Thermally Induced Formation of HF₄TCNQ⁻ in F₄TCNQ-Doped Regioregular P3HT

Kristen E. Watts,a Bharati Neelamraju,b Maximilian Moser,c Iain McCulloch,c,d Erin L. Ratcliff,b,* and Jeanne E. Pemberton*a*

a Department of Chemistry and Biochemistry
b Department of Materials Science and Engineering
University of Arizona, Tucson, AZ, USA
c Department of Chemistry and Centre for Plastic Electronics
Imperial College London
London, UK
d KSC, King Abdullah University of Science and Technology
Thuwal, Saudi Arabia

Abstract
The prototypical system for understanding doping in solution-processed organic electronics has been poly(3-hexylthiophene) (P3HT) p-doped with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F₄TCNQ). Multiple charge transfer states, defined by the fraction of electron transfer to F₄TCNQ, are known to coexist and are dependent on polymer molecular weight, crystallinity, and processing. Less well understood is the loss of conductivity after thermal annealing of these materials. Specifically, in thermoelectrics, F₄TCNQ-doped regioregular (rr) P3HT exhibits significant conductivity losses at temperatures lower than other thiophene-based polymers. Through detailed spectroscopic investigation of progressively heated P3HT films co-processed with F₄TCNQ, we demonstrate that this diminished conductivity is due to formation of the non-chromophoric, weak dopant HF₄TCNQ⁻. This species is likely formed through hydrogen abstraction from the alpha aliphatic carbon of the hexyl chain at the 3-position of thiophene rings of rr-P3HT. This reaction is eliminated for polymers with ethylene glycol-containing side chains, which retain conductivity at higher operating temperatures. In total, these results provide a critical materials design guideline for organic electronics.

KEYWORDS
Organic Electronics, Doped Semiconducting Polymers, F₄TCNQ-doped P3HT, Ethylene Glycol-functionalized Semiconductors, Design Guidelines

*Corresponding authors: pembertn@email.arizona.edu, ratcliff@email.arizona.edu
TOC Graphic

F4TCNQ^− \rightarrow H4TCNQ^−

Wavenumber (cm⁻¹)
Molecularly-doped organic semiconductors are of interest for use in organic electronic devices including thermoelectrics,1-4 light emitting diodes,5 photovoltaics,6-10 and field effect transistors.11-15 Although organic electronics are experiencing an increased presence in the market, critical challenges remain for long-term use of these materials, including low conductivity and chemical stability. Increased conductivity is typically achieved by doping with p- or n-type species that generate mobile free charge carriers from intermolecular electron transfer reactions between the matrix and dopant.16 External operational factors such as light exposure and heat can accelerate chemical instability of active layers and negatively impact functional lifetime. This instability can be manifested in multiple ways, including undesired side reactions leading to the formation of degradation products and/or morphological changes in matrix microstructure. This work focuses on understanding thermal stability in the model system of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F\textsubscript{4}TCNQ)-doped regioregular poly(3-hexylthiophene) (rr-P3HT) and the implications of this thermal stability for conductivity of the active layer.

Early reports on this well-studied system focused on the elucidation of key structure-property relationships. Doping efficiency (as indicated by conductivity) was shown to be dependent on dopant concentration in co-processed films and was attributed to the presence of dopants only in amorphous domains of rr-P3HT at low concentrations with intercalation into crystalline domains at higher concentrations.17 It was later found that use of a sequential processing method provides improved doping efficiency due to better doping predictability and the ability to direct the dopant to crystalline or amorphous regions of the polymer by choice of solvent and post-doping film processing.16 Méndez et al. provided an energy description of the doping process that identified two possible doping pathways: integer charge transfer (ICT) resulting from full electron donation from the rr-P3HT to F\textsubscript{4}TCNQ, or formation of a partial charge transfer complex (CPX)
due to hybridization of dopant and host molecular orbitals.18-19 The co-existence of these two charge transfer states in F\textsubscript{4}TCNQ-doped rr- and regiorandom (rra)-P3HT thin films has recently been reported from these laboratories, with the relative amounts of each being generally correlated with P3HT matrix microstructure.20

Despite significant advancements in understanding this system, chemical and thermal stability of the relevant doped states necessary for longevity in functional properties have generally been overlooked in prior studies. We have shown that although the ICT state appears to be kinetically favored, the more thermodynamically stable of these states is the CPX state in co-processed films, serving as charge trap sites that reduce conductivity.21 However, there is a dearth of information about the relative thermal stability of these two states. Past work has suggested the contributions of three possible factors to explain the thermal instability of small molecule doped polymer active layers: 1) chemical reaction of molecules in the active layer upon exposure to thermal stress;22 2) change in or disappearance of charge transfer states;21, 23 and 3) the physical loss and/or migration of dopant.16, 24-26 All three processes have important implications for efficiency of the active layer, and one or more of these processes may be inter-related.

