
An Explicit Time Domain Finite Element
Boundary Integral Method with Element Level

Domain Decomposition for Electromagnetic
Scattering Analysis

Ming Dong∗, Ping Li†, Hakan Bagci∗
∗ Division of Computer, Electrical, and Mathematical Science and Engineering, King Abdullah University of Science and

Technology, Thuwal, Saudi Arabia, {ming.dong, hakan.bagci}@kaust.edu.sa
† Key Laboratory of Ministry of Education of Design and Electromagnetic Compatibility of High-Speed Electronic Systems,

Shanghai Jiao Tong University, Shanghai, China, ping.li@sjtu.edu.cn

Abstract—A numerical scheme, which hybridizes the element
level dual field time domain finite element domain decomposition
method (ELDFDD/TDFEM) and time domain boundary integral
(TDBI) method to accurately and efficiently analyze open-region
transient electromagnetic scattering problems, is proposed. The
element level decomposition permits an efficient leapfrog-like ex-
plicit marching scheme to be used to integrate Maxwell equations
in time. The hybridization with TDBI method ensures that an
accurate solution can be obtained in the smallest computation
domain possible. The accuracy and applicability of the proposed
hybrid method is demonstrated by numerical experiments.

Index Terms—domain decomposition, time-domain finite-
element method, boundary integral.

I. INTRODUCTION

Numerical schemes that are capable of analyzing transient
electromagnetic scattering from an inhomogeneous object re-
siding in an unbounded background medium are indispensable
in many branches of electromagnetics, optics, and photonics.
Time domain finite element method (TDFEM) is often used
for this purpose [1], [2], [3]. However, when TDFEM is used
to analyze an open-region scattering problem, the unbounded
background medium must be truncated into a finite compu-
tation domain. This is often done by “wrapping” the compu-
tation domain with absorbing boundary conditions (ABCs) or
perfectly matched layers (PMLs) [4], [5], [6]. The accuracy of
the ABC decreases significantly for waves obliquely incident
on the boundaries [4] while the PML might introduce late time
instabilities in the solution and its accuracy deteriorates at low
frequencies[5], [6], [7]. Another approach for truncating an
unbounded background medium is to “hybridize” the TDFEM
with the time domain boundary integral (TDBI) method [8],
[9]. This hybrid approach is mathematically exact and the
truncated boundary can be located very close to the scatterer
surface (regardless of its shape) [9].

In this work, the element level dual field time domain finite
element domain decomposition method (ELDFDD/TDFEM)
[10] is hybridized with the TDBI method for the first time

to accurately and efficiently analyze open-region transient
scattering problems. The computation domain is divided into
tetrahedral elements and in each element the dual-field second-
order vector wave equation is enforced/solved. Electric and
magnetic fields are updated at staggered time steps so that the
communication between elements can be realized by introduc-
ing equivalent surface currents on the interfaces. An efficient
leapfrog-like explicit time marching scheme is constructed
since each element is related to its neighboring element in
an explicit manner [11], [10]. Additionally, the fields on the
computation domain boundary are computed using the TDBI
method from the equivalent currents introduced on a Huygens
surface enclosed inside the computation domain. This ensures
that the radiation condition is exactly enforced (mathemati-
cally speaking — it is still subject to discretization error).
Numerical results demonstrate the accuracy and applicability
of the proposed method in various scattering scenarios.

II. FORMULATION

A 3D scatterer with permittivity ε(r) and permeability µ(r)
is residing in an unbounded background medium. Let V denote
the computation domain truncated by a fictitious surface
S enclosing the scatterer. ∂Γ denotes the Huygens surface
that is enclosed inside S and fully encloses the scatterer.
The whole computation domain V is divided into M non-
overlapping tetrahedrons. Let Em(r, t) and Hm(r, t) denote
electric and magnetic fields in the mth element with volume
Vm, m = 1, 2, ...M . Four faces of the mth element are denoted
by Smf , f = 1, 2, 3, 4. Note that in the rest of text space and
time are dropped for the sake of simplicity. In element m, the
local field Em satisfies source-free second-order vector wave
equation

∇× (
1

µm
∇×Em) + εm∂

2
tEm = 0 (1)

where εm and µm are permittivity and permeability in Vm,
respectively. Applying Galerkin testing to (1) with vector basis



function Ni yields∫∫∫
Vm

1

µm
(∇×Ni) · (∇×Em) + εmNi · ∂2

tEm dV

=

4∑
f=1

∫∫
Smf

Ni · n̂mf × ∂tH+
mdS (2)

where n̂mf is the outward unit normal vector on facet Smf

and H+
m denotes the magnetic field in the neighboring element

which is connected to the mth element through face Smf . Note
that to derive (2), we make use of Maxwell equation

1

µm
∇×Em = −∂tH+

m (3)

on Smf to impose the tangential continuity of the fields on
the interface. Here, we need to mention that if the face Smf

is located on the computation domain boundary, the exterior
fields need to be computed using the TDBI method to enforce
the exact radiation condition. Incident field {Einc,Hinc} is
also introduced through tetrahedron faces residing on the
computation domain boundary.

