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This study investigates the filtering problem with one-way coupled (OWC) state-space

systems, for which the joint ensemble Kalman filter (EnKF) is the standard solution.

In this approach, the states of the two coupled sub-systems are jointly updated with

all incoming observations. This enables transferring the information across the sub-

systems, which should provide coupled-state estimates in better agreement with the

observations. The state estimates of the joint EnKF highly depend on the relevance of

the joint ensembles’ cross-covariances between the sub-systems’ variables. In this work,

we propose a new joint EnKF scheme based on the One-Step-Ahead (OSA) smoothing

formulation of the filtering problem for efficient assimilation into OWC systems. The

scheme introduces an extra smoothing step for both states sub-systems with the future

observations, followed by an analysis step for each sub-system state using only its own

observation, all within a Bayesian consistent framework. The extra OSA-smoothing step

enables to more efficiently exploit the observations, to enhance the representativeness of

the EnKF covariances, and to mitigate for reported inconsistencies in the joint EnKF

analysis step. We demonstrate the relevance of the proposed approach by presenting and

analyzing results of various numerical experiments conducted with a OWC Lorenz-96

model.
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1. Introduction

Coupled earth models are designed to simulate the interactions

between several dynamical processes (Zhang et al. 2007).

These systems may couple two or more components, including

the atmosphere, ocean, land surface, chemistry or hydrology.

Accounting for the interactions between the different involved

processes should help improve the predictability of such systems

(Zhang et al. 2007; Luo and Hoteit 2014; Županski 2017). Here,

we are interested in a specific class of coupled models, the one-

way coupled (OWC) systems, consisting of two sub-systems

where only one of them is forced with the state of the other (Benra

et al. 2011). OWC systems are becoming increasingly used in

many fields, as for instance for modeling of various transport

phenomena, marine ecosystem modeling, etc (Travers et al. 2007).

Compared to classical single component models, coupled

models are more complex as they involve multi-spatial and

multi-temporal scales that interact nonlinearly. This makes

them substantially more sensitive to the data assimilation (DA)

strategies (Sakaguchi et al. 2012; Gharamti et al. 2014). In

particular, the exchange of information across the system sub-

components needs to be carefully treated during the assimilation

process, referred to as coupled data assimilation (CDA) (e.g.

Saha et al. 2010; Penny and Hamill 2017; Hoteit et al. 2018).

Depending on the level of the exchange of information between

the different components during assimilation, CDA can be broadly

categorized into two types: weak CDA (WCDA) and strong

CDA (SCDA) (Liu et al. 2013; Han et al. 2013). WCDA

allows interactions between the sub-components only through the

coupling dynamics, while each sub-component assimilating its

own observations. This approach offers an important practical

advantage of being promptly ready to apply when the sub-

components are already equipped with their assimilation modules,

at the cost of not exploiting the cross-information from the

other components observations. This could also lead to scale

mismatches and imbalances in the assimilated solutions (Han

et al. 2013). In contrast, SCDA respects the full coupling between

the components through both the coupling dynamics and during

assimilation. The effect of any observation from one model

component is indeed exploited in the estimation of the others

through their joint distribution (Luo and Hoteit 2014). This should

produce more physically balanced coupled state estimates and

make the system in better physical agreement with all available

observations (Liu et al. 2013; Hoteit et al. 2018). Algorithmically,

SCDA can be implemented by concatenating the states of the

sub-systems into one augmented state, on which conventional

DA methods can be directly applied. While WCDA has been

successfully implemented in several studies, mainly for weather

prediction (e.g. Zhang et al. 2007; Saha et al. 2010; Lahoz and

Schneider 2014; Laloyaux et al. 2016; Browne et al. 2019), SCDA

is still not mature and remains an active area of research that

requires more investigations to efficiently handle the exchange

of information between the system components (Luo and Hoteit

2014; Penny and Hamill 2017; Hoteit et al. 2018).

The ensemble Kalman filter (EnKF) is a popular assimilation

algorithm that was introduced by Evensen (1994) as a Monte

Carlo implementation of the Kalman filter (KF) (Kalman 1960)

to tackle large-scale, sequential, nonlinear DA problems. Using

a set of realizations of model states, called ensemble, the filter

estimates the first two moments, i.e., mean and covariance that

can be computed exactly by the KF, in two steps (Evensen 2003;

Hoteit et al. 2018): a forecast step that integrates the ensemble

members forward with the model, and an analysis step to update

the members with the incoming observations.

The implementation of SCDA within an EnKF framework

still faces important challenges in real world applications, the

most important of which being the involved multi-spatial/temporal

scales and strongly nonlinear character of the coupled system

components, and of course the increased computational cost (Han

et al. 2013; Luo and Hoteit 2014). This makes it challenging

to estimate reliable cross-correlation terms for the forecast

error covariance matrix, which characterizes the exchange of

information between the different components in the analysis step

(Ballabrera-Poy et al. 2008). Strategies for dealing with these

challenges have been investigated in several studies. For example,

Lu et al. (2015) suggested using lagged covariances to tackle

the difficulty of accounting for the different time scales, Luo and

Hoteit (2014) proposed a divided state-space estimation strategy

that accounts for the effect of coupling between the sub-systems

and Frolov et al. (2016) followed a similar approach to build an

c© 2013 Royal Meteorological Society Prepared using qjrms4.clsThis article is protected by copyright. All rights reserved.
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interface solver that retains independent DA sub-systems, while

allowing for coupling during assimilation.

Considering the OWC filtering problem as a generalization

of the state-parameter estimation problem, where the parameter

vector evolves according to a given dynamical model that can

be also observed, this problem can also be subject to issues

related to stability and tractability when jointly updating the

sub-systems states (Moradkhani et al. 2005; Hendricks Franssen

and Kinzelbach 2008; Lü et al. 2011; Wen et al. 2005b).

For instance, with highly nonlinear models, this produces non-

Gaussian distributions and may result in some ensemble members

being inconsistent with the model’s dynamics (Wen et al. 2005b;

Moradkhani et al. 2005; Lü et al. 2011; Subramanian et al. 2012).

Other challenges were also raised in the literature among which

we mainly cite: (i) the large degrees of freedom of the augmented

state vector, potentially leading to intractable solutions, (ii) the

possible time-updating inconsistencies, and (iii) potentially the

difficulty of the joint schemes to handle different degrees of

localization and inflation (Luo and Hoteit 2014; Wen et al.

2005b,a).

To enhance the EnKFs performances with OWC systems, we

resort to the one-step-ahead (OSA) smoothing formulation of

the filtering problem. Filtering with OSA-smoothing relies on

the idea that the standard “forecast-then-update” path of the

Bayesian filtering process is not unique, and can be reversed

(Desbouvries and Ait-El-Fquih 2008; Desbouvries et al. 2011).

This was shown to introduce an additional update step based on

the future observation (OSA-smoothing), within a fully consistent

Bayesian framework. In linear Gaussian systems, both standard

and OSA-smoothing Kalman filtering approaches provide the

same estimates (Desbouvries and Ait-El-Fquih 2008). In more

general nonlinear and non-Gaussian systems, the OSA-smoothing

scheme was shown to provide enhanced state and parameters

estimates with the EnKFs (Gharamti et al. 2015; Ait-El-Fquih

et al. 2016; Raboudi et al. 2018). The additional smoothing

step indeed constrains the sampling of the forecast ensemble

with the future observation, which provides improved background

statistics for the analysis step (Raboudi et al. 2018).

EnKF with OSA-smoothing provided a Bayesian consistent

framework for state-parameters estimation with the dual EnKF

of Moradkhani et al. (2005) (Ait-El-Fquih et al. 2016) and for

the running-in-place (RIP) scheme of Kalnay and Yang (2010)

(Raboudi et al. 2018). El Gharamti et al. (2013) followed the dual

state-parameter estimation method of Moradkhani et al. (2005) to

derive a dual EnKF for DA into OWC models, demonstrating the

relevance of using a time consistent sequential updating scheme

to mitigate for the imbalances issues of the joint EnKF. Here,

we generalize this work and derive a fully Bayesian consistent

EnKF algorithm with OSA-smoothing for OWC assimilation.