The stability of pure rr-P3HT to thermal stress has been well characterized,22 but recent efforts to characterize the stability of F\textsubscript{4}TCNQ in F\textsubscript{4}TCNQ-doped polymer blends have resulted in contradictory results, particularly at moderate temperatures between 80 and 120 °C.24-25, 27 Thermal stability studies of F\textsubscript{4}TCNQ in rr-P3HT,25 s-P3MEET25 and p(g\textsubscript{42}T-T)24 have been reported, with F\textsubscript{4}TCNQ-doped rr-P3HT exhibiting significantly poorer thermally stability than the other two systems. Based on the lower electrical conductivity of F\textsubscript{4}TCNQ-doped rr-P3HT films relative to F\textsubscript{4}TCNQ-doped s-P3MEET and p(g\textsubscript{42}T-T) films after thermal treatment, this instability has been
proposed to result from differences in F$_4$TCNQ dopant sublimation from the three matrices.$^{24-25}$ However, no direct probe of F$_4$TCNQ presence was utilized in this prior work.

The starting hypothesis for the work reported here is that the chemical stability of the dopant, existing primarily as a radical anion,20 plays a critical role in the thermally-induced degradation phenomena observed in F$_4$TCNQ-doped rr-P3HT films at moderate temperatures. Thus, this work was undertaken with the goal of defining with greater chemical specificity the thermal instability of F$_4$TCNQ within doped rr-P3HT films at moderate temperatures ($<$120 °C) and correlating this behavior with the overall electrical conductivity of the film.

Figure 1 summarizes the changes in optoelectronic properties and corresponding conductivity measured on co-processed thin (~15 nm) films of this system, as well as elemental quantification of possible F$_4$TCNQ loss using x-ray photoelectron spectroscopy (XPS). Briefly, UV-vis spectroscopy and conductivity measurements were performed on P3HT films with F$_4$TCNQ dopant mole fraction (χ_{F_4TCNQ}) of 0.096 (defined by solution composition of F$_4$TCNQ and thiophene equivalents prior to spin-casting) as they were progressively heated in a glove box from room temperature to 60, 80, 100, and 120 °C, being held at each temperature for 5 min. Immediately after film casting, the UV-Vis spectrum (Figure 1a) clearly indicates a doped largely crystalline rr-P3HT film (black) by the presence of the strong π - π^* P3HT band at ~2.5 eV and a broad polaron band from 1.8 to 1.4 eV. The ICT F$_4$TCNQ$^-$ spectral signatures are still distinct at ~1.6 and ~1.4 eV, with a shoulder just below 3.0 eV.$^{24-25}$ As the sample is progressively heated, loss of the F$_4$TCNQ$^-$ absorption signatures is observed, with a fraction of the P3HT polaronic absorbance remaining even at 120°C. Two contributions to this loss can be postulated: loss of F$_4$TCNQ$^-$, possibly with reformation of neutral F$_4$TCNQ, or changes in P3HT microstructure leading to reorientation of F$_4$TCNQ$^-$. For randomly oriented P3HT films, changes in orientation
of F₄TCNQ⁺ may make minor contributions to the decrease in intensity of the 1.4 eV UV-vis band.²⁸ However, given that our UV-vis spectroscopy utilized an unpolarized source, these contributions are expected to be minimal to insignificant. Loss of F₄TCNQ⁺ is much more likely. However, there is no evidence for conversion to neutral F₄TCNQ, which would result in a new band at 3.2 eV.²⁴

