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Summary 

As more and more types of geophysical measurements 

informing about different characteristics of subsurface 

formations are available, effectively synergizing the 

information from these measurements becomes critical to 

enhance deep reservoir characterization, determine interwell 

fluid distribution and ultimately maximize oil recovery. In 

this study, we develop a feature-based model calibration 

workflow by combining the power of ensemble methods in 

data integration and deep learning techniques in feature 

segmentation. The performance of the developed workflow 

is demonstrated with a synthetic channelized reservoir 

model, in which crosswell seismic and electromagnetic 

(EM) data are jointly inverted.  

 

Introduction 

Joint inversion of multiple sources of geophysical data has 

demonstrated its great potential in enhancing the fidelity of 

inverted reservoir models. The main idea behind the joint 

inversion is to synergize the information contained in 

different types of geophysical datasets into an integrated 

inversion scheme for better recovery of reservoir properties 

and structures (Moorkamp, 2017). Seismic and 

electromagnetic (EM) data inherently exhibit 

complementary sensitivities to reservoir rock and fluid 

properties and are increasingly used for joint inversion. In 

general, seismic data provide effective information about the 

reservoir structure while EM data are sensitive to fluid 

content discriminating between oil and salt water. Crosswell 

seismic and EM techniques, in particular, reaching deep into 

the reservoir to produce a cross-sectional mapping of  

geophysical properties between wells, fill an intermediate 

resolution gap between well logs and surface measurements 

(Al-Ali et al., 2009). The recent field studies presented by 

Marsala et al. (2008, 2017) showed the ability of crosswell 

EM tomography to deliver useful interwell resistivity and 

saturation mapping even at widely-spaced wells. 

There has seen a growing interest in enhancing reservoir 

characterization through history matching of different 

geophysical measurements (Katterbauer et al., 2016; Liang 

et al., 2016). Different from the integration of production 

data that are commonly used for history matching, the 

approach to integrate geophysical data is not unique. As 

discussed in (Zhang et al., 2020), there are three different 

approaches to extract information from the raw data to 

calibrate reservoir models. Each approach involves different 

degrees of forward modeling and inversion processes. Zhang 

et al. (2020) proposed an ensemble-based model calibration 

workflow in which the interpreted resistivity field from EM 

inversion are integrated through a feature-oriented approach. 

They found that the performance of the proposed workflow 

depends on the quality of inversion results and it is 

susceptible to the bias and propagated errors introduced by 

the inversion. To mitigate this adverse effect, Zhang and 

Hoteit (2020) extended the workflow by incorporating the 

joint seismic and EM inversion to reduce the interpretative 

ambiguities of inverted reservoir properties.  

Feature segmentation plays an important role in the feature-

oriented integration approach, whose performance relies on 

the quality of extracted information. In this respect, deep 

learning, utilizing a hierarchical level of artificial neural 

networks to carry out the process of machine learning, has 

shown very promising results in pattern recognition and 

extraction. Deep learning can learn high-level features from 

data so that the need of domain expertise and manual feature 

extraction is avoided. In this study, we exploit the potential 

of deep learning in feature segmentation to strengthen the 

feature-based model calibration workflow developed by 

Zhang and Hoteit (2020). 

 

Method 

We extend the feature-oriented ensemble model calibration 

workflow introduced in (Zhang and Hoteit, 2020) by 

facilitating the feature segmentation process with deep 

learning techniques. Figure 1 shows the developed workflow 

which consists of two main steps. The rock cross-properties 

(Dell’Aversana et al., 2011) including water saturation and 

porosity, which links with both seismic velocities and 

formation resistivity, are firstly estimated by joint seismic 

and EM inversion (i.e., orange loop). Subsequently, the 

remaining uncertain reservoir properties such as 

permeability are updated by being conditioned on the 

inverted saturation fields (i.e., blue loop). The core of the 

workflow is based on ensemble assimilation methods that 

provide a flexible framework, under which any uncertain 

model parameters can be estimated and various types of 

measurements can be readily incorporated. Ensemble 

assimilation methods approximate the Bayesian formulation 

of data integration using a Monte Carlo approach, in which 

the model uncertainties are represented by an ensemble that 

is a group of realizations of uncertain model variables. The 

ensemble itself provides an empirical estimate of the 

probability distribution of the model variables conditioned 

on the data. The developed workflow adopts the start-of-the-

art ensemble methods (e.g., Chen and Oliver, 2013; Emerick 
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and Reynolds, 2013) that showed robust performances in 

real field history-matching applications.  

 

 

Figure 1:  Workflow for reservoir property mapping from joint 

seismic and EM inversion via deep learning aided feature-based 

approach. 

