameters of the 11 

distributions are estimated using the maximum likelihood estimation method, and the upper and 12 

lower 95 % confidence limits are obtained using the Delta method (Gilleland and Katz, 2016). A 13 

fundamental assumption when conducting an EVA is that time series are stationary and extreme 14 

events are independent (Coles, 2001; Arns et al., 2013). However, environmental variables often 15 

depend on past values and their statistical properties often vary over time. The use of the annual 16 

maxima can be justified as the extreme events are independent, we further account for stationarity 17 

by applying a linear detrending to the time series prior to conducting the EVA. The annual 18 

maximum water levels derived from 31-yr hourly model simulations are used to estimate the return 19 

water levels for different return periods up to 100-yr. Therefore, the return period estimation did 20 

not exceed 3–4 times the length of the underlying time series, which is the recommended limit in 21 

the literature (e.g., Bernier et al., 2007; Pugh and Woodworth, 2014). 22 
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Annual maximum water levels are assigned a probability using the Weibull’s plotting 1 

position formula, and return periods are calculated as: 2 

𝑇) =
*+!
)

,    (5) 3 

where 𝑇) is the return period corresponding to the ith annual maximum water level, i is the ranking 4 

of the water level data from high to low; and n is the total number of years. 5 

3. Model validation 6 

3.1 Tides 7 

The tidal constituents from five stations (Figure 1c) near the KAEC coastline are compared against 8 

those obtained from the model. A harmonic analysis of water level data spanning one month (21 9 

January 2007 to 20 February 2007) is used to derive the tidal constituents. A visual assessment of 10 

the scatter diagrams of observed and modeled tidal constituents (Figure 2) shows that the 11 

amplitudes of the constituents are underestimated (up to 17% for M2) by the model, and the phases 12 

of the modeled and observed constituents are in good agreement (within 10% error). The estimated 13 

errors based on Equations 1 and 2 are presented in Table 1, where the error values reveal that σs is 14 

low (of about 0.96 cm) at Station 1 and higher (of about 1.8 cm) at Station 5.  15 

3.2. Water levels 16 

We use data collected over three years using a tide gauge located at the Port of Rabigh (~20 km 17 

north of KAEC) to validate the simulated total water levels. As shown in Figure 3, the model is 18 

generally in good agreement with the observations with RMSE and r values of 10.77 cm and 0.83, 19 

respectively. There are however few instances where the model fails to simulate the observed 20 

minimum and maximum in the data time series. Because we used a 2D model, changes in water 21 
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level due to baroclinic effects are not accounted for. A methodology based on oceanic reanalysis 1 

data is adopted to improve the simulated water levels is discussed in the next section.   2 

4. Improving simulated water level data 3 

The comparison between 2D model and observation suggested noticeable disagreement between 4 

the two on seasonal time scales. To improve the 2D model water levels we added monthly mean 5 

sea levels simulated by a 3D model to adjust the seasonal differences following the procedure 6 

suggested by Zhai et al. (2019). We used an ocean reanalysis product of the ECMWF, ORAS5 7 

(Zuo et al., 2019), that was generated using the Nucleus for European Modeling of the Ocean 8 

(NEMO). ORAS5 data are available monthly at 0.25° resolution. The 2D model adjustment is 9 

applied as follows; (i) the difference between monthly mean sea level of the ORAS5 data and 2D 10 

model is first computed, (ii) the computed difference is then interpolated to hourly intervals and, 11 

(iii) final adjusted data is then obtained by adding the hourly 2D model data and hourly differences. 12 

Basically, the missing baroclinic sea level on monthly and higher time scales was added to the 2D 13 

model. Since pressure forcing is not used in the generation of reanalysis data, the monthly mean 14 

sea levels of the 2D model are computed from a wind-only forced run for consistency. The result 15 

of this adjustment is shown in Figure 3, showing a noticeably better agreement between the 16 

observed and modeled data. The error statistics (Figure 3) have improved from 10.77 cm to 8.75 17 

cm for RMSE and from 0.83 to 0.88 for correlation coefficient r. There is still however few 18 

disagreements between the model and observation over periods shorter than a month, as baroclinic 19 

effect within this time scale are not accounted for. The main goal of this study is the calculation of 20 

return levels, and from this perspective a good agreement of the data sets in terms of quantile-21 

quantile (Q-q) plots is recommended (Calafat et al., 2014). Figure 4 shows the Q-q plot at Rabigh. 22 