Figure 1. (a) UV-Vis absorption spectra from a 15 nm-thick film of 0.096 χF₄TCNQ doped rr-P3HT progressively heated in a glove box for 5 min each at 60, 80, 100 and 120°C. (b) Conductivity from 3 to 5 devices (left axis) and change in normalized F₄TCNQ⁺ absorption at 1.4 eV (right axis) with annealing temperature. (c) Relative atom ratios for N/(N+F), F/(F+C), and N/(N+C) before (solid) and after (hashed) heating. (d) N 1s XPS spectra from 0.096 χF₄TCNQ film at room temperature (top) and after (bottom) progressive sequence of heating described in (a).
Loss of the 1.4 eV band from F₄TCNQ⁺ is quantified in Figure 1b (right axis), which rationalizes, at least in part, the loss in conductivity also shown in Figure 1b.¹⁷ In Figure 1b, the conductivity for the same progressive heating sequence decreases from 2.8 x 10⁻¹ to ~1.8 x 10⁻² S cm⁻¹. Temperature-dependent decreases in conductivity of F₄TCNQ-doped P3HT have been reported previously and attributed to sublimation of F₄TCNQ.¹⁶,²⁴-²⁷,²⁹ However, the conductivity of an undoped rr-P3HT film with an analogous heat treatment is ~10⁵ times lower (5 x 10⁻⁷ S cm⁻¹) than that of the thermally annealed doped P3HT film, indicating retention of at least some of the doped film in a conductive state after heating. If it is assumed that the conductivity loss of the doped film is due only to a loss of dopant, with minimal change to charge mobility, then one can use the previously reported conductivity increment per unit dopant to estimate the fractional dopant loss represented by the observed conductivity decrease. Specifically, Duong et al. reported a conductivity increase of 13.3 S cm⁻¹ per unit mole fraction F₄TCNQ dopant added for χ_F₄TCNQ between 0.031 and 0.17.¹⁷ Using this value, the decrease in conductivity observed here would suggest an equivalent loss of 20-45% in dopant mole fraction after heating if dopant loss were the mechanism responsible for the conductivity decrease. This large of a F₄TCNQ dopant loss would be readily observable by XPS if loss occurred.

Figure 1c shows XPS results in terms of relative atom ratios for different elements before and after heat treatment. These results indicate no statistically significant change after heating for N/(N+F) (both elements unique to F₄TCNQ) in the near-surface region of these films, consistent with minimal thermal decomposition or thermally-driven loss of dopant. Similarly, the relative atom ratios F/(F+C) and N/(N+C) are all within the standard deviations of multiple independent experiments on films before and after thermal annealing indicating conclusively that, for this thermal treatment, F₄TCNQ does not sublime as has been previously reported.¹⁶,²⁴-²⁷,²⁹ We note
that the F/(F + C) ratio for this film is slightly larger than the expected value of 0.015 in the pristine film before heating, but then becomes equal to the expected value after heating. This suggests slight segregation of F$_4$TCNQ to the upper portions of the pristine doped film before heating with homogenization of the film induced by heating while losing none of the F$_4$TCNQ to sublimation.

Thermal annealing does elicit spectral changes in the N 1s core level spectra (Figure 1d) in terms of the binding energies and relative intensities of peaks observed. However, definitive assignment of these peaks requires a better understanding of the molecular level changes induced in the films by the thermal annealing process. Thus, FTIR spectroscopy was used to provide additional chemical insight.

FTIR spectroscopy can aid in clarifying the specific molecular nature of dopant forms in the film, as frequency shifts of the ν(C≡N) mode are highly sensitive to the chemical state of the F$_4$TCNQ, including the degree of charge transfer between F$_4$TCNQ and the P3HT.$^{19, 23, 30-33}$

The FTIR spectra in Figure 2a...
(unnormalized spectra in Figure S1) show little evidence for CPX in the films after final heating. A low absorbance broad band at higher frequency may indicate a small contribution from neutral F₄TCNQ. However, most notable after heating is the appearance of two new bands in the ν(C≡N) region at 2188 and 2153 cm⁻¹ at frequencies between known bands of the ICT state (F₄TCNQ⁺, ν = 2194 cm⁻¹) and the dianion (F₄TCNQ²⁻, ν = 2164 cm⁻¹). These two bands increase in intensity with annealing temperature, dominating the IR spectrum in films heated to 120 °C (Figure 2a). Exposure to long-wavelength UV light has no impact on this chemistry as reflected in the FTIR spectra (see Figure S2). Significantly, retention of the overall ν(C≡N) envelope amplitude with heating for all dopant concentrations (see Figure S1) further corroborates the assertion that a significant amount of F₄TCNQ does not sublime.

