
A Hybrid Ensemble Adjustment Kalman Filter
based High-resolution Data Assimilation System
for the Red Sea: Implementation and Evaluation

Item Type Article

Authors Toye, Habib;Sanikommu, Siva Reddy;Raboudi, Naila Mohammed
Fathi;Hoteit, Ibrahim

Citation Toye, H., Sanikommu, S., Raboudi, N. F., & Hoteit, I. (2020).
A Hybrid Ensemble Adjustment Kalman Filter based High-
resolution Data Assimilation System for the Red Sea:
Implementation and Evaluation. Quarterly Journal of the Royal
Meteorological Society. doi:10.1002/qj.3894

Eprint version Post-print

DOI 10.1002/qj.3894

Publisher Wiley

Journal Quarterly Journal of the Royal Meteorological Society

Rights Archived with thanks to Quarterly Journal of the Royal
Meteorological Society

Download date 2024-03-13 11:06:30

Link to Item http://hdl.handle.net/10754/664829

http://dx.doi.org/10.1002/qj.3894
http://hdl.handle.net/10754/664829


 

A Hybrid Ensemble Adjustment Kalman Filter based High-resolution Data 

Assimilation System for the Red Sea: Implementation and Evaluation 

 

Habib Toye, Sivareddy Sanikommu, Naila F. Raboudi, and Ibrahim Hoteit
* 

 

King Abdullah University of Science and Technology (KAUST), 

Thuwal 23955-6900, Saudi Arabia 

 

Submitted to  

Quarterly Journal of the Royal Meteorological Society 

*Corresponding Author: ibrahim.hoteit@kaust.edu.sa 

Abstract 

A new Hybrid ensemble data assimilation system is implemented with a Massachusetts 

Institute of Technology general circulation model (MITgcm) of the Red Sea. The system is 

based on the Data Assimilation Research Testbed (DART) and combines a time-varying 

ensemble generated by the Ensemble Adjustment Kalman filter (EAKF) with a pre-selected 

quasi-static (monthly varying) ensemble as used in an Ensemble Optimal Interpolation 

(EnOI) scheme. The goal is to develop an efficient system that enhances the state estimate 

and model forecasting skill in the Red Sea with reduced computational load compared to the 

EAKF. Observations of satellite sea surface temperature (SST), altimeter sea surface height 

(SSH), and in situ temperature and salinity profiles are assimilated to evaluate the new 

system. The performance of the Hybrid scheme (here after Hybrid-EAKF) is assessed with 

respect to the EnOI and the EAKF results. The comparisons are based on the daily averaged 

forecasts against satellite SST and SSH measurements and independent in situ temperature 

and salinity profiles. Hybrid-EAKF yields significant improvements in terms of ocean state 
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estimates compared to both EnOI and EAKF, in particular mitigating for dynamical 

imbalances that affects EnOI. Hybrid-EAKF improves the estimation of SST and SSH root-

mean-square-differences by up to 20% compared to EAKF. High-resolution mesoscale eddy 

features, which dominate the Red Sea circulation, are further better represented in Hybrid-

EAKF. Important reduction, by about 75%, in computational cost is also achieved with the 

Hybrid-EAKF system compared to the EAKF. These significant improvements were obtained 

with the Hybrid-EAKF after accounting for uncertainties in the atmospheric forcing and 

internal model physics in the time-varying ensemble. 

     

Keywords: Red Sea; Data Assimilation; MITgcm; DART; Ensemble Adjustment Kalman 

Filter (EAKF); Ensemble optimal interpolation (EnOI); Hybrid ensemble. 

1. Introduction 

Ocean forecast models are not perfect owing to uncertainties in their internal physics and 

inputs, such as initial and boundary conditions, and atmospheric forcing (Edwards et al., 

2015; Hoteit et al., 2018). In data assimilation, these uncertainties are generally accounted for 

through the so-called background covariance (BC), which spreads the observations 

information to all model variables (Kalnay 2002; Hamill 2006; Bannister 2008). While the 

BC varies in time (flow-dependent) in ensemble-based Kalman filters, e.g. Singular 

Evolutive Interpolated Kalman filter-SEIK (Pham et al., 1998; Hoteit et al., 2002), Local 

Ensemble Transform Kalman Filter-LETKF (Hunt et al., 2007) and Ensemble Adjustment 

Kalman Filter-EAKF (Anderson, 2001), other popular assimilation methods such as 

variational methods and ensemble optimal interpolation (EnOI) use static BCs generated via 

empirical relations and/or climatological ensembles (Hoteit et al., 2002; Bonavita et al., 

2012; Martin et al., 2015; Stammer et al., 2016). In these methods, the BC may not account 
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for the ―errors-of-the-day‖, which could potentially lead to improved model forecasts (e.g. 

Derber and Bouttier, 1999; Hoteit et al., 2002; Xie and Zhu, 2010; Chen et al., 2013; Waters 

et al., 2017; Sanikommu et al., 2017; Hoteit et al., 2018).  

Because of their computational requirements in realistic applications, Ensemble 

Kalman Filters (EnKFs) are generally implemented with small ensembles (e.g. 20-100 

members). EnKFs may also suffer when the sources of model uncertainties are not properly 

accounted for. These issues lead to severely rank-deficient BCs with noisy (ensemble) 

correlations and systematically reduced variance (loss of ensemble spread) (see the reviews 

of Bannister, 2017 and Hoteit et al., 2018). This may greatly limit the EnKF’s ability to fit 

the observations and to produce meaningful ocean state estimates (e.g., Edwards et al., 2015; 

Hoteit et al., 2018). Various auxiliary techniques have been proposed to mitigate the impact 

of these limitations. Localization, in which long-range correlations are tapered, is a 

straightforward and efficient approach to eliminate spurious correlations and increase the 

BCs rank (Houtekamer and Mitchell, 1998; Hamill et al., 2001). Covariance inflation, which 

inflates the EnKF covariance (forecast or analysis) by some positive factor at each 

assimilation cycle, is another approach to compensate for the systematic loss in ensemble 

spread (Anderson and Anderson, 2009; Luo and Hoteit, 2011). The ad hoc nature of these 

fixes are, however, known to degrade the dynamical balance of the filter analysis and to 

increase the forecast errors in sparsely observed regions (e.g. Anderson 2009; Bowler et al., 

2017; Sanikommu et al., 2017). A Hybrid ensemble scheme, in which BCs are estimated as 

linear combinations of time-varying ensembles generated by an EnKF with climatological 

(static) ensembles covariances (e.g. Hammill and Snyder, 2000; Xuguang et al., 2007; Song 

et al., 2010; Lorenc, 2015), was proposed to mitigate the aforementioned issues. This 

increases the EnKF BCs rank and spread, and enforces smoothness in the ocean state 

estimates. This was found to be particularly beneficial when the filter is implemented with 
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small ensembles (Wan et al., 2009; Counillon et al., 2009; Hoteit et al., 2010; Gharamti et 

al., 2014; Penny et al., 2015; Tsiaras et al, 2017).  