This introduces an extra smoothing step based on the future

observations of both sub-systems to update their states, whereas

the analysis steps are independently applied to each state

component using only its own observations, resulting in the

strong-type EnKFOSA scheme (SC-EnKFOSA hereafter). In its

weak version (WC-EnKFOSA), the smoothing step is performed

on each state component using only its own observation.

Extensive numerical experiments with a OWC multiscale Lorenz-

96 model are conducted under different assimilation settings

and scenarios to investigate the behavior of the proposed

schemes. Our results suggest that SC-EnKFOSA is clearly more

robust than SC-EnKF and WC-EnKF for estimating the coupled

state components, mainly in the challenging scenarios of small

ensembles, limited observations, assimilation of observations

from one model component only, and biased forecast model. We

further find that WC-EnKFOSA outperforms SC-EnKFOSA with

small ensembles.

The remainder of the paper is organized as follows. Section

2 recalls the strong EnKF (SC-EnKF) and weak (WC-EnKF)

algorithms. The proposed SC-EnKFOSA and WC-EnKFOSA

schemes are then derived in Section 3. Results of numerical

experiments with the OWC multi-scale Lorenz-96 model are

analyzed and discussed in Section 4. Concluding remarks are

finally given in Section 5.

c© 2013 Royal Meteorological Society Prepared using qjrms4.clsThis article is protected by copyright. All rights reserved.
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2. The classical EnKF for OWC systems

2.1. Problem formulation

Consider the discrete-time OWC dynamical system:



xn = Mx
n−1 (xn−1) + ηxn−1

zn = Mz
n−1 (zn−1,xn−1) + ηzn−1

yxn = Hx
nxn + εxn

yzn = Hz
nzn + εzn

, (1)

where xn ∈ RNx is the “free” system state of dimension Nx and

zn ∈ RNz is theNz dimensional “forced” state (by the state of the

other sub-system) at time instant tn. yxn ∈ RNyx and yzn ∈ RNyz

are respectively the Nyx and Nyz dimensional observations of

xn and zn at tn. Mx
n−1(.) and Mz

n−1(.) are the (nonlinear)

transition operators that respectively integrate the system states,

x and z, from time instant tn−1 to tn. The observation operators,

Hx
n and Hz

n, respectively project xn and zn from the state space

onto the observation space. We assume that Hx
n and Hz

n are

linear for simplicity, but the proposed ensemble schemes can be

easily extended to the case of nonlinear observation operators

as discussed for example in Liu et al. (2016). The model noise

terms, ηx = {ηxn}n∈N and ηz = {ηzn}n∈N, and the observation

noise terms, εx = {εxn}n∈N and εz = {εzn}n∈N, are assumed

to be independent, jointly independent and independent of the

initial states x0 and z0. ηxn and εxn (respectively, ηzn and εzn) are

also assumed Gaussian with zero means and covariances, Qx
n

and Rx
n (respectively Qz

n and Rz
n). The observation operators

for the two sub-systems are “separable” in the sense that the

observation corresponding to each sub-system depends only on its

corresponding state. The cases where the observation of one sub-

system depends on the state variables of both sub-systems might

be also treated as described in (Luo and Hoteit 2014).

We address the filtering problem, namely, the estimation at

any tn, of the joint state Xn =
[
xTn , z

T
n

]T
from the observations

up to tn (i.e., from yx0:n = {yx0 ,yx1 , · · · ,yxn} and yz0:n =

{yz0,yz1, · · · ,yzn}). This is achieved by transforming the coupled

system (1) into a standard state-space system operating on the

augmented state Xn and observation Yn =
[
(yxn)T , (yzn)T

]T
:

 Xn = Mn−1 (Xn−1) + ηn−1

Yn = HnXn + εn

, (2)

whereMn−1 (Xn−1) =
[ Mx

n−1(xn−1)

Mz
n−1(zn−1,xn−1)

]
, Hn =

[
Hx

n 0
0 Hz

n

]
,

and εn =
[
(εxn)T , (εzn)T

]T
and ηn−1 =

[
(ηxn−1)T , (ηzn−1)T

]T
respectively denote the augmented model and observations’

noise terms, which are actually Gaussian with zero means

and covariances Rn =
[
Rx

n 0
0 Rz

n

]
and Qn−1 =

[
Qx

n−1 0

0 Qz
n−1

]
,

respectively. The Kalman Filter (KF) recursively computes the

posterior mean estimate when the system is linear and the noise

terms are Gaussian (Hoteit et al. 2018). EnKFs are efficient

Gaussian-Monte Carlo approximations of the filtering problem

solution designed for large dimensional nonlinear systems at

reasonable computational cost (Evensen 2003). In the following,

we first recall the strong EnKF (SC-EnKF) and its weak variant

(WC-EnKF). Their OSA-smoothing counterparts, SC-EnKFOSA

and WC-EnKFOSA, are then presented in the next section. We

derive the schemes following a stochastic EnKF formulation

(Evensen 2003), but a deterministic formulation (Tippett et al.

2003) could be also considered as derived by Raboudi et al.

(2018).

2.2. The SC-EnKF and WC-EnKF algorithms

The SC-EnKF algorithm is derived by directly applying the

standard EnKF to the augmented system (2). Starting from

an analysis ensemble at tn−1, {Xa,i
n−1}

Ne

i=1
, with Xa,i

n−1 =[
(xa,in−1)

T
, (za,in−1)

T
]T

being the ith joint analysis member, the

forecast members, Xf,i
n =

[
(xf,in )

T
, (zf,in )

T
]T

, at the time of the

next available observation tn are derived from the coupled model

as (Luo and Hoteit 2014),

xf,in = Mx
n−1

(
xa,in−1

)
+ ηx,in−1, (3)

zf,in = Mz
n−1

(
za,in−1,x

a,i
n−1

)
+ ηz,in−1, (4)

where ηx,in−1 and ηz,in−1 are samples from N (0,Qx
n−1) and

N (0,Qz
n−1), respectively. Let for any ensemble {µi}Ne

i=1, µn and

Pµ being respectively the sample ensemble mean and covariance,

c© 2013 Royal Meteorological Society Prepared using qjrms4.clsThis article is protected by copyright. All rights reserved.
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and Sµ the corresponding perturbation matrix whose ith column

is defined as 1√
Ne−1

(µi − µ), i.e., Pµ = SµSTµ . Once a new

observation, Yn, is available, the ith forecast member Xf,i
n is

updated with a Kalman correction-based step to obtain the ith

analysis member Xa,i
n as,

Xa,i
n = Xf,i

n + K
Xf

n,Y
f
n

(Yn −Yf,i
n ), (5)

where Yf,i
n = HnX

f,i
n + εin (6)

represents a perturbed observation such that Yf
n =[

(yfxn )
T
, (yfzn )

T
]T

, with εin sampled from N (0,Rn), and

K
Xf

n,Y
f
n

the Kalman gain estimated from the ensemble members

as K
Xf

n,Y
f
n

= P
Xf

n,Y
f
n
P−1

Yf
n

(Evensen 2003),

with, P
Xf

n,Y
f
n

= P
Xf

n
HT
n = S

Xf
n
H̃T
n , (7)

P
Yf

n
= HnP

Xf
n
HT
n + Rn = H̃nH̃

T
n + Rn, (8)

and H̃n = HnS
Xf

n
. Thus, in an SC-EnKF, both free and forced

states are updated based on both observations, yxn and yzn. WC-

EnKF simply updates each state with its own observations only

by omitting the cross-diagonal blocks of the forecast covariance

P
Xf

n
(i.e., P

xf
n,z

f
n

= 0) as

xa,in = xf,in + K
xf
n,y

fx
n

(yxn − yfx,in ), (9)

za,in = zf,in + K
zf
n,y

fz
n

(yzn − yfz,in ), (10)

with K
xf
n,y

fx
n

= P
xf
n,y

fx
n

P−1

yfx
n

and K
zf
n,y

fz
n

= P
zf
n,y

fz
n
P−1

yfz
n

. In

our Gaussian EnKF framework, the WC-EnKF is obtained under

the independence assumption:

p(xn, zn|Y0:n−1) = p(xn|yx0:n−1)p(zn|Y0:n−1). (11)