The correlation between frequency and F₄TCNQ charge state allows assignment of the two new bands in the ν(C≡N) region that appear with heating. The frequencies of these bands suggest F₄TCNQ species with electron density between that of the anion (ICT) and the dianion. Le et al. investigated the basicity of the reduced states of F₄TCNQ in acetonitrile solutions containing trifluoroacetic acid (TFA) via electrochemistry and UV-vis spectroelectrochemistry, wherein they demonstrated a strong propensity for rapid proton transfer from TFA to F₄TCNQ²⁻ to yield HF₄TCNQ⁻ (Kₑq = 3 x 10³; kᵣ = 1 x 10¹⁰ M⁻¹ s⁻¹). Further, they noted that HF₄TCNQ⁻ has a low molar absorptivity in the UV-vis region resulting in loss of the dianion band without growth of any new electronic bands. In contrast, in similar FTIR spectroelectrochemical experiments on F₄TCNQ in acetonitrile solutions containing acids recently reported from this laboratory, new bands in the ν(C≡N) region of the FTIR spectra at 2183 and 2153 cm⁻¹ were observed that match in frequency the two new bands observed in the heated F₄TCNQ-doped rr-P3HT films studied here. In the solution FTIR spectroelectrochemistry study, the 2183 and 2153 cm⁻¹ bands were
assigned to the ν(C=C≡N) symmetric stretching modes from HF₄TCNQ⁻ for the unprotonated and protonated sides, respectively (as confirmed by spectral simulations, see Figure S3), that forms by a concerted proton-coupled electron transfer.³⁸

Further evidence for the presence of HF₄TCNQ⁻ in the heated films studied here comes from examination of the ν(C=C) region of the FTIR spectrum between 1450 and 1600 cm⁻¹ (Figure S4). New bands at 1485, 1505, and 1630 cm⁻¹ correspond to similar solution-state bands from HF₄TCNQ⁻ observed in our previous study.³⁸ Thus, we confidently conclude that loss of the ICT state with heating, previously attributed to F₄TCNQ sublimation, is instead due to the formation of HF₄TCNQ⁻ within these films. This explanation rationalizes loss of the ICT UV-vis signal but with retention of a significant conductivity relative to undoped rr-P3HT after heating. HF₄TCNQ⁻ is clearly non-chromophoric in the UV-vis region and serves as a weaker dopant of P3HT than F₄TCNQ⁺.

Now that the various molecular forms of the F₄TCNQ dopant in these films are identified, we can return to the N 1s XPS data of Figure 1d. Prior to heating, three N 1s peaks are observed in the pristine film. These have been commonly assigned to the ICT species (binding energy 398.2 eV), the neutral F₄TCNQ state (400.0 eV),³⁹⁻⁴¹ and a shake-up peak associated with the ICT species (401.8 eV). Similar peaks at 398.6 and 400.2 eV were reported for TCNQ⁻,⁴⁰⁻⁴¹ and similar fits including a shake-up peak have also been reported for F₄TCNQ.⁴¹⁻⁴² With thermal annealing, a significant loss of the 398.2 and 401.8 eV peaks is observed with concomitant loss of the ICT bands in the UV-vis spectrum (Figures 1a) and the ICT ν(C≡N) band in the FTIR spectrum, thus confirming the assignment of these peaks to the ICT state of F₄TCNQ. Interestingly, however, the N 1s peak at 400.0 eV is retained to a much greater extent after heating and is therefore assigned to HF₄TCNQ⁻. This peak must either have a coincidental overlap in binding energy with that of
neutral F₄TCNQ or some small amount of HF₄TCNQ⁻ must be in the films examined by XPS before heating, possibly as the result of handling and transport to the surface analysis laboratory. DFT calculations of the charge distribution on F₄TCNQ and HF₄TCNQ⁻ (see Figure S5) corroborate the coincidental overlap in binding energy by the similarity of the calculated Mulliken charges of the nitrogen in F₄TCNQ (-0.51) and the nitrogen on the protonated side of HF₄TCNQ (-0.48). The absence of a shake-up peak for HF₄TCNQ⁻ is unremarkable, since the intensity of a shake-up process is related to the square of the overlap integral between the valence electron wave functions of the initial and final states of the system. The electronic structure of HF₄TCNQ⁻ is expected to be substantially different from that of F₄TCNQ or F₄TCNQ⁺, consistent with its nonexistent absorption in the UV-vis spectrum. Thus, in total, the UV-Vis, FTIR and XPS spectral data collectively indicate a growth of HF₄TCNQ⁻ at the expense of F₄TCNQ⁻ upon thermal annealing. We note that this formation of HF₄TCNQ⁻ in turn introduces a slight change in polymer microstructure, as indicated by the in- and out-of-plane grazing incidence wide angle x-ray scattering measurements in Figure S6, although the edge-on orientation of the structure is retained (Figure S7).