Various hybrid approaches have been successfully proposed for data assimilation into 

ocean general circulation models (Larsen et al., 2007; Counillon et al., 2009; Penny et al., 

2015; and Konstantin et al., 2018). Here, we follow a similar approach to that of Xuguang et 

al. (2007) and develop a Hybrid-EAKF system for data assimilation into a mesoscale 

resolving (4km-resolution) Massachusetts Institute of Technology general circulation model 

(MITgcm; Marshall et al., 1997) of the Red Sea. The system is implemented based on the 

Data Assimilation Research Testbed (DART; Anderson et al. 2001). Our goal is to enhance 

the EAKF performances, using small flow-dependent ensembles to reduce the computational 

load. We further derive a practical implementation of the Hybrid-EAKF scheme based on 

DART.   

The Red Sea lies between Africa and the Arabian Peninsula and connects with the 

Indian Ocean in the south through the narrow strait of Bab-El-Mandeb. It is one of the 

warmest and saltiest bodies of seawaters in the world (Belkin et al., 2009), yet it hosts a 

unique ecological system fringed with coral reefs (Carvalho et al., 2019). It features a 

seasonally-reversing overturning circulation driven by the Indian Monsoon (Aiki et al., 2006; 

Yao et al., 2014a,b), and important interannual variability in response to major climate 

phenomenon such as El-Nino-Southern Oscillation (ENSO) and the North Atlantic 

Oscillation (NAO) (Raitsos et al., 2015; AbuAlnaja et al., 2015; Yao and Hoteit, 2018; 

Krokos et al., 2019). The general circulation of the Red Sea is dominated by series of quasi-

stationary mesoscale eddies (Quadfasel and Baudner, 1993; Zhan et al., 2014, 2019) and is 

primarily driven by the overlying atmosphere through wind stress, heat, buoyancy and 

freshwater fluxes (Sofianos and Johns, 2002, 2003; Yao et al., 2014a,b; Zhan et al., 2018). 

Resolving such features requires an eddy-resolving model. Even after doing so, and unless 
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the model is constrained with observations using data assimilation, ocean models forecasting 

skills remain limited in such a complex environment (e.g. Anderson et al., 1996; Fukumori, 

2001; Kamachi et al., 2002; Edwards et al., 2015; Martin et al., 2015; Stammer et al., 2016; 

Hoteit et al., 2018; Moore et al., 2019), due to inherent uncertainty in the physical 

parameterizations, atmospheric forcing, and other model inputs.  

Interest in developing data assimilation and forecasting capability for the Red Sea 

have only grown recently with the initiation of new Saudi national mega developmental 

projects along the shore of the Red Sea and governmental interest in protecting its resources 

(Hoteit et al., 2020). Toye et al. (2018) successfully implemented an EnOI-based data 

assimilation system with a 4km-resolution MITgcm of the Red Sea, assimilating observations 

from satellite sea surface temperature and altimeter sea level anomaly. Despite using 

monthly-varying climatological ensembles to estimate the static BCs, the ocean forecasts 

resulting from this EnOI system underlined important dynamical imbalances in the 

subsurface. In a follow up work, Sanikommu et al. (2020) demonstrated that by accounting 

for uncertainties in the initial conditions, atmospheric forcing, and internal physics, the flow-

dependent BCs of the EAKF provide dynamically consistent and improved forecasts 

throughout the ocean column.  

This study proposes a new Hybrid-EAKF combining the EAKF system of Sanikommu 

et al. (2020) and EnOI system of Toye et al. (2017). The aim is to further improve the state 

estimate and model forecasting skill in the Red Sea while alleviating the computational load 

of the EAKF. The remainder of the paper is organized as follows. Section 2 describes the 

Hybrid-EAKF. Section 3 outlines the numerical experiments setup, including the description 

of the ocean model, assimilated observations, and the independent observations used for 

evaluating the assimilation system. Section 4 discusses the assimilation results in terms of 

their forecasting skill statistics, and to reproduce basin mesoscale eddy features. It further 
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analyzes the dynamical balances of the Hybrid-EAKF solutions. The computational load of 

the Hybrid-EAKF system is discussed in Section 5. Summary and conclusions are provided 

in Section 6. 

2. The Hybrid-EAKF 

Data assimilation is the process by which observations are used to update models forecasts in 

order to compute the best possible estimate of the state of the ocean (Edwards et al. 2015; 

Hoteit et al., 2018). The EAKF is a sequential assimilation scheme that operates as a series of 

assimilation cycles, each involving a model forecast followed by a filter update (Anderson, 

2001).  

Let {  
 
}
   

  
 be an ensemble of    model forecasts (or priors) and  ̅  

 

  
 ∑   

   
    its 

sample mean. Let also     ,  
 
  ̅    

 
  ̅       

 
  ̅ - be the ensemble of forecast 

anomalies and    
 

    
       

 
 the forecast error covariance. The EAKF update step can 

be described as follows (Anderson 2001): 

                                         ̅     ,(  )   ̅          -                                           ( ) 

                                                ,(  )          -                                               ( ) 

where Eqs. (1) and (2) respectively compute the analysis state  ̅  and its error covariance    

from the forecast state  ̅  and its error covariance   .   is the observation operator,    the 

observation, and   the observational error covariance. An analysis ensemble *  
 +   

   is then 

generated such that its sample mean and covariance exactly match  ̅  and   . This is 

achieved by constructing a specific matrix   such that            (see Appendix of 

Anderson, 2001 for a detailed computation of the matrix  ).  

                                     
   (  

 
  ̅ )    ̅                                                    ( ) 
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The next forecast step can then take place by integrating the *  
 +   

   forward with the model 

to obtain the forecast ensemble at the time of the next available observation. A new update 

step can then begin. 

The Hybrid-EAKF has the same algorithm as EAKF, except for the use of a hybrid 

forecast error covariance     , expressed as a linear combination of a flow-dependent 

forecast covariance and a static background covariance (Hamill and Snyder, 2000), 

                      (   )                                              ( ) 

instead of   in (1)-(2).     is referred to as the flow-dependent covariance, computed from 

the dynamic propagation of the forecast ensemble    with the EAKF.   is a static 

background covariance matrix, which could be estimated from a climatological dataset as in 

an Ensemble Optimal Interpolation system, or parameterized as in a 3D variational (3DVAR) 

system (Song et al., 2010; Lellouche et al., 2013). The forecast state  ̅  is then updated as in 

(1) and (2), using      instead of     to obtain the hybrid analysis state  ̅    as 

                                                  ,(    )          -                                               ( ) 

                                         ̅         ,(    )   ̅          -                                        ( ) 

The resampling of the analysis members is then performed as in (3), but using  ̅    instead of 

 ̅ .  

 The Hybrid formulation reduces to EnOI with  =1, with the ocean model only used to 

compute the forecast state from a given analysis. The forecast is then updated with the 

incoming observations as in (1) and using a static background B.  

2.1. Practical implementation within DART 

The Data Assimilation Research Testbed (DART) is a portable software for ensemble data 

assimilation developed at the National Center of Atmospheric Research (NCAR) (Anderson 

et al., 2009). Exploiting the serial formulation of the Kalman filter update step, DART is 

configured to integrate and update the ensemble members in parallel using scalable 
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algorithms of different ensemble filters, including the EAKF (Anderson and Collins 2007). 