3. The EnKF with OSA-smoothing for OWC systems

Ensemble OSA-smoothing filters involve two update steps with

the same data, in a fully Bayesian consistent way and under

the common Gaussian assumptions (Ait-El-Fquih et al. 2016;

Raboudi et al. 2018). Starting from an analysis ensemble,

{ra,in−1}
Ne

i=1
, EnKFOSA first performs a standard forecast step

to obtain a forecast ensemble, {rf,in }
Ne

i=1. This is then used

to smooth {ra,in−1}
Ne

i=1
with the incoming observation, yrn,

leading to the smoothed ensemble, {rs,in−1}
Ne

i=1
. A second

model integration is subsequently performed, now starting from

{rs,in−1}
Ne

i=1
, to compute a pseudo-forecast ensemble, which is, in

turn, updated using the same observation to obtain the analysis

ensemble {ra,in }
Ne

i=1. Ait-El-Fquih et al. (2016) showed that

the resulting forecast and analysis members are respectively

samples of the desired forecast and analysis pdfs, under the

assumption of p(rn−1, rn,y
r
n|yr0:n−1) being Gaussian. Unlike

iterative algorithms, assimilating the data twice does not affect the

Bayesian character of the EnKFOSA schemes as the data is used

to update two different quantities, rn−1 and rn.

Here, SC-EnKFOSA is derived by applying the EnKFOSA to

the more general OWC system (2), by applying the equations

in Raboudi et al. (2018, section 2.b) to the augmented state Xn.

The scheme therefore involves two joint update steps (smoothing

and analysis) and two coupled model integrations (forecast and

pseudo-forecast).

3.1. The smoothing step

Once the forecast ensemble {Xf,i
n =Mn−1

(
Xa,i
n−1

)
+ ηin−1}

Ne

i=1

generated according to (3) and (4), and the new observation Yn

is available, Xa,i
n−1 is updated with the future observation using,

Xs,i
n−1 = Xa,i

n−1 + K
Xa

n−1,Y
f
n

(Yn −Yf,i
n ), (12)

with the Kalman gain K
Xa

n−1,Y
f
n

= P
Xa

n−1,Y
f
n
P−1

Yf
n

, where

Yf,i
n and P

Yf
n

are respectively given by (6) and (8), and the

cross-covariance P
Xa

n−1,Y
f
n

is computed from the corresponding

ensembles as,

P
Xa

n−1,Y
f
n

= SXa
n−1

ST
Yf

n
,= SXa

n−1
H̃T
n . (13)

Using SXa
n−1

=
[
STxa

n−1
,STza

n−1

]T
, (12) can be split into

smoothing steps for the free and forced states as:

xs,in−1 = xa,in−1 + K
xa
n−1,Y

f
n

(Yn −Yf,i
n ), (14)

zs,in−1 = za,in−1 + K
za
n−1,Y

f
n

(Yn −Yf,i
n ), (15)

c© 2013 Royal Meteorological Society Prepared using qjrms4.clsThis article is protected by copyright. All rights reserved.
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with K
xa
n−1,Y

f
n

= P
xa
n−1,Y

f
n
P−1

Yf
n

and K
za
n−1,Y

f
n

=

P
za
n−1,Y

f
n
P−1

Yf
n

. Consequently, both states are smoothed using

the observations of both sub-systems (yxn and yzn).

3.2. The analysis step

The analysis step integrates first the smoothed ensemble,

{Xs,i
n−1}

Ne

i=1
, again with the coupled model to obtain the pseudo-

forecast ensemble, X̃f,i
n =

[
(x̃f,in )

T
, (z̃f,in )

T
]T

, as

x̃f,in = Mx
n−1

(
xs,in−1

)
+ η̃x,in−1, (16)

z̃f,in = Mz
n−1

(
zs,in−1,x

s,i
n−1

)
+ η̃z,in−1, (17)

where η̃x,in−1 and η̃z,in−1 are samples from N (0,Qx
n−1) and

N (0,Qz
n−1), respectively. These are then updated based on the

same observation as,

Xa,i
n = X̃f,i

n + K
X̃f

n,Ỹ
f
n

(Yn − Ỹf,i
n ), (18)

with Ỹf,i
n = HnX̃

f,i
n + ε̃in and K

X̃f
n,Ỹ

f
n

= P
X̃f

n,Ỹ
f
n
P−1

Ỹf
n

. In

Appendix A, we show that, in a Kalman setting (under the linear

Gaussian assumption), the cross-terms in the analysis Kalman

gain K
X̃f

n,Ỹ
f
n

are zero. This implies that the analysis step of the

KF with OSA-smoothing updates each of the two states using its

own observation only, which is of great practical interest. Their

analysis steps can thus be expressed as

xa,in = x̃f,in + K
x̃f
n,ỹ

fx
n

(yxn − ỹfx,in ), (19)

za,in = z̃f,in + K
z̃f
n,ỹ

fz
n

(yzn − ỹfz,in ), (20)

with, K
x̃f
n,ỹ

fx
n

= P
x̃f
n,ỹ

fx
n

P−1

ỹfx
n
, (21)

K
z̃f
n,ỹ

fz
n

= P
z̃f
n,ỹ

fz
n
P−1

ỹfz
n

(22)

where ỹfx,in = Hx
nx

f,i
n + εx,in and ỹfz,in = Hz

nz
f,i
n + εz,in ,

with εx,in and εz,in sampled from N (0,Rx
n) and N (0,Rz

n),

respectively. Note that, although xa,in and za,in are updated

separately, their associated (analysis) pdfs are still dependent,

i.e., the covariance of the joint state analysis PXa
n

is not block-

diagonal. Furthermore, in a linear-Gaussian setting, the PXa
n

of

KF-OSA exactly matches that of KF (Desbouvries et al. 2011).

Summary of SC-EnKFOSA algorithm: Starting from an analysis

ensemble, {Xa,i
n−1}

Ne

i=1
, with Xa,i

n−1 =
[
(xa,in−1)

T
, (za,in−1)

T
]T

,

• Smoothing Step

s1− The forecast ensemble, {Xf,i
n }

Ne

i=1, is computed by

integrating {Xa,i
n−1}

Ne

i=1
with the coupled model to the

time of the next available observation following (3)

and (4).

s2− {Xf,i
n }

Ne

i=1 is then used with the incoming

observation,Yn, to jointly smooth {Xa,i
n−1}

Ne

i=1

and obtain the smoothed ensemble, {Xs,i
n−1}

Ne

i=1
, as

in (12).

• Analysis Step

a1− {Xs,i
n−1}

Ne

i=1
is integrated with the model

to compute the pseudo-forecast ensemble

X̃f,i
n =

[
(x̃f,in )

T
, (z̃f,in )

T
]T

using (16) and (17).

a2− {x̃f,in }
Ne

i=1 are updated using yxn to compute

{xa,in }
Ne

i=1 following (19).

a3− {z̃f,in }
Ne

i=1 are updated using yzn to compute {za,in }
Ne

i=1

following (20).

SC-EnKFOSA applies two update steps (smoothing and analysis).

Its weak version (WC-EnKFOSA) is derived by separating the

smoothing step of the free and the forced states (i.e., by updating

each state using its own observations only), as the analysis update

is readily in this form. This can stem from neglecting the off-

diagonal blocks of P
Xa

n−1,Y
f
n

and P
Yf

n
, which could be derived

in our Gaussian framework under the independence assumptions,

p(xn−1, zn|Y0:n−1) = p(xn−1|Y0:n−1)p(zn|Y0:n−1),(23)

p(zn−1,xn|Y0:n−1) = p(zn−1|Y0:n−1)p(xn|Y0:n−1),(24)

for P
Xa

n−1,Y
f
n

, and the assumption (11) for P
Yf

n
. The WC-

EnKFOSA has therefore the same algorithm except that the joint

smoothing step (s2) is performed separately for each state sub-

system using only its own observations.