 

The workflow in Figure 1 starts with the generation of the 

initial ensemble of model parameters (porosity and 

permeability are considered here) through geostatistical 

modeling based on prior information. Proper sampling of the 

prior ensemble is essential to ensure the performance of 

ensemble methods, considering the fact that the posterior 

solution is constrained within the subspace of the prior 

ensemble of model parameters. Seismic and EM 

measurements are then integrated through the following 

two-step procedure. The extension to include other types of 

model parameters and measurements is straightforward. 

 

Step 1: ensemble-based joint inversion 

This step exploits the potential of joint inversion for 

enhanced mapping of rock cross-properties using ensemble 

assimilation methods. Based on the generated ensemble of 

porosity and permeability, the prior ensemble of saturation 

fields is sampled by running a reservoir flow simulator up to 

the seismic and EM survey time. To simulate the seismic and 

EM responses, the forward observation model consists of 

two components including rock physics modeling and 

seismic-EM simulators. Rock-physics models link the rock 

cross-properties, i.e., porosity and saturation, to seismic 

velocities and formation resistivity. With the inputs from the 

established rock-physics models, predicted seismic and EM 

data are then obtained from the corresponding forward 

simulators. For more detail about the forward observation 

model used in this study, the reader is referred to (Zhang and 

Hoteit, 2020). Conditioning on the observed seismic and EM 

measurements, the prior ensemble of porosity and saturation 

is updated. 

Step 2: feature-oriented ensemble update  

The objective of this step is to update the remaining 

uncertain model parameters based on the inverted porosity 

and saturation fields in Step 1. Instead of integrating the 

inverted saturation field directly, we employ a feature-based 

approach that conditions on the shape information of 

extracted features from the attribute of interest. This is 

primarily motivated by the fact that the information 

contained in the shape of a feature (if can be extracted 

coherently) usually  carries the most essential and reliable 

information contained in the original data. Specifically, we 

extract front positions from the inverted saturation field 

using deep learning techniques.  

Figure 2 outlines the process of feature segmentation using 

a deep learning approach, which consists of two stages. The 

process starts with the training stage, at which we use a pre-

trained convolutional neural network (CNN) Alexnet model 

(Iandola et al., 2016), and fine-tune the network to find the 

training model with the target input dataset. At the second 

stage, the training model is used to extract the target feature 

from input image, in combination with a pre-processing step 

for image enhancement and noise reduction (Hittawe et al., 

2017). 

 

 

Figure 2:  Process of feature segmentation using deep learning 

 

The identified front positions are then integrated by a 

distance parameterization method proposed in Zhang and 

Leeuwenburgh (2017) to update the prior ensemble of 

permeability fields.  

 

Workflow deployment case 

To examine the performance of the developed model 

calibration workflow,  we choose a  reservoir model that was 

used in Zhang and Hoteit (2020), which is a 2D channelized 
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reservoir model with a crosswell configuration for EM and 

seismic surveys.  

 

Model description 

Figure 2 shows the reference porosity and log-transformed 

permeability fields (used to generate observations) with 

channel-like high-permeable flow corridors. The model 

dimensions are 45 × 45 with a uniform grid size of 5 m in 

horizontal directions and 20 m in vertical direction. There 

are two facies types in which the channel facies (sand) is 

characterized by high permeability and porosity while the 

background facies (shale) is the opposite. The facies 

realizations are first generated by a multipoint-based 

geostatistical algorithm, based on which the realizations of 

porosity and log-permeability are generated by the 

sequential Gaussian simulation algorithm using an 

exponential variogram model with an isotropic range of 8 

gridblocks. The reference model is randomly drawn from the 

generated realizations. The fluid system consists of two 

immiscible phases (oil and brine) with a connate water 

saturation of 0.2, residual oil saturation of 0.2, and initial 

formation pressure of 310 bar. As shown in Figure 2, there 

are two horizontal wells, one producer (shown as solid black 

circles) and one injector (shown as white crosses), with an 

interwell separation of 125 m. The producer is under bottom-

hole pressure (BHP) control at 138 bar, and the injector is 

on rate control at 200 sm3/day.  

 

   

 

Figure 2: The reference porosity (top left) and log-permeability (top 
right) fields from which synthetic seismic and EM data are 

generated. The true saturation field for the crosswell seismic and 

EM surveys conducted at day 60 (bottom).  