DART is further equipped with sophisticated localization and inflation schemes to boost the 

performance of ensemble data assimilation schemes with small ensembles. We implemented 

the Hybrid-EAKF in DART by calling separately two EAKF update steps, one to update the 

forecast anomalies based on the flow-dependent forecast covariance and another to update 

the forecast mean using the hybrid covariance. Combining the results of the two filters yields 

a hybrid analysis ensemble with the desired mean and covariance as follows: 

i. The flow-dependent forecast ensemble    is first updated using the EAKF analysis 

step. This gives an analysis ensemble satisfying Eq. (3), with an analysis mean and 

covariance respectively given by Eqs. (1) and (2). Rewriting (3) as 

(  
   ̅ )   (  

 
  ̅ )                         

suggests that the updated anomalies are simply the updated members from which the 

analysis mean is removed. 

ii. In order to update the forecast state, a prior ensemble   , based on    and   , is 

constructed and supplied as input to DART.    is such that by calling a standard 

EAKF update in DART, the resulting analysis state satisfies Eq. (6) and is expressed 

as    [            
   ]    ̅ , with  

   √
(   )(       )

    
            and            √

 (       )

    
 . 

    is a static ensemble perturbation matrix defined as     ,  
   ̅    

   ̅    

   

   ̅ -  with *  
 +   

   an ensemble of    members of mean  ̅  and covariance 

  
 

    
        

. One can verify that the (     ) ensemble    has a mean  ̅  

and a covariance     . The sample covariance of    is indeed given by 

 

        
       

 
, where     is the corresponding perturbation matrix (i.e.,     
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[            
   ] ). Using the expressions of    and   , the covariance can be 

expressed as 
(   )

    
        

 
 

 

    
         

, which is equal to (   )      and 

thus to     . Finally, since    has a mean  ̅  and a covariance     , its EAKF update 

yields an analysis state that matches  ̅    given by Eq. (6)  

iii. The hybrid analysis ensemble is then obtained by adding the anomalies resulting from 

step (i) to the hybrid analysis mean state from step (ii) as 

                                
      ̅     (  

   ̅ )                                               ( ) 

3. The assimilation system 

3.1. The Ocean model - MITgcm 

We use a 4km-resolution MITgcm (Marshall et al., 1997) configured for the domain 30°E-

50°E and 10°N-30°N covering the whole Red Sea, including the Gulf of Suez, the Gulf of 

Aqaba, and part of the Gulf of Aden where an open boundary connects it to the Arabian Sea 

(Figure 1a). The model has 50 vertical layers with 4m resolution in the surface and 300m 

resolution near the bottom. The bathymetry of the basin is derived from the General 

Bathymetric Chart of the Ocean (GEBCO, available at http://www.gebco.net/data_and_ 

products/gridded_bathymetry_data). The open boundary conditions (OBCS) for temperature, 

salinity, and horizontal velocity are prescribed daily from the Global Ocean Reanalysis and 

Simulation data (GLORYS; Parent et al., 2003) available at 1/12° horizontal grid. A sponge 

layer of 5 grid boxes with a relaxation period of 1-day is implemented for smooth 

incorporation of open ocean conditions through the eastern boundary. The model uses a 3
rd

 

Order Direct Space Time (DST-3) advection scheme for tracers, harmonic viscosity with a 

coefficients of 30 m
2
/s in the horizontal and 7x10

-4
 m

2
/s in the vertical, implicit horizontal 

diffusion for both temperature and salinity, and the K-Profile Parameterization (KPP) scheme 
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(Large et al., 1994) for vertical mixing with a background vertical diffusion coefficient of 10
-

5
 m

2
/s for both temperature and salinity.  

A long spin up of the model is desirable before utilizing it for forecasting. Here we 

started the assimilation experiments after a model spin up of 31 year starting from 1979 that 

was readily available for this study. The European Center for Medium Range Weather 

Forecast (ECMWF) interim reanalysis (ERA-I) of atmospheric surface fluxes of radiation, 

momentum, and freshwater were used for the spin up. ERA-I provides 6-hourly fields at 75 

km resolution  (Dee et al., 2011). For comparison with the assimilation runs (as further 

discussed in the next Section), we ran the same model configuration for the year 2011 using a 

6-hourly 50km x 50km atmospheric forcing, with initial conditions obtained from the spin up 

run. The atmospheric forcing is the ensemble mean of the 50-member ECMWF atmospheric 

ensemble as made available through The Observing System Research and Predictability 

Experiment Interactive Grand Global Ensemble project (THORPEX-TIGGE, Bougeault et 

al., 2010; Buizza 2014; Swinbank 2016; https://www.ecmwf.int/en/research/projects/tigge). 

We examined the free-run outputs forced with the atmospheric ensemble mean and with 

different ensemble members. The differences between these experiments were negligible 

(results not shown for brevity). The MITgcm simulations forced with the atmospheric 

ensemble mean show similar high-resolution features compared to those resulting from 

simulations forced with an individual member. Here after, we refer to the free-run (without 

assimilation) forced with the atmospheric ensemble mean as Fexp. The Red Sea MITgcm 

outputs have been extensively validated in several studies (e.g. Yao et al., 2014a, b; Dreano 

et al., 2016; Toye et al., 2017; Gittings et al., 2018; Zhan et al., 2018, 2019).  

3.2. Assimilation experiments 

All the assimilation experiments were conducted based on the routines provided in DART. 

Except for the differences discussed in the next two paragraphs, the experiments were all 
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performed using the configuration described in Sanikommu et al. (2020), with the same 

settings in terms of assimilated observations, assimilation cycle of 3 days, localization (only 

in the horizontal direction) using a radius of 300 km, and no-inflation during assimilation. 

The system assimilates the Reynolds et al., (2007) level-4 daily SST data available on a 

0.25°x0.25° grid (which was prepared by blending in situ observations with data from the 

advanced very high resolution radiometer infrared satellite; Figure 1b), along-track satellite 

level-3 merged altimeter filtered sea level anomalies (SLA; corrected for dynamic 

atmospheric, ocean tide, and long wavelength errors; Figure 1c) from the Copernicus Marine 

Environment Monitoring Service (CMEMS; Mertz et al., 2017), and in situ temperature and 

salinity (Figure 1d) profiles from the EN4.2.1 dataset (Good et al., 2013). For direct 

comparison with the model SSH during assimilation, SLA is added to a mean sea surface 

height (MSSH) estimated from a long model run between 2002 and 2016 with the best 

available (5km) resolution atmospheric forcing that has been dynamically downscaled from 

the 75km ECMWF atmospheric reanalysis using an assimilative Weather Research and 

Forecast (WRF) model (Viswanadhapalli et al., 2017). One may also consider estimating the 

MSSH by assimilating in situ temperature and salinity profiles over a long period (Balmaseda 

et al., 2013 and Zuo et al., 2019). Since our assimilation experiments are only conducted over 

year 2011, the MSSH simulated by the high resolution atmospheric forcing is the best 

available for testing the different assimilation schemes.  