4. Numerical experiments

4.1. Experimental setup

We use the multiscale Lorenz 96 (MS-L96) model (Lorenz 1996),

in which Nx slow variables, {xi}Nx
i=1, are coupled to Nz = K ×
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Nx fast variables, {zj,i}
(K,Nx)
(j,i)=(1,1)

, as,

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + F − hc

b

K∑
J=1

zj,i, (25)

dzj,i
dt

=
(
zj−1,i − zj+2,i

)
cbzj+1,i − czj,i +

hc

b
xi, (26)

for i = 1, · · · , Nx and j = 1, · · · ,K. To avoid any confusion

with the previous notations, we emphasize that the variable

indices here refer to the number of state elements. The state

variables xi and zj,i are periodic, i.e., xi+Nx
= xi, zj,i+Nx

=

zj,i and zj+K,i = zj,i+1. The MS-L96 simulates the weather

variations at the mid-latitude and is often used to study the

influence of different spatio-temporal scales on the predictability

of atmospheric flows (e.g., Lorenz 1996; Palmer et al. 2005;

Abramov 2016). xi and zj,i are respectively the slow and fast

variables representing some atmospheric quantities discretized

respectively into Nx and Nx ×K sectors along the latitude circle

(Lorenz 1996). Both variables are driven by quadratic (nonlinear)

interaction terms modeling advection, constant forcing, linear

damping, and coupling between a slow variable in one sector and

K fast variables in the corresponding subsectors (Lorenz 1996;

Fatkullin and Vanden-Eijnden 2004). Each xi forces the zj,i that

are linked to it; the zj,i then interact with each other with wave-

like dynamics and feedback to the slow variables with a combined

forcing. The parameters F , c, b, and h are constant and stand

respectively for the forcing term, the spatial and temporal scale

ratios, and the coupling coefficient.

We formulate a OWC MS-L96 model (consistent with system

(1)) by neglecting the coupling term (−hcb
∑K
J=1 zj,i) in Eq.

(25). This yields the classical L-96 evolution equations for xi’s

variables;

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + F. (27)

A OWC system is so obtained where the variable z does not act

on x, whereas z is forced by x at each time step. Physically,

this suggests that the chaotic fast variable system is also forced

by a chaotic system, having an inherent slower timescale and

leading to interesting chaotic dynamics in the z variable system.

More precisely, the wave dynamics in z do not couple with the x

dynamics whereas the x dynamics can still force the z variables

with no feedback to x. Examples of OWC models include one-

way coupled hydro-meteorology models, where a meteorology

model (e.g. WRF) can be one-way coupled to a hydrology model

(e.g. WRF-Hydro) (Sampson and Gochis 2018). Similar OWC

models are also found in applications related to marine ecosystem

modeling (Triantafyllou et al. 2006) and more generally in marine

and atmosphere transport models (e.g. pollution) and downscaled

wind energy modeling. Resonance behavior in such coupled

nonlinear systems as a consequence of the intrinsic dynamics

has been studied previously (Gang et al. 1993; Lee et al. 1998;

Jiang and Xin 2000). Let Nx = 8, K = 16 (i.e., Nz = Nx ×K =

128), c = b = 10 and h = 1, which corresponds to a coupling

strength of hc/b = 1. However, more experiments (not shown

here), confirmed that the conclusions from this work remain valid

with stronger couplings. We also set F = 10 so that both scales are

chaotic (Lorenz 1996). MS-L96 is discretized using the Runge-

Kutta 4th-order scheme with a constant time step ∆t = 0.005,

which corresponds to 36 minutes in real time. We run the model

for 10 years for spin-up, starting from an initial state sampled

from a Gaussian density of zero-mean and identity covariance.

The data assimilation experiments start from the end of the 10-

year spin-up. The model is again integrated for 3 years and the

resulting trajectory is considered as the truth. These are then used

to generate synthetic observations by adding zero-mean Gaussian

noises with covariances σ2
xINx

and σ2
zINz

. The observational

error standard deviations for the slow (x) and fast (z) variables

are respectively set to σx = 1 and σz = 0.1, which correspond to

approximately 20% and 35% of the long term average standard

deviation of the two states, respectively.

An initial ensemble is generated by perturbing the aforemen-

tioned initial state with Gaussian noise of zero mean and identity

covariance. We implement all filters using the covariance inflation

(Anderson and Anderson 1999) and localization techniques. Both

states’ ensembles (x and z) are inflated each time an observa-

tion (of at least one of them) becomes available. Inflation in

the OSA-smoothing schemes is applied for both forecast and

pseudo-forecast ensembles. For localization, the most common

techniques, local analysis and covariance localization (Sakov and

Bertino 2011), are both distance-based strategies. This requires
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8 Raboudi et al.

the model and observation variables to be associated with physical

locations defining the distances between them. This is however

not the case in our application in which the distances between the

slow and fast variables are not physical. Luo and Hoteit (2014)

neglected the different spatial scales between each xi and the

corresponding zj,i by assuming that they have the same physical

location. By doing so, the same localization scale was imposed for

both fast and slow components. In this work, we instead follow

the correlation-based (adaptive) localization method of Luo et al.

(2017), which estimates different cut-off radii for each state vari-

able, based on the spatial distributions of the correlations between

the model variables and the corresponding simulated observations

(called hereafter correlation field). The model variables are then

updated using only the observations with which they significantly

correlate. This is practically done via a Schur product between a

tapering matrix (constructed based on the correlation field) and

the Kalman gain, such that the tapering coefficients are 0 or 1

depending on the significance of the correlation (defined by a

threshold) between the model variables and the observations. We

follow Luo et al. (2017) and use a large ensemble (of 10000

members) to compute a robust approximation of the correlation

field, ρ∞. An “oracle threshold” for each available observation,

k, is then computed based on the standard derivation of the error

between ρ∞k and the correlation field computed using the EnKF

ensemble. This is separately performed at every filtering step and

for each model state. In cases where the computation of ρ∞ is

computationally demanding, one can still use a wavelet-based

denoising algorithm to estimate the noise level in the wavelet

domain, from which the threshold value can be deduced. The

reader is referred to Luo et al. (2017) for more details about the

method.

The filters’ performances are evaluated using the root-mean-

square error (RMSE) between the reference states, U(i,n), and the

filters’ estimates, Û(i,n) (the index i stands for the number of state

elements and n for the time), averaged over all its components and

over the assimilation period of Nn cycles:

RMSE =
1

Nn

Nn∑
n=1

√√√√ 1

Nx

Nx∑
i=1

(u(i,n) − û(i,n))
2 . (28)

Here, u can be either x or z and therefore two different RMSEs are

computed: the marginal RMSE for x (x-RMSE) and the marginal

RMSE for z (z-RMSE). We further analyze the ensemble spread

and evaluate the cross-correlation terms. To reduce statistical

fluctuations, our results are averaged over 10 independent random

realizations (with different initial ensembles and observational

errors).

4.2. Results and discussions

We evaluate the filters’ performances under various scenarios.

We particularly study the sensitivities to the ensemble size, the

length of the assimilation window and the number of assimilated

observations. Three observational scenarios are investigated for

both model components: full (i.e., all model variables are

observed), half (i.e., every second variable is observed) and

quarter (i.e., every fourth variable is observed). To give an idea

about the different temporal scales between the state variables

of the fast and slow components, we present in Fig. 1 the time

series for some components of the free state (x1, x4 and x8) and

the forced state (z1,1, z4,4 and z8,8) during the first 5000 model

steps, confirming that the z variables change much faster in time

compared to the x variables.

4.2.1. Sensitivity to the ensemble size

We assimilate the data of both states (yx and yz) every day (i.e,

every 40 model steps (ms)), and consider the scenario in which

half of the observations of both states (x and z) are assimilated.