To compute the fields on S using the TDBI method, a
set of equivalent electric and magnetic currents Je and Me

is introduced on the Huygens surface ∂Γ. These currents are
calculated from the local fields solved/updated by the TDFEM
as

Je =

K∑
l=1

n̂l ×Hl

Me = −
K∑
l=1

n̂l ×El (4)

where K denotes the total number of tetrahedral elements
residing on ∂Γ and {El,Hl} denote the fields on the lth
one of those elements. Then the boundary fields {Es,Hs}
are constructed from Je and Me using

Es = L(Je)−K(Me)

Hs = L(Me)/η2
0 +K(Je) (5)

where L and K operators are defined as

L(X) = −µ0

4π

∫
∂Γ

∂tX(r′, t−R/c0)

R
dr′

+
∇

4πε0

∫
∂Γ

dr′
∫ t−R/c0

0

∇′ ·X(r′, t′)

R
dt′

K(X) = ∇× 1

4π

∫
∂Γ

X(r′, t−R/c0)

R
dr′. (6)

Here η0 =
√
µ0/ε0 and c0 = 1/

√
ε0µ0 denote the wave

impedance and wave speed in the background medium, re-
spectively. R = |r − r′| is the distance between field point r
and source point r′.

Following the same procedure, the dual form of (2) for H-
field can be written as∫∫∫

Vm

1

εm
(∇×Ni) · (∇×Hm) + µmNi · ∂2

tHm dV

= −
4∑

f=1

∫∫
Smf

Ni · n̂mf × ∂tE+
mdS. (7)

After space discretization, we can cast (2) and (7) into the
following matrix form

[Se
m]{em}+ [Me

m]∂2
t {em} = ∂t{fem}

[Sh
m]{hm}+ [Mh

m]∂2
t {hm} = ∂t{fhm} (8)

where {em} and {hm} are the time dependent unknown
vectors in the mth element. [Se

m], [Sh
m], [Me

m], [Mh
m] denote

the stiffness and mass matrices for electric and magnetic fields
in Vm, respectively. {fem} and {fhm} result from the right-hand
side surface integral of (2) and (7).

In time domain, we apply central difference method to
discretize the system. Electric field is “sampled” at integer
time indices while magnetic field is “sampled” at half-integer
indices, resulting in the final leapfrog like time marching
scheme

[Me
m]{em}n+1 = (2[Me

m]−∆t2[Se
m]){em}n

− [Me
m]{em}n−1 + ∆t({fem}n+ 1

2 − {fem}n−
1
2 )

[Mh
m]{hm}n+ 3

2 = (2[Mh
m]−∆t2[Sh

m]){hm}n+ 1
2

− [Mh
m]{hm}n−

1
2 + ∆t({fhm}n+1 − {fhm}n). (9)

Equation (9) shows that the local electric and magnetic fields
are updated at staggered time steps. For a given time step n,
all the field vectors required on the right-hand side are already
known, same for the given time step n+1/2. Thus, an explicit
time-marching scheme is constructed.

III. NUMERICAL RESULTS

Fig. 1. Two separated dielectric spheres. (Unit: m)

This section presents a numerical example to demonstrate
the accuracy and applicability of the proposed method. The
excitation is a baseband Gaussian pulse plane wave whose
electric field is expressed as Einc = ẑE0G(t− ŷ ·r/c0), where
ẑ and ŷ denote the direction of propagation and polarization,
E0 = 1V/m is the amplitude, G(t) = exp[−(t− t0)

2
/σ2] is

the Gaussian pulse with delay t0 = 2.55ns and duration σ =
0.51ns. The effective bandwidth of thus pulse is 1.25GHz. The
computation domain is discretized into 56828 tetrahedrons and



zeroth-order vector edge basis functions are used to discretize
the fields.

Fig. 1 illustrates two (separated) dielectric spheres with
εr = 2.0 and µr = 1.0, which reside in free space. The
TDBI method allows the computation domain to be defined
as a union of two disconnected equally sized spheres, each of
which contains one of the dielectric spheres. This significantly
reduces the size of the computation domain. Also note that
both the Huygens surfaces and computation domain bound-
aries conformal to the shapes of sphere are placed 0.01m and
0.02m away from the sphere surfaces, respectively. After the
transient simulation is completed, we can calculate the bi-static
radar cross section (RCS) at 500MHz and 1GHz on both E
and H planes using the Fourier transformed transient currents
recorded on the Huygens surfaces.

(a) RCS at 500MHz

(b) RCS at 1GHz

Fig. 2. RCS computed on E and H-planes by the proposed method and a
frequency domain integral equation solver at (a) 500MHz and (b) 1GHz.

Fig. 2 shows the RCS results obtained with proposed
method agree very well with those obtained from a frequency
domain MoM solver. It clearly verifies the accuracy of the
proposed method.

IV. CONCLUSION

In this paper, we present a novel scheme which com-
bines the advantages of both dual-field element-level domain-
decomposition TDFEM and TDBI method to accurately and
efficiently analyze electromagnetic scattering problems. Nu-
merical results demonstrating the accuracy and applicability
of the proposed method are presented.
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