The observational error covariance matrix is diagonal with temporally-static and 

spatially-homogeneous observational error variance values of (0.04 m)
2
, (0.5°C)

2
 and 

(0.3psu)
2
 for the satellite along-track SSH, the in situ T and S, respectively, and spatio-

temporal error variances for the satellite blended level-4 SST, varying between (0.1°C)
2
 and 

(0.6°C)
2
. These relatively large error variances for T and S, which are chosen in accordance 

with the suggested ranges of in situ observational errors in earlier assimilation studies (e.g., 
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Richman et al., 2005; Forget and Wunsch, 2007; Oke and Sakov, 2008; Karspeck, 2016), are 

intended to account for the representational errors due to unresolved scales and processes in 

the model (Sanikommu et al. 2019). The SLA observational error of (0.04 m)
2
, which is 

slightly larger than the suggested altimeter accuracy (AVISO 2015), is selected based on a 

sensitivity experiment with various values of error variances, (0.04 m)
2 

, (0.07 m)
2 

, and (0.1 

m)
2 

(results not shown here; discussed in Sanikommu et al., 2020). Since our 4km-MITgcm 

can resolve the scales of the 25km x 25km assimilated SST data, only measurements errors of 

SST data are considered. The specified observational error variances for SST vary in 

accordance with the analysis errors specified in the level-4 gridded SST product of Reynolds 

et al. (2007).  

Table 1 and 2 summarize the configurations of the conducted experiments. Three 

different categories of assimilation experiments are analyzed: EnOIexp, EAKFexp, and 

HyBDexp. EnOIexp employs the same model configuration as Fexp and assimilates 

observations with EnOI, starting from the 1
st
 January, 2011 ocean state obtained from Fexp. 

EnOIexp is implemented with a monthly-varying 250-member ensembles, generated as in 

Toye et al. (2017) using the last 15 year model hindcasts of the spin up run. EAKFexp 

assimilates the observations using EAKF, with a flow-dependent background ensemble of 50 

members. The initial ensemble in EAKFexp is generated by randomly selecting 50 different 

states corresponding to January’s hindcasts of Fexp and then re-centering the ensemble mean 

to the 1
st
 January, 2011 state of Fexp. The MITgcm forecasts of the 50 members were forced 

with the ECMWF ensemble atmospheric forcing. Different model physics were also used for 

integrating each member, selected from a time-varying ensemble of model physics (hereafter 

model physics dictionary, MPD). The MPD encompasses different choices of vertical and 

horizontal mixing schemes, and viscosity and diffusivity coefficients. These include five 

types of horizontal diffusion, three schemes of horizontal viscosity, and four schemes of 
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vertical mixing as listed in Table 3. More details about the generation of the MPD and of the 

physical perturbation impact on the assimilation results can be found in Sanikommu et al. 

(2020). HyBDexp is implemented by combining the 250-member quasi-static ensemble (used 

in EnOIexp) with a 50-member dynamic ensemble with a weighing factor ( ) of 0.05, 

selected after examining the sensitivity of the Hybrid system to the choice of  . More details 

about the results of these sensitivity experiments are presented in Section S1 of the 

Supplementary Materials. HyBDexp uses the same initial and atmospheric forcing ensembles, 

and perturbed internal physics as those of EAKFexp. EnOIexp was also tested with 300 

members and the results were very similar to those of the 250-member case. 

Figure 2 displays the ensemble spread of (a) SST and (b) SSH from HyBDexp and 

EAKFexp. It also shows the spread of the quasi-static ensemble before and after scaling its 

ensemble covariance by a factor of 0.05 (the weighing factor of HyBDexp  ). The ensemble 

SSH spread varies between 2-4cm in HyBDexp and EAKFexp. The spread of the EnOI-

ensemble is significantly larger, but becomes closer to those of HyBDexp and EAKFexp after 

the scaling of the quasi-static ensemble covariance. The assimilation results of the 

experiments using the quasi-static ensemble (here after EnOInoSCLexp) and those using the 

scaling of the quasi-static ensemble covariance (EnOIexp) in the EnOI system suggests that 

this scaling has no significant impact on SST (Figures 3a). It however shows noticeable 

impact on SSH (Figure 3b), with the EnOIexp exhibiting lower RMSDs compared to 

EnOInoSCLexp. The most pronounced differences between the results of EnOInoSCLexp and 

EnOIexp are found in the data-sparse subsurface layers and for under-sampled ocean 

variables. EnOInoSCLexp simulates spurious fresh water anomalies in the surface (Figures 4c 

and 4d) and in the subsurface layers (Figure not shown). Such spurious features are likely due 

to dynamical imbalances, which can be assessed through vertical velocities (e.g., Sanikommu 

et al., 2020). The maximum vertical speed in the water column, | ( )|   , a proxy for 2D 
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visualization of the abnormal vertical velocities in the ocean column, is suspiciously large in 

EnOInoSCLexp compared to Fexp (Figure 6a and 6b), suggesting important dynamical 

imbalances in the EnOI before scaling the quasi-static ensemble covariance. EnOIexp results 

in better estimates of the ocean state (Figures 3a, 3b, and 4d) with lesser dynamical 

imbalances (Figure 6c). We therefore evaluate the results of HyBDexp against those of 

EnOIexp, the best possible EnOI configuration.  

3.3. Validation data 

The daily averaged forecasts from the different experiments are analyzed to assess the 

performances of the different assimilation configurations. Subsurface estimates are evaluated 

against CTD observations of temperature and salinity profiles collected in the Red Sea 

between 15
th

 September and 8
th

 October, 2011 (indicated in Figure 4a). This dataset includes 

206 profiles collected by a joint Woods Hole Oceanography Institute (WHOI) and King 

Abdullah University of Science and Technology (KAUST) cruise along the eastern Red Sea, 

with a horizontal spacing of 10km (Zhai et al., 2015; hereafter WHOI/KAUST summer 

cruise). Root-Mean-Square-Differences (RMSD) of the daily averaged forecasts of SST and 

SSH are computed with respect to merged satellite level-3 observations of Group for High 

Resolution Sea Surface Temperature (GHRSST; EUMETSAT, 2008) and merged along track 

level-3 altimeter observations of SSH from CMEMS (Mertz et al., 2017), respectively. In 

order to evaluate the relative performance of the assimilation experiments against the 

interpolated products, we employed level-4 products of SST and SSH. The interpolated SST 

product is a high-resolution daily averaged level-4 SST product from the OSTIA 

(Operational Sea Surface Temperature and Sea Ice Analysis; Stark et al., 2007; Donlon et al., 

2012). OSTIA is generated on a 0.054° (~6 km) grid by combining SST data from various 

satellites and in situ observations using an Optimal Interpolation (OI) system. The 

interpolated SSH product is the multi-mission altimeter merged satellite level-4 gridded 
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Absolute Dynamic Topography (ADT) provided by CMEMS (here after CMEMS-L4; Mertz 

et al., 2017). The ADT is available daily at 0.25° x 0.25° resolution. The maximum formal 

ADT mapping error (provided along with the CMEMS-L4 ADT product) during the analysis 

period 1
st
 January-31

st
 December, 2011 is estimated between 1.8 cm - 4 cm in the southern 

RS and reaches up to 7cm in the northern Red Sea. The CMEMS-L4 ADT is adjusted by 

replacing its 15-year average with the model mean SSH for direct comparison with the model 

SSH, similar to the treatment of the assimilated along-track SLA data (see Section 3.2). 