We report in Figs. 2, 3 and 4 the RMSEs, as a function of the

inflation factor, as they result from SC-EnKF, SC-EnKFOSA,

WC-EnKF and WC-EnKFOSA with 20, 40 and 80 members,

respectively. Comparing the strong and weak filtering schemes

for both standard and OSA-smoothing formulations, one can see

that the advantage of SCDA over WCDA becomes noticeable only

when “enough” members are used (starting from Ne = 40 for SC-

EnKFOSA and 80 for SC-EnKF). With the smallest ensemble size,

Ne = 20, WC-EnKF and WC-EnKFOSA significantly outperform

SC-EnKF and SC-EnKFOSA, respectively. In this case, SC-EnKF

reaches a minimum x-RMSE and z-RMSE of 1.81 and 0.232,

respectively, compared to 0.96 and 0.218 for WC-EnKF. This

supports the idea that the cross-correlations should be exploited
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during the update step when enough ensemble members are

considered to obtain statistically meaningful estimates.

As for the comparison of SC-EnKF with SC-EnKFOSA,

and WC-EnKF with WC-EnKFOSA, it is clear that the OSA-

smoothing-based filters outperform their standard counterparts.

This is particularly pronounced when a small ensemble is

used. For example, with 20 members, the minimum x-RMSE

and z-RMSE achieved by SC-EnKF are respectively 1.81 and

0.232 compared to 0.94 and 0.201 with SC-EnKFOSA, which

corresponds to relative improvements of about 48% and 13%,

respectively. Similar results are obtained for WC-EnKFOSA

compared with WC-EnKF. As the ensemble size increases, the

effect of the extra OSA-smoothing step becomes less pronounced

for both weak and strong schemes, as can be seen in Fig. 4.

The results further suggest that with an under-sampled ensemble

of 20 members, SC-EnKFOSA yields substantially improved

estimates, which are even slightly better than those of WC-

EnKF. In coupled systems, the cross-covariances between the two

coupled systems seem to generally be more prone to sampling

errors than the covariances, and these have been damped by

the OSA formulation. This confirms the effect of the extra

smoothing step, which improves the background representation

by constraining the forecast ensemble sampling with the “future”

data, notably with small ensembles. In addition, the separate

updates of the analysis step of SC-EnKFOSA (without abuse of

language, but keeping in mind that SC-EnKFOSA does not neglect

the cross-covariance terms in the analysis Kalman gain, as these

are indeed null) further helps mitigating the impact of spurious

cross-correlations, making the SC-EnKFOSA update more robust

to sampling errors. For instance, the cross-covariances between

x1 and all zi,j estimated by the SC-EnKF, SC-EnKFOSA,

WC-EnKF and WC-EnKFOSA at the 1000th assimilation step

using 20 members in Fig. 5 show that the sampling errors are

indeed reduced by SC-EnKFOSA compared to SC-EnKF, making

its performance closer to that of WC-EnKFs. This is further

discussed in the next section.

The results also emphasize the importance of adequate tuning

of the inflation values to achieve good performances. As expected,

increasing the ensemble size reduces the need for inflation.

Moreover, SC-EnKFs (with or without OSA-smoothing) require

larger inflation values compared to their weak counterparts, which

is more pronounced with smaller ensembles. This suggests a need

for larger inflation values to better exploit the cross-observations,

as a way to mitigate the sampling errors in the (ensemble-

approximated) cross-correlations. With large enough ensembles

(Ne = 160 and 320), strong and weak filtering schemes require

similar inflation values. Although WC-EnKF and WC-EnKFOSA

require comparable inflation values, SC-EnKFOSA could work

with less inflation than SC-EnKF, which may translate a better

estimation of the cross-correlations in the smoothing step, or could

be also related to the separate updates in the analysis step (second

update) of SC-EnKFOSA.

To understand to which extent observations from one state

affects the other with the strong coupled assimilation schemes, we

conduct four experiments that only differ in the cross-observations

assimilation strategies. The first experiment (Exp1) corresponds

to the most general setting where all observations are used to

update both states (i.e., strongly coupled assimilation). In the

second experiment (Exp2), x-observations (yx) are not used to

update z. In Exp3, z-observations (yz) are not used to update

x. Finally, in Exp4, each observation updates only its state (i.e.,

weakly coupled assimilation). Fig. 6 displays barplots of the

minimum RMSEs using a small ensemble (20 members) and a

large ensemble (160 members) to also assess the effect of the

ensemble size on the results. With 160 members and for the

estimation of x, the results of Exp3 are of course the same as

those of the weak formulation (Exp4), which is actually expected

since x is not dependent on z and uses only its observations in

both scenarios. Results of Exp2 are comparable to those of Exp1,

which suggests that the improvement introduced by the strong

formulation (over the weak formulation) for x is mainly due to the

assimilation of yz . As for the forced (fast) state z, comparing Exp3

and Exp4 suggests that assimilating yx only marginally improves

the results compared to the weak formulation, suggesting that

yx are not very informative for z. This is because yx does not

provide high-frequency information relevant for the fast variable

z, as has been also suggested by Liu et al. (2013). This is further

supported by the fact that the results of Exp2 are close to the

those of Exp1. Hence, the improvements introduced by the strong

formulation over the weak one for the estimation of z are not
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related to the update of z by yx, but to the cross-assimilation

of yz by x, suggesting the important effect of the coupling with

better x-estimates. One may therefore choose to update the fast

variables using only the corresponding observations, whereas the

slow state variables are still updated with observations from both

components. Fig. 6 further suggests that with a relatively small

ensemble of 20 members, assimilating the cross-observations

generally introduces noise to both system components, which is

alleviated by the OSA-smoothing formulation.

Fig. 7 plots the evolution of the minimum x-RMSE and

z-RMSE using six different ensemble sizes varying between

10 to 320. The results suggest three important findings. First,

applying the OSA-smoothing step improves the assimilation

results, particularly when the filters are implemented with small

ensembles. Second, in these small ensemble cases, the (extra

update) OSA-smoothing step significantly reduces the gap (in

terms of minimum RMSE) between the weak and strong coupled

assimilation strategies. For instance, with 10 members, SC-EnKF

and WC-EnKF respectively achieve 2.69 and 1.33 minimum x-

RMSEs, about 50% difference, while SC-EnKFOSA provides

a minimum x-RMSE of 1.41 compared to 0.97 with WC-

EnKFOSA, a relative improvement of 31%. Third, SC-EnKFOSA

generally outperforms both SC-EnKF and WC-EnKF. With

very small ensembles, WC-EnKFOSA provides the best results.

Overall, these results suggest the relevance of the OSA-smoothing

step for enhancing the performances of the EnKF with OWC

by providing more reliable background covariances (and cross-

covariances). With small ensembles, this may still not be enough,

but WC-EnKFOSA could still be quite beneficial. Hereafter, we

will focus on analyzing the behavior of the filter when both state

sub-systems are updated with both states observations, i.e. the

strongly coupled DA framework.

We report in Fig. 8 the percentages of relative improvements

resulting from SC-EnKFOSA with respect to SC-EnKF for

different ensemble sizes (only positive percentages are reported).

We are in particular interested in evaluating the SC-EnKFOSA

results when implemented with half of the ensemble size used

for SC-EnKF, so that both schemes require roughly the same

computational load. With the same ensemble size, SC-EnKFOSA

outperforms SC-EnKF in practically all cases (except for the

estimation of x with 160 and 320 members where both schemes

yield comparable results). This tends to be more pronounced

with relatively small ensembles and for the state of the slow

components x (up to 50%), while for the fast state z, these

improvements do not exceed 13%. When implemented with

half the number of members, SC-EnKFOSA still generally

outperforms SC-EnKF, mainly in the small ensemble size cases

(Ne = 10 or 20). In the rest of our experiments, we will use

two ensemble sizes, 40 and 80, to assess the filters’ performances

under the same computational cost.

4.2.2. Sensitivity to the assimilation windows

We study in this section the effect of varying the length of the

assimilation window of both sub-systems. We assimilate half of

the observations from both sub-systems and conduct two sets

of experiments to illustrate the sensitivity to yx and yz . Fig.