The deviation between the model and observed distributions has considerably reduced after the 23 
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model adjustment. The modeled extreme high water levels are now in good agreement with the 1 

observations (differences are within 5 cm). This provides us confidence in analyzing the extreme 2 

water level along the KAEC coast based on the adjusted model results.        3 

5. Results and discussion 4 

5.1 Characteristics of extreme water levels 5 

 We first analyze the occurrence of surge events along the KAEC coastline. Figure 5a shows 6 

the surge time series at a location in the central Red Sea near KAEC, together with surge time 7 

series from locations in the northern and southern Red Sea (see Figure 6a for locations). The plot 8 

indicates that the surge is nearly uniform throughout the Red Sea. Figure 5b, c, and d show the 9 

pressure and zonal and meridional components of surface wind, respectively, at the same locations 10 

shown in Figure 5a. A visual inspection of these time series reveals that the patterns of surges tend 11 

to be similar to the meridional component of winds over the southern Red Sea. This is confirmed 12 

by a correlation analysis between long-term (1980–2015) time series of meteorological parameters 13 

at different locations and surges in KAEC (Table2). The time series of surge at KAEC is strongly 14 

correlated (>0.60) with the wind components over the southern Red Sea, whereas the wind 15 

components at KAEC and the northern Red Sea exhibit weak correlations (<0.2) with the local 16 

surge.  17 

This study focuses on a small region within the Red Sea, and we are therefore interested in 18 

determining whether any local meteorological features occur during the surge events near KAEC, 19 

which can locally modulate the basin-wide signals. In this respect, we show snapshots of the 20 

metrological fields during certain extreme high and low water levels in Figure 6. High water level 21 

events are generally characterized by strong SSE winds (Figure 6c) over the southern Red Sea, 22 

whereas weakening or reversal of SSE wind (Figure 6a and b) over the southern Red Sea is 23 
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accompanied by low water level events. Convergence of NNW and SSE winds are evident in 1 

Figure 6c, which creates strong winds near KAEC. Such high winds can locally further enhance 2 

the surge height, especially inside the shallow KAEC lagoon.   3 

We also analyzed the spatial patterns of surge and maximum water levels. Figure 7 presents 4 

spatial maps of maximum water level, meteorological surge, and wave setup at the coastal waters 5 

of KAEC. A maximum water level of about 75 cm is estimated inside the KAEC lagoon, and this 6 

value is slightly lower along the open coast (60–65cm). In the near-coastal regions, maximum 7 

water levels are related to the surge contribution, with Figure 7b showing that the surge component 8 

reaches magnitude close to those of the maximum water levels. The surge increases from the open 9 

coast to the inner regions of the lagoon. The KAEC lagoon is characterized by very shallow depths 10 

and is a semi-enclosed environment these features, together with favorable wind conditions, can 11 

amplify surge heights inside the lagoon. 12 

Figure 8 presents time series of model-simulated tides, meteorological surge, wave setup, 13 

and total water level at the three locations indicated in Figure 7b. The results reveal marked 14 

seasonal patterns in meteorological surges and the resulting total water levels. Most of the surges 15 

occur during the winter months (October-March), whereas lowest values of water levels occur in 16 

the summer months (June–September). These occurrences are consistent with the wind patterns 17 

over the southern Red Sea.  18 

To assess the wave setup contributions to the water level along the KAEC coastline, we 19 

compared the water level as resulting from wave coupled (tide-surge-wave) and uncoupled (tide-20 

surge) model simulations. The difference in water levels between coupled and uncoupled models 21 

is attributed to the wave setup, and the corresponding spatial map of maximum wave setup for the 22 
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KAEC region is shown in Figure 7c. The results suggest that the wave setup is almost negligible 1 

near the lagoon entrance and inside the lagoon owing to the sheltered nature of the regions from 2 

wave breaking. However, the drastic transition in the bathymetry (from 30 m to less than 1 m) 3 

along the coastal areas of the northern part of KAEC results in significant wave setup that is 4 

typically about 5-10 cm (Figure 8a), but occasionally reaches up to 20 cm (Figure 7c). We also 5 

estimated the wave setup contributions to the extremes water levels over 99th percentile and found 6 

that the average contribution is less than 5%.  7 

5.2 Statistics of extreme sea levels  8 

Return levels of extreme high water levels along the KAEC coastline are estimated using the 9 

annual maximum water levels and the GEV distribution for various return periods, and the 10 

corresponding results are presented in Figure 9. Figures 9a, b, and c display the return level curves 11 

for three locations along the KAEC coastline, L1, L8, and L19, as indicated in Figure 9d. L1 and 12 

L8 are open coast locations, whereas L19 is located inside the lagoon, where the highest water 13 

level during the 31-yr study period is observed. The GEV distribution provides a good fit to the 14 

model-simulated data at L1 and L8. However, at L19, the fit generally follows the data up to 10-15 

yr, before it diverges for higher (15- and 31-yr) return periods. The spatial patterns of the 50- and 16 