WHOI/KAUST observations are not assimilated and are therefore used as an independent 

observations for validation. The assimilated SST and SSH observations were used in the 

generation of the interpolated level-4 products of OSTIA and CMEMS, and as such these 

datasets cannot considered to be fully independent from our assimilated fields. 

4. Evaluation of the Hybrid system 

This section evaluates the outputs of HyBDexp compared to those of EnOIexp and EAKFexp. 

We first establish the merits and demerits of EnOIexp and EAKFexp, and then investigate 

how well these are addressed in HyBDexp. Figure 3 displays the temporal evolution of (a) 

SST and (b) SSH RMSDs for entire model domain. RMSDs of SST and SSH are 

comparatively large and exhibit seasonal dependencies in Fexp, with relatively large SST 

(SSH) RMSDs during summer (winter). The increased SST RMSDs during summer are due 

to biases in the summer atmospheric fields in the southern Red Sea associated with dust 

(Viswanadhapalli et al., 2017). The increased SSH RMSDs during winter can be related to 

biases in the surface net heat flux associated with increased atmospheric convective activity 

(Viswanadhapalli et al., 2017), which affects strong eddies in the northern Red sea (Yao et 

al., 2014b; Zhan et al., 2014; Zhan et al., 2018). Assimilation using EnOI or EAKF 

significantly improves the RMSDs for both SST and SSH, with consistently smaller RMSDs 

throughout the year. The RMSDs of SST and SSH in these assimilation experiments are even 
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lower than the interpolated products. The SST and SSH RMSDs differences between 

EnOIexp and EAKFexp are relatively small, with EnOIexp yielding slightly better results. For 

instance, while the SST RMSD (SSH RMSD) corresponding to the whole domain and full 

year-2011 is 0.68 °C (4.9 cm) in EnOIexp, it is 0.71 °C (5.1 cm) in EAKFexp. Examining 

region wise statistics of SST and SSH suggests that the differences between these two 

experiments are noticeable only in the Gulf of Aden (figures/table not shown), with the EnOI 

yielding better results compared to EAKF. One may expect the results of EAKFexp to 

improve if uncertainties in the ocean boundary conditions were accounted for (through 

appropriate perturbations), as this should enhance its the ensemble spread in the Gulf of 

Aden.  

To provide more insight into the results for under-sampled regions and ocean 

variables, we examined the assimilation solution for sea surface salinity (SSS) and subsurface 

temperature and salinity using independent observations from the WHOI/KAUST. Figure 4 

displays spatial maps of SSS from the different experiments overlaid with independent 

observations from WHOI/KAUST summer cruise. Interestingly, the SSS results are very 

different from the SST and SSH results, with EAKFexp performing significantly better than 

EnOIexp. For instance, the observations indicate a north-south gradient with fresh-water in 

the southern Red Sea and saline-water in the northern RS (Figure 4a). Such a prominent 

north-south salinity gradient is not well reproduced in EnOIexp (Figure 4d). EnOIexp 

simulates a spurious fresh water pool in the central Red Sea influenced by the advection of 

anomalous fresh waters from the southern Red Sea, where the SSS differences between 

observations and EnOIexp reach 2 psu. These biases are even larger than that in Fexp (Figure 

4b). The SSS from EAKFexp, on the other hand, agrees much better with the observations 

(compare Figure 4e with 4b and 4c), with the model-data differences being less than 1 psu, 

and improved north-south spatial gradients of SSS. Figure 5 plots the estimated temperature 
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and salinity structures corresponding to the WHOI/KAUST summer cruise observations 

locations. EnOIexp exhibits a salinity bias of 0.5 psu in the subsurface layers throughout the 

domain (Figure 5d), and simulates spurious pockets of high salinity waters in the subsurface 

layers (180-300m) between 22°-24°N (absolute fields from the assimilation experiments are 

not shown in the Figure). | ( )|    is suspiciously large (compared to Fexp; Figures 6c 

with 6a) in EnOIexp almost throughout the Red Sea starting from the middle of the year. As 

argued in Sanikommu et al. (2020), such a large | ( )|    results from spurious vertical 

correlations in the quasi-static ensemble of the EnOIexp. EAKFexp does not show such 

sporadic behavior. It further improves the subsurface temperature and salinity biases 

particularly to the north of 20°N. However, as already reported in Sanikommu et al. (2020), 

EAKFexp misses high-resolution spatial features such as the deepening of the 23°C isotherm 

around 26°N (compare Figure 5e with 5a), the intrusion of a fresh and cold Gulf-of-Aden 

water mass around 60m (which manifest itself as large overestimation of subsurface 

temperature and salinity south of 20°N; Figure 5e-f). EnOIexp reproduces these features, but 

with significant discrepancies in the location of the deeper 23°C isotherm and in the 

magnitudes of the temperature/salinity of the GoA water mass appearing at the intermediate 

layers. This is likely related to spurious propagations of surface observations information 

(Sanikommu et al., 2017, 2019) due to the misrepresentation of the ―errors-of-the-day‖ by the 

quasi-static ensemble of the EnOI. Such spurious corrections were shown to disrupt the 

model dynamical balances (Hoteit et al., 2002; Anderson 2009; Penny et al., 2013; Lee et al., 

2017; Bowler et al., 2017; Sanikommu et al., 2020), particularly in the data-sparse subsurface 

layers (e.g. temperature and salinity) and for under-sampled ocean variables (e.g. SSS). 

HyBDexp significantly improves the Red Sea state estimates and also better preserves 

the dynamical consistency (as can be inferred from reasonable  | ( )|     in Figure 6e). 

Note that the larger SST and SSH improvements achieved in EnOIexp and EAKFexp are not 
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compromised in HyBDexp. HyBDexp indeed does even better than EnOIexp, in terms of SSH 

RMSDs (Figure 3b). The SST and SSH RMSDs are improved by up to 20% in HyBDexp 

compared to EAKFexp, reaching 0.2°C and 1cm in terms of differences in SST and SSH 

RMSDs, respectively. SSS (an under-sampled variable) in HyBDexp, which was not well 

simulated by EnOIexp and better represented in EAKFexp, is closer to the observations in the 

southern Red Sea with HyBDexp. The SSS is even better estimated by HyBDexp compared to 

EAKFexp in this region (compare Figure 4f with 4d and 4e). The differences between 

HyBDexp and EAKFexp SSS are not very significant over the rest of the domain. Subsurface 

temperature and salinity are better reproduced by HyBDexp (Figure 5g-h) compared to 

EnOIexp (Figure 5c-d). In addition, HyBDexp does better than EAKFexp (Figure 5e) in 

capturing the subsurface temperature structure, particularly the deepening of the 23°C 

isotherm in the northern latitudes, which was completely missed in EAKFexp. The large 

subsurface salinity biases introduced by the quasi-static ensemble are however not fully 

mitigated in HyBDexp (Figure 5h).  