9 displays the evolution of the minimum RMSEs for different

assimilation windows of yz (ranging between every 5 ms and

every 1000 ms). In these runs, yx are assimilated every 40 ms

in Figs. 9.a-b and every 10 ms in Figs. 9.c-d. As expected, the

RMSE values for both x and z decrease as the ensemble size

and the frequency of assimilating yz increase. One can also

notice that SC-EnKFOSA generally outperforms SC-EnKF in the

tested scenarios, and this becomes more pronounced when only

40 members are used. Comparing the results of Fig. 9.a-b, when

yx are assimilated every 40 ms, with those of 9.c-d, when they

are observed every 10 ms, one can see that a more frequent

assimilation of yx has a very small impact on improving the

estimation of z (plots (b) and (d)). The effect on the estimation of x

is much more noticeable (plots (a) and (c)). This is consistent with

the results of Section 4.2.1 where yx was not very informative for

z. The results further suggest that with the assimilation of yz every

5 to 40 ms, SC-EnKFOSA’s estimates with 40 members are close

to those of SC-EnKF with 80 members. When yz is assimilated

less frequently (beyond 40 ms), SC-EnKFOSA tends to provide

similar or even better estimates than SC-EnKF, especially when

z is observed every 40 ms. Fig. 9.a indeed suggests that SC-

EnKFOSA can outperform SC-EnKF with only half the ensemble

size. The effect of the OSA-smoothing formulation seems to
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become much more pronounced as less observations from the fast

component are assimilated in time.

Fig. 10 illustrates the sensitivity of the filtering schemes to

the assimilation frequency of yx. As above, we explore two

values for the assimilation interval of yz (40 and 10 ms) and

analyze the RMSEs values for different assimilation periods of

yx. Comparing SC-EnKF and SC-EnKFOSA, we notice that when

the fast variables are frequently observed (every 10 ms), SC-

EnKFOSA outperforms SC-EnKF in all tested scenarios, and

again, this is more pronounced with small ensembles. When

assimilating yz frequently enough (every 10 ms), the increase

in the estimation error with the assimilation window of yx for

both components (especially x) is expected to be alleviated as

the system is well-constrained by yz . By increasing the ensemble

size from 40 to 80, both SC-EnKF and SC-EnKFOSA estimates

become less sensitive to the assimilation frequency of yx as yz

is more efficiently assimilated. Similarly, the two-stage update

of SC-EnKFOSA is less sensitive than that of SC-EnKF to the

assimilation window of yx, in particular when 80 members are

used. Increasing the assimilation window of yz to 40 ms results

in different (opposite) behaviors of SC-EnKF and SC-EnKFOSA,

depending on the assimilation frequency of yx. Indeed, when the

latter is shorter than 40 ms (i.e., the system assimilation step is also

shorter than 40 ms), SC-EnKFOSA clearly outperforms SC-EnKF,

mainly when the filters are implemented with 40 members. With

longer assimilation windows of yx (i.e., the system assimilation

step is set to 40 ms), however, the behavior of SC-EnKFOSA

starts degrading, especially for the estimation of the slow variable

x. Indeed, when yx are assimilated every more often than 40

ms, SC-EnKFOSA performs successive OSA-smoothing updates

based on yz only, before yx becomes available. It seems that

assimilating yz based on a standard update is more efficient since

a smoothing window of 40 ms is relatively large. The smoothing

step is indeed beneficial only up to a certain window within

which the linear smoothing step is viable, beyond which the

OSA smoothing filters performances start to degrade (Raboudi

et al. 2018). Obviously, this problem does not occur when yx are

assimilated less frequently than 40 ms, and is further alleviated

when yx are assimilated every 40 or 80 ms. As an illustration,

we conducted an experiment assimilating yx every 200 ms and

yz every 40 ms using 40 members such that, whenever yx is

available, both observations are assimilated based on a OSA-

smoothing update, whereas all the assimilation steps of yz only

(i.e., between two successive occurrences of yx) are standard.

This results in more accurate estimates than those of SC-EnKF

and SC-EnKFOSA.

To further assess the effect of the smoothing step on the

estimation of x and z, we plot in Fig. 11 the time evolution of the

forecast and analysis RMSEs as estimated by SC-EnKF and SC-

EnKFOSA, along with the forecast ensemble standard deviation.

The assimilation windows for yx and yz are respectively 40 and

10 ms and the ensemble size is 40. The results correspond to the

inflation factor that provides the lowest (joint) RMSEs. We plot

the results between the 100th and the 300th assimilation steps,

but report the averaged RMSEs over the three-year simulation

period. For both x and z, the forecast and analysis RMSEs

resulting from SC-EnKFOSA are lower than those of SC-EnKF,

with relative improvements of respectively 40% and 27%. As

for the ensemble spread, it is also reduced by SC-EnKFOSA,

suggesting less uncertainty on the estimated state. Similarly, we

plot in Figs. 12 the time series of the cross-covariances (between

x1 and z1,1, x4 and z4,4 and x8 and z8,8) between the 100th

and 300th assimilation steps, as estimated by SC-EnKF and SC-

EnKFOSA, using three different ensemble sizes: 20 (Figs. 12.a-d-

g), 40 (Figs. 12.b-e-h) and 320 (Figs. 12.c-f-i). With a relatively

large ensemble, of 320 members, both SC-EnKF and SC-

EnKFOSA provide similar (and reliable) estimates of the cross-

covariances, which by comparison to those estimated by only 40

and 20 members, suggest better SC-EnKFOSA estimates of cross-

covariances. The results further suggest that the OSA-smoothing

formulation reduces the noise in the cross-covariance terms,

and this becomes more pronounced with smaller ensembles. For

example, by comparing the results with 20 and 40 members, one

can notice that the ensemble cross-covariances as computed by

both SC-EnKF and SC-EnKFOSA become more dominated by

noise, but to a clearly lesser extent for SC-EnKFOSA, confirming

the improved robustness of this filter to sampling errors.

We further examine in Fig. 13 the posterior ensemble and

uncertainties as they result from both schemes. The first row plots
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the analysis ensemble as estimated by the SC-EnKF and SC-

EnKFOSA for x1, using 20, 40 and 320 members (between the

100th and the 300th assimilation steps) as well as the observations

(black stars). The figure shows that with 320 members, the filters

ensembles spreads are similar, whereas with 40 and particularly

20 members, SC-EnKFOSA exhibits less spread, suggesting less

uncertainty in the estimated state. Moreover, in both schemes,

the observations are generally within these uncertainties from the

estimates, suggesting their consistency. The second row plots the

analysis RMSE and ensemble standard deviation for x1 during

the same period, and suggests overall less errors and variance

for SC-EnKFOSA. The RMSEs are further consistent with the

standard deviations in the case of SC-EnKF, and to a larger extent

for SC-EnKFOSA. The third row displays the rank histograms of

the ensembles of schemes using 20, 40 and 320 members. Rank

histograms are common indicators of the reliability of the filter

ensemble (Harrison et al. 1995; Talagrand 1999). For a properly

samples ensemble, small analysis error should be accompanied

by uniformly distributed rank histograms (Hamill and Colucci

1997). Ideally, the rank of the true state relative to a sorted Ne-

ensemble should be equally likely to occur in any of the Ne − 1

possible ranks. Hence, over many samples, a histogram of the

ranks of observations relative to the sorted ensemble should be

approximately uniform. Non-uniformity could indicate potential

problems in the ensemble. The results suggest that SC-EnKFOSA

exhibits relatively flatter rank histograms, particularly will small

ensembles. For instance, with 20 members, the SC-EnKF rank

histogram is concave downward, suggesting an over-dispersive

ensemble, while SC-EnKFOSA shows a more desired histogram.

4.2.3. Sensitivity to the number of observations

This section investigates the effect of the number of assimilated

observations on the filters’ performances. Based on the results

of the previous section, we assimilate yx every 40 ms and

yz every 10 ms. Fig. 14 plots the RMSEs, as function of the

inflation factor, as they result from SC-EnKF and SC-EnKFOSA

when respectively all, half and quarter of both yx and yz are

assimilated. As expected, the filters’ behavior improves with the

assimilation of more observations and SC-EnKFOSA is shown

to significantly outperform SC-EnKF in all tested scenarios. In

Fig. 15, we report the results of the experiment assimilating

observations from half of the variables of one state (x or z)

and vary the number of observed variables from the other

state. As expected, the results mainly suggest that the number

of assimilated yx does not have an important impact on the

estimation of z, while the number of assimilated yz have a clear

impact on the estimation of x, suggesting as before that yx does

not provide much information about z.