100-yr return levels are shown in Figures 9e and f, respectively. The open coastal areas of KAEC 17 

exhibit small return levels compared to the shallow inner regions of the KAEC lagoon and the 18 

inferred 100-year water levels are about 80 cm inside the KAEC lagoon. As noted from the return 19 

level plots for L19 (Figure 9c), the return levels inside the lagoon are underestimated. The 20 

difference between the 31-yr maxima (Figure 9d) and corresponding return levels from GEV 21 

distribution is shown in Figure 9g; the figure indicates that the largest differences (up to 6 cm) are 22 



17 
 

found inside the KAEC lagoon and the differences for the remaining coastline are mostly below 4 1 

cm.  2 

In addition to determining return levels under present climate conditions, we also assessed 3 

the impact of present rate of sea level rise on extreme water level statistics by year 2050. The study 4 

by Alawad et al. (2019) estimated the mean sea level rise trend in the Red Sea at 2.8 mm/yr over 5 

the period 1993-2017, which is lower than the global trend (3.2 mm/yr). At this rate the Red Sea 6 

would experience approximately 0.1 m increase in sea level by 2050. The mean sea level rise 7 

influence on the return level is examined by adding the 2050 0.1 m level rise to the return levels 8 

obtained based on the current climate conditions in the Red Sea. A similar approach to account for 9 

the influence of sea level rise on the extreme sea level frequency has been applied by Mclnnes et 10 

al. (2003), Tebaldi et al. (2012) and Rasmussen et al. (2018). The resulting return level curve for 11 

the future climate scenario for 2050 at location L19 is presented in Figure 10. A comparison of the 12 

current and future climate curves shows that the estimated mean sea level rise reduces the average 13 

recurrence interval of present 50- and 100-yr levels to 10- and 20-yr by 2050.  14 

6. Summary and conclusions 15 

This study investigated the extreme water levels in the coastal waters of KAEC, KSA, situated on 16 

the central east coast of the Red Sea. A high-resolution (~60 m) tide-surge-wave coupled modeling 17 

system (ADCIRC+SWAN) forced with meteorological fields from high-resolution (5km) Red Sea 18 

regional reanalysis data was implemented and its outputs were analyzed. Meteorological surges 19 

were found to reach as high as 65 cm in the open coastal waters of KAEC, whereas inside the 20 

KAEC lagoon, shallowness, favorable geometry, and winds lead to slightly higher surges (about 21 

75 cm). Seasonally, meteorological surges are prominent during winter (October-March). We 22 

observed water levels up to 20 cm resulting from the wave setup in the northern coastal waters of 23 
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KAEC, whereas this was negligible inside the lagoon. Furthermore, return periods of extreme high 1 

water levels along the KAEC coastline were estimated and 100-yr return levels up to 80 cm were 2 

found inside the KAEC lagoon. The impact of climate change on extreme high water levels along 3 

the KAEC coastline through mean sea level rise indicated that present 50- and 100-yr events 4 

becoming future (2050) 10- and 20-yr events, respectively.   5 

The central Red Sea is known to be a low-tidal regime; therefore, non-tidal water level 6 

changes are very important. Abnormal water levels during surge events can aggravate wave actions 7 

and may cause important erosions along the coast. 8 
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Table 1. Error statistics (σs, in cm) of harmonic constituents between model and observation. 1 
Station numbers are the same as those shown in Figure 1. 2 

______________________________________________________________________________ 3 

Station Constituent Ao ϕo Am ϕm |∆𝑧| σs  4 
No.  5 
____________________________________________________________________________________________________________________ 6 
  K1    3.80  162.00    3.59  151.71    0.70 7 
  M2   11.00  113.00   10.19  114.14    0.84 8 
  N2    3.00   84.00    3.25   87.68    0.32 9 
1  O2    2.00  165.00    1.89  159.28    0.22 10 
  S2    3.00  147.00    2.74  136.27    0.60 11 
  K2    1.00  147.00    0.75  136.27    0.30 12 
  P1    1.00  162.00    1.19  151.71    0.27 13 
   0.96 14 
  K1    4.00  165.00    3.61  152.93    0.89 15 
  M2   12.00  117.00   10.37  116.04    1.64 16 
  N2    4.00   88.00    3.31   89.93    0.70 17 
2  O2    2.00  168.00    1.91  160.27    0.28 18 
 S2    3.00  146.00    2.79  138.51    0.43 19 
 K2    1.00  146.00    0.76  138.51    0.27 20 
 P1    1.00  165.00    1.20  152.93    0.30 21 
      1.48  22 
  K1    4.00  163.00    3.58  151.96    0.84 23 
  M2   12.00  115.00   10.07  114.30    1.94 24 
  N2    4.00   85.00    3.22   87.85    0.80 25 
3  O2    2.00  169.00    1.89  159.46    0.34 26 
 S2    3.00  145.00    2.70  136.44    0.52 27 
  6    1.00  145.00    0.73  136.44    0.30 28 
  7    1.00  163.00    1.19  151.96    0.28 29 
      1.68 30 
  K1    3.00  154.00    3.57  151.80    0.59 31 
 M2   11.00  115.00    9.98  113.99    1.04 32 
  N2    3.00   76.00    3.19   87.56    0.65 33 
4  O2    2.00  165.00    1.89  159.34    0.22 34 
  S2    4.00  157.00    2.67  136.13    1.78 35 
  K2    1.00  157.00    0.73  136.13    0.41 36 
  P1    1.00  154.00    1.18  151.80    0.19 37 
      1.62 38 
  K1    4.00  163.00    3.57  151.77    0.86 39 
  M2   12.00  114.00    9.90  113.90    2.10 40 
  N2    4.00   84.00    3.17   87.51    0.86 41 
5  O2    2.00  168.00    1.89  159.31    0.32 42 
  S2    3.00  146.00    2.65  136.04    0.60 43 
 K2    1.00  146.00    0.72  136.04    0.32 44 
 P1    1.00  163.00    1.18  151.77    0.28 45 
      1.80 46 
______________________________________________________________________________  47 
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Table 2: Correlations analysis between long-term (1985–2015) hourly meteorological variables at 1 
the locations shown in Figure 6a and corresponding surge time series at KAEC.  2 