4.1. Impact of Hybrid on Mesoscale Eddy Features. 

To demonstrate the merits of the HyBDexp system in reproducing the Red Sea mesoscale 

eddy features, spatial maps of SSH snapshots are shown in Figure 7, where clear differences 

can be seen between HyBDexp and EAKFexp in the northern Red Sea, central Red Sea, and 

Gulf of Aden (GoA). Figure 7 displays along-track SSH observations on 6
th

 November, 2011 

(top), 15
th

 July, 2011 (middle), and 30
th

 September, 2011 (bottom) overlaid on the 

corresponding daily averaged spatial maps from CMEMS-L4 (left), EAKFexp (middle) and 

HyBDexp (right). The 6
th

 November, 2011 corresponds to a period of an anomalous cyclonic 

eddy (CE) in the northern Red Sea (Figure 7a) (Papadopoulos et al., 2015). It is largely 

modulated by the local net heat flux and remote sea level perturbations from the southern Red 

Sea (Zhan et al., 2018). Around 15
th

 July, 2011, the central Red Sea hosted an anti-cyclonic 
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eddy (ACE) around 21°N (Figure 7b). Such an eddy, whose presence may have been tied to 

coastline and topographic variations (e.g. Quadfasel and Baudner, 1993), appears every June 

and lasts until July (e.g. Raitsos et al., 2013). Around 30
th

 September, 2011 the Gulf-of-Aden 

experienced a series of eddies (Figure 7c), which results from instabilities in the adjacent 

Somali current and in the nearby large eddies, such as the Great whirl and Socorta eddy (Al 

Saafni et al., 2007; Yao and Hoteit, 2014).  

Comparing the assimilation estimates with SSH observations (for both along-track 

SSH and interpolated product CMEMS-L4) suggests that the intensity and the size of the 

eddies are underestimated in EAKFexp (Figure 7d-f). EAKFexp, for instance, completely 

misses the ACE in the central Red Sea. HyBDexp significantly improves the eddy features in 

terms of their intensity and also size, irrespective of the region (Figure 7g-i). For instance, the 

missed ACE in EAKFexp (Figure 7e) is reproduced reasonably well by HyBDexp (Figure 7h), 

albeit slightly shifted. The intensities of the series of alternating eddies in the GoA, and the 

anomalous CE in the northern Red Sea, are also better represented in HyBDexp (Figure 7i) 

than in EAKFexp (Figure 7f). In fact, HyBDexp is a closer match to the observations than 

CMEMS-L4 (Figure 7a-c) in terms of eddies intensities.  

4.2. Importance of accounting for background errors due to uncertainties in internal model 

physics and atmospheric forcing in the Hybrid system 

Sanikommu et al. (2020) demonstrated the importance of accounting for background errors 

due to uncertainties in the internal ocean model physics and atmospheric forcing in the 

EAKF. To examine the significance of these in the Hybrid system, we have conducted two 

more HyBDexp experiments, HyBDmAPexp and HyBDmPexp. HyBDmAPexp and 

HyBDmPexp are the same as HyBDexp except that HyBDmAPexp uses the default internal 

model physics and is forced by the ensemble mean ECMWF atmospheric fields, and 

HyBDmPexp uses the default internal model physics and is forced by the ensemble ECMWF 
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fields. Figure 6f and 6g display | ( )|    along the Red Sea axis from HyBDmAPexp and 

HyBDmPexp, respectively. Compared to HyBDexp, the spread of the large | ( )|    

becomes wider in HyBDmPexp, and even wider in HyBDmAPexp, suggesting degraded 

dynamical balances. This is even manifested in SSS, and subsurface temperature and salinity. 

For instance, as can be seen from Figures 4g and 4h, the north-south SSS gradient is not well 

represented in HyBDmAPexp and HyBDmPexp compared to HyBDexp. They also show 

anomalous fresh waters in the southern parts of the Red Sea. The subsurface temperature 

(Figures 5i and 5k) and salinity (Figure 5j and 5l) also become noisy, and show spurious 

features and increased biases. These results clearly emphasize the importance of accounting 

for uncertainties in the atmospheric forcing and internal model physics in the Hybrid system.  

5. Impact of Hybrid in terms of computational gain 

This section focuses on assessing HyBDexp in terms of computational efficiency, an 

important aspect of this study. This is achieved by first assessing the sensitivity of EAKF 

ocean state estimates to gradually increased ensemble size.  

We first present results from four different EAKF experiments: the standard 50-

member EAKFexp, EAKF100exp, EAKF250exp, and EAKF500exp. The last three 

experiments are similar to EAKFexp but use 100, 250, and 500 ensemble members, 

respectively. Table 2 outlines the configurations of these experiments. The initial ensembles 

of these experiments are generated as in EAKFexp, and the atmospheric forcing is sampled, 

assuming a normal distribution, using the ensemble mean and spread of the original 50-

member ensemble atmospheric forcing of EAKFexp. Examining the assimilation results of 

these experiments suggests little differences in terms of SST and SSH (Figures not shown), 

which is expected owing to the homogeneous observations coverage of these datasets. No 

clear differences in the results are found for the sparsely observed temperature variable 

either. More pronounced differences are obtained however with salinity, the most under-
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sampled variable, both at surface and subsurface. Increasing the size of the ensemble from 50 

to 100 reduces salinity biases in the intermediate layers (Figure 8b). Noticeable 

improvements in the salinity are also achieved in the whole water column when increasing 

the ensemble size from 100 to 250. Comparing the spatial maps of SSS of these EAKF 

experiments (Figures 9a-d) with the in situ observations suggest that errors in SSS seem to 

reach a plateau after using 250 ensemble members. Further increasing the size of the 

ensemble from 250 to 500 resulted in negligible improvements, suggesting that 250 members 

are enough to describe the statistics of the filtering errors given the considered uncertainties 

(from ECMWF ensemble forcing and perturbed physical parameterizations) in the system. 

The SSS and subsurface salinity in EAKF250exp (Figures 8c and 9c) are clearly comparable 

or slightly better than those of HyBDexp (Figure 5h and 9e). However, overall, EAKF250exp 

results are still not as good as HyBDexp, with substantial differences between the two in 

terms of SST and SSH, and subsurface temperatures (Figures not shown, as SST and SSH 

RMSDs and subsurface temperatures in EAKF250exp are very similar to those of EAKFexp, 

and Figures 3 and 5 have already outlined the better performances of HyBDexp). 