We further investigate the cases where observations of only

one state variable are available. Fig. 16 illustrates the filters’

performances when only yx are assimilated (thus, the estimation

of x is equivalent to the weak formulation; see Fig. 3), whereas

the forced variable z is updated through the coupling with x.

When yx are frequently available in time, standard and OSA-

smoothing schemes yield comparable results. The benefit of SC-

EnKFOSA becomes clear when less yx are assimilated. This is

obviously up to a certain frequency beyond which the smoothing

step becomes less robust, as discussed in Section 4.2.2 (∼ 60

ms). Fig. 17 presents the results of the second experiment when

only yz are assimilated. With an assimilation window of 40

ms, SC-EnKF outperforms SC-EnKFOSA, again because of the

large assimilation window. Assimilating over a shorter window

of 10 ms, SC-EnKFOSA clearly outperforms SC-EnKF in the

estimation of both x and z, with relative improvements of about

36% for x and 25% for z.

4.2.4. Robustness to bias in the forecast model

We finally study the sensitivity of the filtering schemes to a

biased forecast model. We choose to introduce a bias in the MS-

L96 model by reducing the values of the parameters F , c, b,

and h in (27) and (26) by 20% (c = b = 8, h = 0.8 and F =

8) and 40% (c = b = 6, h = 0.6 and F = 6) compared to their

reference values during the forecast steps. We further consider

the challenging scenario where we assimilate only one-quarter of

the observations from each model component every 40 ms. Fig.

18 shows that, with 20% of bias, SC-EnKFOSA results are about

20% and 9% better in terms of x-RMSE and z-RMSE respectively.

With 40% of bias, SC-EnKFOSA can still outperform SC-EnKF,

suggesting its robustness to bias in the forecast model.

c© 2013 Royal Meteorological Society Prepared using qjrms4.clsThis article is protected by copyright. All rights reserved.
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5. Discussions

This study considered the ensemble data assimilation (DA)

problem into one-way coupled (OWC) models, a class of coupled

models in which one of the two sub-systems is forced by the

other, using the Ensemble Kalman Filter (EnKF). Although the

implementation of the EnKF with such systems can be commonly

performed by concatenating the states and observations of the

coupled system components, so that the coupled system is

teated as a standard state-space-model, several studies reported

several challenges associated with this implementation in realistic

applications, namely the differences in time and temporal

scales between the different components, the strongly nonlinear

character of the coupling between the system components, and

the increase in the computational cost. In these situations, it is

challenging to estimate reliable cross-correlations, characterizing

the exchange of information between the components at the

analysis step.

Here, we considered the one-step-ahead (OSA) smoothing

formulation of the filtering problem to derive new EnKF

schemes better suited to deal with OWC DA problems. The

OSA-smoothing formulation reverses the order of the standard

“forecast-then-update” path of the filtering problem, which

introduces an extra update step based on the future observations.

Constraining the sampling of the forecast ensemble with the future

observations provides enhanced background statistics that were

shown to be quite beneficial for efficient cross-transferring of the

information between the system components. An EnKF algorithm

with strong coupling was then derived based on the OSA-

smoothing formulation (SC-EnKFOSA), with the particularity of

involving a joint smoothing step for both state components using

the future observations of both variables and a separate analysis

step for both states (involving two separate updates of each state

component, each assimilating its own observations only). We

further derived its weak version (WC-EnKFOSA) by neglecting

the cross-updates in the joint smoothing step.

The performances of the EnKFOSA schemes were tested and

compared with their standard EnKF counterparts (SC-EnKF and

WC-EnKF) by conducting extensive numerical experiments with

the OWC multiscale Lorenz 96 (MS-L96) model, which couples

slow and fast variables. Our numerical results demonstrated

that EnKF with OSA-smoothing is more efficient and robust

for estimating both state components. This was particularly

more pronounced in the challenging situations when the filters

were implemented with small ensembles, limited number and

frequency of observations, assimilated observations from one

model component only, and biased forecast model. In our

experiments, SC-EnKFOSA outperformed all other filtering

schemes, except when very small ensembles were used, cases

in which WC-EnKFOSA becomes more reliable. Acknowledging

that the computational costs of the OSA-smoothing schemes is

almost double compared to those of the standard schemes, we also

demonstrated that the SC-EnKFOSA is able to outperform the SC-

EnKF using only half the ensemble members.

Our results further suggested that SC-EnKFOSA has a

particular benefit on the slow component, which could be related

to two factors: the characteristics of the considered OWC model

and the slow-fast nature of its coupled dynamics. In the considered

OWC model, the fast variable is function of the slow variable

and therefore an observation of the fast component is also an

observation of the slow one. One should therefore expect a

larger impact on the slow component, particularly with the SC-

EnKFOSA through its two-stage update. Second, the observed

information about the slow dynamics does not provide high-

frequency information relevant for the fast variable and therefore

the improvements should be more pronounced for the slow

component, mainly with SC-EnKFOSA which better handles the

transfer of cross-information between the coupled subsystems.

The proposed OSA-smoothing EnKF schemes were found

quite efficient in the context of twin experiments with the OWC

Lorenz-96 model. Our next step will be to test these schemes for

data assimilation into realistic ocean and atmospheric transport

models.
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6. Appendix [A]

Seperability of the analysis step of SC-EnKFOSA

Under the assumption of p(Xn−1,Xn,Yn|Y0:n−1) Gaussian (which actually holds for linear Gaussian systems), the analysis Kalman

gain K
X̃f

n,Ỹ
f
n

can be written as

K
X̃f

n,Ỹ
f
n

= cov(Xn,Yn|Xn−1,Y0:n−1)︸ ︷︷ ︸
C1

[
cov(Yn|Xn−1,Y0:n−1)︸ ︷︷ ︸

C2

]−1 (29)

where cov stands for the (cross)-covariance between the underlying variables (Desbouvries et al. 2011; Ait-El-Fquih et al. 2016). We

focus here on the off-diagonal blocks of the (cross)-covariance blocks in K
X̃f

n,Ỹ
f
n

:

C1 =

 • cov(xn, zn|Xn−1,Y0:n−1)(Hz
n)T

cov(zn,xn|Xn−1,Y0:n−1)(Hx
n)T •

 , (30)

and,

C2 =

 • Hx
ncov(xn, zn|Xn−1,Y0:n−1)(Hz

n)T + cov(εxn, ε
z
n)

Hz
ncov(zn,xn|Xn−1,Y0:n−1)(Hx

n)T + cov(εzn, ε
x
n) •

 . (31)

Noticing that cov(xn, zn|Xn−1,Y0:n−1) = 0 as the model noise terms ηxn−1 and ηzn−1 are independent and independent of x0 and z0,

and cov(εxn, ε
z
n) = 0 as the observation noise terms εx and εz are independent, K

X̃f
n,Ỹ

f
n

becomes a block diagonal matrix of the form

K
X̃f

n,Ỹ
f
n

=

 K̃x K̃xz = 0Nx×Nyz

K̃zx = 0Nz×Nyx
K̃z

 . (32)

This could be also obtained by using the alternative expression of the analysis gain K
X̃f

n,Ỹ
f
n

= Qn−1H
T
n (HnQn−1H

T
n + Rn)−1

(Desbouvries et al. (2011); Raboudi et al. (2018)), with the augmented matrices Qn−1 =
[
Qx

n−1 0

0 Qz
n−1

]
, Rn =

[
Rx

n 0
0 Rz

n

]
and

Hn =
[
Hx

n 0
0 Hz

n

]
. K

X̃f
n,Ỹ

f
n

can thus be expressed as:

K
X̃f

n,Ỹ
f
n

=

[
K̃x=Qx

n−1(Hx
n)T (Hx

nQ
x
n−1(Hx

n)T +Rx
n)−1 K̃xz=0Nx×Nyz

K̃zx=0Nz×Nyx
K̃z=Qz

n−1(Hz
n)T (Hz

nQ
z
n−1(Hz

n)T +Rz
n)−1

]
. (33)

With K̃xz = K̃zx = 0, one can show that K̃x = P
x̃f
n,ỹ

fx
n

P−1

ỹfx
n

and K̃z = P
z̃f
n,ỹ

fz
n
P−1

ỹfz
n

as given respectively in Eqs. (21) and (22).