______________________________________________________________________________ 3 

Location  North     KAEC     South 4 

 ___________________________________________________________________ 5 

 Pressure  U wind  V wind Pressure  U wind  V wind  Pressure  U wind  V wind 6 

 7 
 ______________________________________________________________________ 8 

KAEC  0.65 –0.12 0.08 0.61 –0.18 0.00  0.65 –0.61 0.79  9 

______________________________________________________________________________ 10 
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 1 

Figure 1. (a) ADCIRC+SWAN model domain is shown on the globe. (b) Location of KAEC and 2 
Rabigh tide gauge station. (c) Enlarged image of coastal region surrounding KAEC. Dashed 3 
magenta line represents the coastal boundary of KAEC; green line marks the land boundary; 4 
triangles show locations of tide data measurement stations.  5 
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 1 

Figure 2. Scatter diagram of (a) amplitudes and (b) phases of observed and modeled tidal 2 
constituents. Dashed lines in black and gray represent best agreement and 10% error, respectively.  3 
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 1 

Figure 3. Comparison of observed and modeled water levels at Rabigh. Green line represents 2 
observations. Dotted lines in pink and magenta represent 2D model and adjusted 2D model data, 3 
respectively. Model validation error statistics for adjusted 2D model and 2D model (in brackets) 4 
are provided.  5 
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 1 

Figure 4. Q‐q plot of the modeled water level versus the observed water level at Rabigh.  Pink and 2 
magenta colors represent 2D model and adjusted 2D model data, respectively. Dashed line in black 3 
represents best agreement line. 4 
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 1 

Figure 5. (a) Time series of surge component of water level during January-February 2006 at 2 
locations (see Figure 6a for locations) in the northern and southern Red Sea and near 3 
KAEC; similarly, those of (b) mean sea level pressure, (c) zonal, and (d) meridional 4 
components of surface (10 m) wind speed.  5 
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 1 

Figure 6. Surface (10 m) wind and mean sea level pressure fields at (a) 11:00 UTC on 16 January 2 
2006, (b) 11:00 UTC on 30 January 2006 and (c) 11:00 UTC on 03 February 2006.  3 

4 
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 1 

Figure 7. Spatial distribution of maximum (a) water level, (b) surge, and (c) wave setup. Maximum 2 
water level and surge are presented with shades of magenta and maximum wave setup is colored 3 
with shades of green.   4 
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 1 

 2 

Figure 8. Time series of model-simulated tides, meteorological surge, wave setup, and total water 3 
level at three locations (see Figure 7b for locations) in the coastal waters of KAEC. Black, red, 4 
yellow and cyan colors represent total water level, tide, surge and wave setup, respectively.     5 
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 1 

Figure 9. (a–c) Return level curves with 95% confidence intervals (shaded areas) at three selected 2 
locations shown in panel (d). Green circles represent plotting positions (PP) of annual maxima and 3 
dashed line in blue represents fitted Generalized Extreme Value (GEV) distribution. (d) Maximum 4 
water levels during simulation period. (e) and (f) 50- and 100-yr return levels. (h) Difference 5 
between 31-yr maximum water level and corresponding return level from extreme value analysis.   6 
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 1 

Figure 10. Return period curves at L19 under current climate (blue) and future sea level rise 2 
scenario (red). Blue triangle and circle represent 50- and 100-yr return levels under current climate, 3 
and red triangle and circle represent positions of current 50- and 100-yr return levels on the future 4 
return curve.    5 