To assess the sensitivity of the Hybrid ensemble system to the flow-dependent and 

static ensembles sizes, we examined the outputs of HyBDexp by gradually decreasing the 

number of flow-dependent members from 50 to 10 while maintaining the ensemble size at 

300 members. As summarized in Table 2, these experiments, HyBD10exp, HyBD20exp, 

HyBD30exp, are the same as the HyBDexp (50 dynamical + 250 Static) experiment, but use 

less flow-dependent members and more static members: 10+290, 20+280, 30+270, 

respectively. Comparing the results of these experiments (figures not shown) suggests 

insignificant changes in SST, SSH and in the subsurface temperature and salinity. Though not 

substantial, the results differ mainly for SSS. Decreasing the size of the dynamic-ensemble 

from 50 to 30 slightly degrades SSS (compare Figures 9f and 9e), particularly in the southern 
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parts of the Red Sea. We also see slight degradations in SSS when the dynamic-ensemble 

size is decreased from 30 to 20 (Figure 9g) and from 20 to 10 (Figure 9h). Overall, all 

HyBDexp experiments, including HyBD10exp, are at least as good as EAKF250exp. 

We finally discuss the computational savings achieved by the HyBDexp system, 

comparing the CPU-hours of EAKF250exp, HyBD10exp, and HyBDexp on our high 

performance supercomputer facility SHAHEEN-II (https://hpc.kaust.edu.sa). Table 4 outlines 

the break-up of computational load of these experiments for an arbitrary assimilation cycle. 

The 4km-MITgcm of the Red Sea (array size = 500 x 500 x 50) running with 200s integration 

time steps on 3 nodes (each node contains 32 cores with 128 GB flash memory) consumes 

4.5 core hours for a 3 day integration, the length of the assimilation cycle. The update step 

with DART consumed 40 core hours for 250-member ensemble when implemented on 20 

nodes. EAKF250exp consumed 1180 core-hours to complete one assimilation cycle 

(update+forecast). HyBDexp (HyBD10exp) calls the DART update step twice, consuming 

7+40=47 (3+40=43) core-hours. The total computational cost of HyBDexp (HyBD10), which 

integrates 50 (10) MITgcms, is 275 (89) core-hours. This means that the Hybrid systems 

(here HyBDexp and HyBD10exp) led to a 76-92% CPU-hours saving with respect to the 

EAKF-based system (EAKF250exp).  

6. Summary and conclusions  

A new Hybrid data assimilation system was developed for the Red Sea using a 4km-MITgcm 

and DART. It combines static, but seasonally varying, ensemble members and EAKF-flow-

dependent members. The dynamical EAKF members were forecasted with MITgcm forced 

with atmospheric forcing ensembles and perturbed internal physics. EnOI and EAKF have 

their own merits and the new Hybrid-EAKF system was able to further improve their 

performance and helped mitigating their limitations. EnOI was shown to enhance the SST 

and SSH estimates compared to the EAKF, but degraded the ocean estimates in the under-
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sampled regions and variables, such as subsurface temperature, salinity and SSS. It further 

disturbed the dynamical balances of the ocean state. EAKF better preserved the dynamical 

balances and better represented the under-sampled variables. It was however less efficient at 

capturing some of the high resolution features, which are important components of the Red 

Sea circulation. By complementing the flow-dependent ensemble with static members, the 

Hybrid-EAKF system was able to capture most of the high resolution mesoscale eddy 

features, and yielded noticeable improvements in SSH, subsurface temperature, and SSS 

compared to both EnOI and EAKF. In the deeper layers, EAKF salinity estimates remained 

relatively better than the Hybrid estimates, when evaluated against the few available 

subsurface observations. Hybrid-EAKF further outperformed EAKF with 250 members. 

Reducing the number of dynamical members from 50 to 10 did not significantly affect the 

Hybrid results, but led to drastic (more than 75% in our setup) computational savings 

compared to the EAKF systems.  

The significant improvements, in terms of both quality of ocean state estimates and 

computational cost, offered by the Hybrid-EAKF system is a motivation for both ocean data 

assimilation and operational communities developing ensemble data assimilation systems in 

the Red Sea and other regional seas. The fact that the Hybrid-EAKF outperforms the best 

performing EAKF system (that saturated at 250 members), even when accounting for 

uncertainties in the atmospheric forcing and internal physics, suggests that the EAKF system 

is still missing some sources of uncertainties. Uncertainties in the open boundary conditions 

or bathymetry may be part of these imperfections, and will be considered in our future work.  
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Tables with captions: 

Table 1. Summary of the experiments conducted to demonstrate the skill of the Hybrid 

system in terms of improved ocean state. In the table ― andom‖ model physics refers to the 

use of a time-varying ensemble of physics during the model integration of each ensemble 

member for forecasting. 

Experiment 
Initial 

condition 

Atm.  

Forcing 

Model 

physics 
Assimilated observations 

Assimilation 

Category 

Fexp 

Single 

member 

on 1
st
 

January, 

2011 

Ensemble 

mean 
Standard None NA 

EnOInoSCLexp 

Single 

member 

on 1
st
 

January, 

2011 

Ensemble 

mean 
Standard 

Reynolds-SST, Altimeter SSH, 

and in situ temperature and 

salinity 

EnOI before 

scaling quasi-

static-seasonal 

ensemble of size 

300  

EnOIexp 

Single 

member 

on 1
st
 

January, 

2011 

Ensemble 

mean 
Standard 

Reynolds-SST, Altimeter SSH, 

and in situ temperature and 

salinity 

EnOI with scaled 

quasi-static-

seasonal ensemble 

of size 300  

EAKFexp 

50-

member 

ensemble 

on 1
st
 

January, 

2011 

50-

member 

ensemble 

Random 

Reynolds-SST, Altimeter SSH, 

and in situ temperature and 

salinity 

50 member EAKF 
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HyBDexp 

50-

member 

ensemble 

on 1
st
 

January, 

2011 

50-

member 

ensemble 

Random 

Reynolds-SST, Altimeter SSH, 

and in situ temperature and 

salinity 

Hybrid with quasi-

static-seasonal 

ensemble of size 

250 and dynamic 

ensemble of size 50 

HyBDmPexp 
Same as 

HyBDexp 

Same as 

HyBDexp 
Standard Same as HyBDexp Same as HyBDexp 

HyBDmAPexp 
Same as 

HyBDexp 

Ensemble 

mean 
Standard Same as HyBDexp Same as HyBDexp 

 

 

 

Table 2. Summary of EAKF and Hybrid assimilation experiments conducted to examine the 

computational efficiency of the hybrid system. 

Experiment Initial condition Atm.  Forcing Assimilation Category 

EAKF100exp 
100-member ensemble 

on 1
st
 January, 2011 

100-member ensemble 100-member EAKF 

EAKF250exp 
250-member ensemble 

on 1
st
 January, 2011 

250-member ensemble 250-member EAKF  

EAKF500exp 
500-member ensemble 

on 1
st
 January, 2011 

500-member ensemble 500-member EAKF 

HyBD30exp 
30-member ensemble 

on 1
st
 January, 2011 

30-member ensemble 

Hybrid with quasi-static-

seasonal ensemble of size 270 

and dynamic ensemble of size 

30 

HyBD20exp 
20-member ensemble 

on 1
st
 January, 2011 

20-member ensemble 

Hybrid with quasi-static-

seasonal ensemble of size 280 

and dynamic ensemble of size 

20 
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HyBD10exp 
10-member ensemble 

on 1
st
 January, 2011 

10-member ensemble 

Hybrid with quasi-static-

seasonal ensemble of size 290 

and dynamic ensemble of size 

10 

 

 

 

 

 

 

 

Table 3. Dictionary of model physics and associated coefficients considered in the 

experiments that use perturbed physics. Coefficients of vertical mixing schemes vary 

according to the standard values in MITgcm, unless otherwise stated. In the table, entries in 

first row indicate the standard scheme.  