 

Measurement setup 

For the crosswell setting of both seismic and EM surveys, 

transmitters and receivers are placed in the boreholes of the 

producer and the injector, respectively. There are 15 

transmitters and 15 receivers that are uniformly distributed 

from the heel to the toe of each horizontal well. For the EM 

survey, the transmitters are axial magnetic dipoles, and the 

measured data are the horizontal components of the 

magnetic fields. The frequency of operation is 500 Hz. For 

the seismic survey, monopole sources are used, and the 

receivers measure scalar pressure fields. The frequencies of 

20, 60 and 100 Hz are chosen for the inversion. The seismic 

and EM surveys are conducted at day 60. The true saturation 

field at the survey time is shown in Figure 2 (bottom). The 

synthetic seismic and EM data generated from the reference 

reservoir model are perturbed with 5% Gaussian random 

white noise. 

 

Ensemble assimilation setup 

The initial ensemble consists of 100 members. An iterative 

ensemble smoother developed by Chen and Oliver (2013) is 

used together with a bootstrap-based Kalman gain 

localization method introduced in Zhang and Oliver (2010) 

to reduce the effect of sampling errors and rank deficiency 

caused by the limited ensemble size.  

 

Results from Step 1 

Figure 3 shows the distribution of data mismatch during the 

joint integration of seismic and EM data. The data mismatch 

is calculated as follows 

𝑆𝑑(𝒎𝑗) =  (𝒅𝑜𝑏𝑠 − 𝐠(𝒎𝑗))
T

𝑪𝐷
−1 (𝒅𝑜𝑏𝑠 − 𝐠(𝒎𝑗)),   (1) 

where 𝒅𝑜𝑏𝑠  is a vector of observed data, 𝐠(∙) denotes the 

operator mapping the model parameters 𝒎 to predicted data, 

𝑪𝐷 is observation error covariance, and the subscript 𝑗 is the 

index of ensemble member. In a similar way, there is a 

consistent reduction in the root-mean-square error (RMSE) 

of the updated ensembles of porosity and water saturation as 

shown in Figure 3.  

Figure 4 shows the updated ensemble means of porosity and 

water saturation fields. It is clear that both porosity and 

saturation mean fields reproduce the main features observed 

in the corresponding true models.  

 

Results from Step 2 

To extract saturation fronts from the inverted saturation 

fields, we proceed with the feature extraction using deep 

learning. In addition to the inverted saturation fields, the 

training dataset is also composed of the predicted saturation 

fields obtained from the flow simulation using the prior 

permeability ensemble. The size of training dataset is 200. 

Figure 5 shows the distribution of extracted fronts from the 

inverted and predicted saturation ensembles using the 

trained CNN model. We take the front positions (red dots) 

extracted from the inverted mean saturation field as the 

observations, which closely align with the ones (greed 

circles) extracted from the true saturation field. Uncorrelated 
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distance measurement errors are assumed with a standard 

deviation of one grid cell length. 

Figure 6 shows the final match of saturation fronts and the 

mean of the updated ensemble of permeability fields. The 

updated ensemble mean of permeability captures the upper 

high-permeable channel structure observed in the reference 

model, indicating the essential information carried by the 

interpreted saturation front. 

 

 

  

Figure 3 (top): Distribution of data mismatch along with iteration 

for joint integration of seismic and EM data. Distribution of RMSE 

of updated porosity (bottom left) and water saturation (bottom right) 

ensembles along with iteration. 

 

   

Figure 4: The updated ensemble means of porosity (left) and water 

saturation (right) fields.  

 

   

Figure 5: Extracted saturation fronts from the inverted saturation 

ensemble (left) and the predicted saturation ensemble (right) 

corresponding to the prior permeability ensemble. The red and green 

dots denote the fronts extracted from the inverted saturation mean 
and true saturation fields respectively. The grayscale indicates the 

count of occurrence of the water front at a location. The scale is 

truncated for better display. 

 

    

Figure 6: The final match of saturation fronts (left) and the mean 

(right) for the updated ensemble of permeability fields.  

 

Conclusions 

We developed an ensemble-based model calibration 

workflow focusing on the integration of seismic and EM 

measurements via a deep learning aided feature-oriented 

approach. The workflow divides the model calibration 

process into two steps. The first step involves a joint 

inversion of seismic and EM data, as a result of which the 

uncertain cross-properties, such as saturation and porosity, 

are updated. In the second step, the remaining model 

parameters are calibrated based on the updated cross-

properties. The inverted saturation information is integrated 

using a distance parameterization method combined with a 

feature extraction deep learning approach. The experimental 

results suggest that the developed workflow provides a novel 

and effective way to incorporate the information from 

multiple sources of geophysical datasets into reservoir 

models. Ultimate goal is to maximize productivity by means 

of reducing the uncertainties on reservoir characterization 

and deep fluid distribution mapping in the interwell volumes 

of the reservoirs, where only indirect geophysical 

measurements are currently available. 

 

 

 