For brevity, we present only the derivations for K̃x, as the expression of K̃z could be similarly derived. One has,

K
X̃f

n,Ỹ
f
n

=

Px̃f
n,ỹ

fx
n

P
x̃f
n,ỹ

fz
n

P
z̃f
n,ỹ

fx
n

P
z̃f
n,ỹ

fz
n

×
 P

ỹfx
n

P
ỹfx
n ,ỹfz

n

P
ỹfz
n ,ỹfx

n
P

ỹfz
n


−1

. (34)
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Using the Schur complement theorem and some matrix inversion lemmas, one can write

K̃x =
[
P

x̃f
n,ỹ

fx
n
−P

x̃f
n,ỹ

fz
n
P−1

ỹfz
n
P

ỹfz
n ,ỹfx

n

]
×
[
P

ỹfx
n
−P

ỹfx
n ,ỹfz

n
P−1

ỹfz
n
P

ỹfz
n ,ỹfx

n

]−1
,

=
[
P

x̃f
n,ỹ

fx
n
−P

x̃f
n,ỹ

fz
n
P−1

ỹfz
n
P

ỹfz
n ,ỹfx

n

]
×

[
P−1

ỹfx
n
−P−1

ỹfx
n

P
ỹfx
n ,ỹfz

n

(
P

ỹfz
n ,ỹfx

n
P−1

ỹfx
n

P
ỹfx
n ,ỹfz

n
−P

ỹfz
n

)−1
P

ỹfz
n ,ỹfx

n
P−1

ỹfx
n︸ ︷︷ ︸

Σ

]
,

= P
x̃f
n,ỹ

fx
n

P−1

ỹfx
n

+ P
x̃f
n,ỹ

fz
n
P−1

ỹfz
n
P

ỹfz
n ,ỹfx

n

(
Σ−P−1

ỹfx
n

)
−P

x̃f
n,ỹ

fx
n

Σ ,

= P
x̃f
n,ỹ

fx
n

P−1

ỹfx
n
−P

x̃f
n,ỹ

fz
n
P−1

ỹfz
n
P

ỹfz
n ,ỹfx

n

(
P

ỹfx
n
−P

ỹfx
n ,ỹfz

n
P−1

ỹfz
n
P

ỹfz
n ,ỹfx

n

)−1
−P

x̃f
n,ỹ

fx
n

Σ ,

= P
x̃f
n,ỹ

fx
n

P−1

ỹfx
n

+ P
x̃f
n,ỹ

fz
n

(
P

ỹfz
n ,ỹfx

n
P−1

ỹfx
n

P
ỹfx
n ,ỹfz

n
−P

ỹfz
n

)−1
P

ỹfz
n ,ỹfx

n
P−1

ỹfx
n
−P

x̃f
n,ỹ

fx
n

Σ ,

= P
x̃f
n,ỹ

fx
n

P−1

ỹfx
n
,

+
(
P

x̃f
n,ỹ

fz
n
−P

x̃f
n,ỹ

fx
n

P−1

ỹfx
n

P
ỹfx
n ,ỹfz

n

)(
P

ỹfz
n
−P

ỹfz
n ,ỹfx

n
P−1

ỹfx
n

P
ỹfx
n ,ỹfz

n

)−1
P

ỹfz
n ,ỹfx

n
P−1

ỹfx
n
. (35)

Using again the Schur complement theorem, one obtains

K̃xz =
(
P

x̃f
n,ỹ

fz
n
−P

x̃f
n,ỹ

fx
n

P−1

ỹfx
n

P
ỹfx
n ,ỹfz

n

)(
P

ỹfz
n
−P

ỹfz
n ,ỹfx

n
P−1

ỹfx
n

P
ỹfx
n ,ỹfz

n

)−1
, (36)

so that (35) can be written as

K̃x = P
x̃f
n,ỹ

fx
n

P−1

ỹfx
n

+ K̃xz ×P
ỹfz
n ,ỹfx

n
P−1

ỹfx
n
. (37)

Since K̃xz = 0, the expression of K̃x is reduced to K̃x = P
x̃f
n,ỹ

fx
n

P−1

ỹfx
n

, hence (21).
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Figure 1. Time series for three components (x1, x4 and x8) of the slow state and
three components (z1,1, z4,4 and z8,8) of the fast state for the first 5000 model
steps.
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lines indicate divergence of the filter.
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Figure 3. Same as Fig. 2, but for 40 ensemble members.
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Figure 4. Same as Fig. 2, but for 80 ensemble members.
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Figure 5. Plots of the ensemble-based cross-covariances between x1 and all zi,j

as estimated by the SC-EnKF, SC-EnKFOSA, WC-EnKF and WC-EnKFOSA at
the 1000th assimilation step using 40 members. Half of the observations from both
model components were assimilated every 40 ms. Results are presented using the
inflation factor that provides the lowest joint RMSE for each filter.

Figure 6. Bar plots of the minimum x-RMSE and z-RMSE as resulting from
SC-EnKF and SC-EnKFOSA in four different scenarios that differ in the cross-
observations assimilation strategies. Half of the observations from both model
components were assimilated every 40 ms.
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Figure 7. Minimum averaged x-RMSE and z-RMSE as a function of ensemble size
and as estimated by SC-EnKF, SC-EnKFOSA, WC-EnKF and WC-EnKFOSA .
Half of the observations from both model components were assimilated every 40
ms.

Figure 8. Bar plots of relative improvements introduced by SC-EnKFOSA

compared to SC-EnKF as function of the ensemble size (only positive percentages
are reported). Half of the observations from both model components were
assimilated every 40 ms.
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Figure 9. Minimum averaged x-RMSE and z-RMSE as a function of the
assimilation window of yz .
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Figure 10. Minimum averaged x-RMSE and z-RMSE as a function of the
assimilation window of yx.
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Figure 11. Time evolution of the forecast and analysis RMSEs (upper panels)
and the ensemble spread (lower panels) as they result from SC-EnKF and SC-
EnKFOSA between the 100th and the 300th assimilation steps. The filters were
implemented with 40 members and half of the observations from both model
components were assimilated every 40 ms for yx and every 10 ms for yz . Results
are presented using the inflation factor that provides the lowest joint RMSE for each
filter.
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Figure 12. Plots of the ensemble-based cross-covariances between x1 (upper
panels), x4 (middle panels), x8 (lower panels) and all zi,j as estimated by the SC-
EnKF and SC-EnKFOSA using 20 and 40 members (between the 100th and the
300th assimilation steps). Half of the observations from both model components
were assimilated every 40 ms for yx and every 10 ms for yz . Results are presented
using the inflation factor that provides the lowest joint RMSE for each filter.

Figure 13. Plots of the analysis ensemble and observations (first row), analysis
RMSE and ensemble standard deviation (second row) and rank histograms (third
row), as estimated by the SC-EnKF and SC-EnKFOSA for x1 using 20, 40 and
320 members (between the 100th and the 300th assimilation steps). Half of the
variables from both model components were assimilated every 40 ms for yx and
every 10 ms for yz . Results are presented using the inflation factor that provides
the lowest joint RMSE for each filter.
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implemented with 40 members. yx are assimilated every 40 ms and yz every 10
ms.
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Figure 16. Time-averaged RMSEs, as a function of inflation factor (y axis), as they
result from SC-EnKF and SC-EnKFOSA. The filters were implemented with 40
members and only half of yx are assimilated every 40 and 10 ms.
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Figure 17. Time-averaged RMSEs, as a function of inflation factor (y axis), as they
result from SC-EnKF and SC-EnKFOSA. The filters were implemented with 40
members and only half of yz are assimilated every 40 and 10 ms.
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Figure 18. Time-averaged RMSEs, as a function of inflation factor (y axis), as they
result from SC-EnKF and SC-EnKFOSA when assimilation is carried out with a
biased forecast model. The filters were implemented with 40 and 80 members and
quarter of the observations from both model components are assimilated every 40
ms.
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