Horizontal Viscosity Vertical Mixing Horizontal diffusion 

Simple-Harmonic with viscosity 

coefficient 30 m
2
/s 

KPP- Large et al. 

(1994) 

Implicit diffusion for temperature and 

salinity 

Simple-Bi-harmonic scheme of 

Holland (1978) with viscosity 

coefficient 10
7
 m

4
/s 

PP81- 

Pacanowski and 

Philander (1981) 

Explicit coefficients of 100 m
2
/s for 

temperature and salinity 

Harmonic flavor of combined 

Smagorinsky (1993) and Leith (1996) 

schemes with viscocity coefficient 30 

m
2
/s, Smag coefficient 2.5 and Leith 

coefficient 1.85 

MY82- Mellor 

and Yamada 

(1982) 

Gent-McWilliams/Redi (Redi, 1982; 

Gent and McWilliams, 1990; Gent et 

al., 1995) using slope clipping of Cox 

(1987), with background diffusion set 

to 100 m
2
/s 

 

GGL90- Gaspar 

et al. (1990) 

Gent-McWilliams/Redi (Redi, 1982; 

Gent and McWilliams, 1990; Gent et 

al., 1995) using tapering scheme of 

Danabasoglu and McWilliams, (1995) 

with background diffusion set to 100 

m
2
/s 

  Gent-McWilliams/Redi (Redi, 1982; 

Gent and McWilliams, 1990; Gent et 

al., 1995) using tapering scheme of 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



 

Large et al., (1997) with background 

diffusion set to 100 m
2
/s 

  

 

 

 

 

 

 

 

Table 4. Statistics of computational expenditure, in terms of core-hours, associated with 

different assimilation experiments. In the table,  we show computational expenditure incurred 

for each component of the assimilation system: the ocean model MITgcm, the first part of 

assimilation code DART, and the second part of assimilation code, HDART. Note that the 

HyBDexp systems run two assimilation codes, DART and HDART, parallelly.  

Experiment MITgcm DART HDART Total improvement (%) 

EAKF250exp 1140 40 NA 1180 NA 

HyBDexp 228 7 40 275 76 

HyBD10exp 46 3 40 89 92 
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Figures with captions: 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



 

 

Figure 1. (a) Model domain and bathymetry (m). Thick black line represents the Red Sea 

axis. Panels (b-d) respectively indicate the geographical coverage of assimilated observations 

of satellite based level-4 sea surface temperature-SST observations on a typical day, satellite 

level-3 sea surface height-SSH measurements over a typical altimeter period, and EN4.2.1 in 

situ temperature (red) and salinity (blue) profiles available over the entire year 2011.  
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Figure 2. Domain averaged ensemble spread of (a) SST and (b) sea surface height SSH from 

EnOInoSCLexp (green-dash), EnOIexp (green-line), EAKFexp (blue-line) and HyBDexp 

(pink-line). Units of SST and SSH spread are in °C and cm. 
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Figure 3. Time series of Root-Mean-Square-Difference (RMSD) for daily averaged (a) SST 

(°C) and (b) SSH (cm) from level-4 gridded products (OSTIA for SST and CMEMS-L4 for 

SSH; black), Fexp (red), EnOInoSCLexp (magneta) EnOIexp (green), EAKFexp (blue), and 

HyBDexp (pink). SST RMSD (SSH RMSD) is computed by collocating the daily averaged 

model forecasts in the whole model domain onto level-3 GHRSST (level-3 altimeter 

observations) product. 10-day smoothing is applied to better highlight the differences 

between the assimilation results.  
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Figure 4. SSS (psu) from (a) WHOI/KAUST summer cruise, (b) Fexp, (c) EnOInoSCLexp, 

(d) EnOIexp, (e) EAKFexp, (f) HyBDexp, (g) HyBDmAPexp, and (h) HyBDmPexp. The SSS 

from the model experiments is the time average between 15
th

 September -8
th

 October, 2011, 

pertaining to the WHOI/KAUST summer cruise. SSS of WHOI/KAUST is overlaid on the 

spatial maps also for model-data comparison.  
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Figure 5. Subsurface temperature (°C) and salinity (psu) from in-situ CTD observations (a-b) 

collected during the WHOI/KAUST summer cruise conducted during 15
th

 September – 8
th

 

October, 2011. Panels b(c), d(e), f(g), h(i), and j(k) show collocated (in space and time) 

temperature (salinity) differences between EnOIexp and WHOI/KAUST observations, 

EAKFexp and WHOI/KAUST observations, HyBDexp and WHOI/KAUST observations, 

HyBDmAPexp and WHOI/KAUST observations, and HyBmPDexp and WHOI/KAUST 

observations respectively. Temperature and salinity observations are smoothed by 1° and 

10m in latitudinal and vertical directions to better highlight subsurface features. 23°C 

isotherm is also indicated in the respective temperature plots. Latitudes corresponding to 

observations locations are indicated as black vertical dashes at the top of each panel. 
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Figure 6. Temporal evolution of  | ( )|   (m/day) from the daily averaged vertical 

velocity in the ocean column along the axis of the Red sea (indicated in Figure 1a) from (a) 

Fexp, (b) EnOInoSCLexp, (c) EnOIexp, (d) EAKFexp, (e) HyBDexp, (f) HyBDmAPexp, and 

(g) HyBDmPexp. 
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Figure 7. Spatial maps of daily averaged SSH (in cm) corresponding to 6
th

 November, 2011 

(top), 15
th

 July, 2011 (middle), and 30
th

 September, 2011 (bottom) from (a-c) merged 

altimeter CMEMS-L4. Panels (d-f), (g-i), and (j-l) show similar plots as resulted from 

EAKFexp and HyBDexp forecasts, and along-track observations, respectively. Along track 

SSH observations of the corresponding day is also overlaid on each map. 
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Figure 8. Collocated salinity differences (psu) between (a) EAKFexp simulations and 

WHOI/KAUST observations, (b) EAKF100exp simulations and WHOI/KAUST 

observations. (c) EAKF250exp simulations and WHOI/KAUST observations, and (d) 

EAKF500exp simulations and WHOI/KAUST observations.  
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Figure 9. Same as Figure 4 except that the results are shown for various EAKF (top) and 

Hybrid (bottom) sensitivity experiments pertained to the size of the ensemble. Panels a-d 

corresponds to EAKFexp, EAKF100exp, EAKF250exp, and EAKF500exp, respectively. 

Similarly, e-h corresponds to HyBDexp, HyBD30exp, HyBD20exp, and HyBD10exp, 

respectively. 
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