We next focus on the possible mechanisms for HF₄TCNQ⁻ formation in the solid state. In solution, HF₄TCNQ⁻ can be formed even in the presence of weak proton donors. We hypothesize that rr-P3HT, more specifically a hydrogen on the alpha-carbon of the hexyl chains, serves as the hydrogen source based on the well-known reactivity of this site and the fact that these heating experiments were conducted under inert conditions. Two possible mechanisms are proposed for formation of HF₄TCNQ⁻ in Scheme 1. The first mechanism involves hydrogen abstraction by F₄TCNQ⁺ from the aliphatic carbon atom alpha to the 3-position of the quinoidal thiophene ring to form HF₄TCNQ⁻, followed by rapid recombination of the radicals on the rr-P3HT backbone.
through electron rearrangement. This mechanism is essentially identical to that proposed by Northrup for degradation of P3HT, with the abstracted hydrogen in this case, undergoing a radical combination with F4TCNQ⁻. The second proposed mechanism involves first a reduction of F4TCNQ⁻ by the polaron P3HT⁺⁺ to form F4TCNQ²⁻ and the bipolaron state of P3HT (P3HT²⁺). The aliphatic carbon alpha to the 3-position of the bipolaron thiophene ring then engages in a rapid or coupled proton transfer to F4TCNQ²⁻ followed by subsequent electronic rearrangement of the P3HT. Both mechanisms lead to formation of HF₄TCNQ⁻ and [P3HT-H]⁺ and both are plausible given the known reaction chemistry of these and other organic materials. However, two pieces of evidence in combination suggest mechanism 1 is more likely. The first piece of evidence is the absence of a bipolaron P3HT absorption band in the UV-vis spectra at energies <1.2 eV, although admittedly, the small oscillator strength of this bipolaron band renders this piece of evidence insufficient by itself. The second piece of evidence that argues against mechanism 2 is the absence of any signatures in the ν(C≡N) region of the FTIR spectra for F4TCNQ²⁻, which has

Scheme 1. Proposed mechanisms for formation of HF₄TCNQ⁻ in F₄TCNQ-doped rr-P3HT films with thermal annealing.
two relatively intense vibrational modes at distinct frequencies in this region. In combination, these two pieces of evidence suggest that the mechanism 1 is more likely.

As a further test of these mechanisms, F4TCNQ-doped films of the polymer p(g42T-T) were examined under identical thermal annealing conditions. Instead of hexyl side chains, this polymer possesses tetraethylene glycol side chains, and thus, does not have methylene groups at the alpha position on the 3-position of the thiophene rings (see inset structure in Figure 3). If either of the above mechanisms for HF4TCNQ- formation with P3HT is correct, no formation of HF4TCNQ- would be expected with p(g42T-T). FTIR results from thermal annealing studies of F4TCNQ-doped p(g42T-T) are shown in Figure 3. We observe only a change in the ratio of the dianion state (blue peaks) co-present with the ICT state in the film (red peaks); no growth of the HF4TNCQ- bands at 2188 and 2154 cm\(^{-1}\) are observed. These results are in agreement with recent literature that has demonstrated greater functional stability of F4TCNQ-doped p(g42T-T) films upon heating relative to doped rr-P3HT. This greater functional stability of F4TCNQ-doped p(g42T-T) is similar to that of F4TCNQ-doped s-P3MEET, both of which are missing aliphatic methylene carbon atoms alpha to the 3-position of the thiophene rings. Thus, this stabilization is the result of mitigation of the reaction chemistry as opposed to the prevention of F4TCNQ dopant sublimation.
Through this work, we have shown conclusively that the instability of F₄TCNQ doped rr-
P3HT films at temperatures between 60 and 120 °C is due to thermally-activated reaction chemistry at the aliphatic carbon atoms alpha to the 3-position of thiophene rings to form HF₄TCNQ⁺, a non-chromophoric weak dopant, resulting in significant degradation of the functional properties of these films. Although exposure to light appears to have essentially no effect on this chemistry (see Figure S2), the effect of atmospheric conditions on this chemistry is being systematically explored and will be reported a later date. In total, this work codifies previously observed behaviors of different conjugated thiophene-based organic semiconducting polymers in the framework of a molecular description of relevant reaction chemistry as a rationalization for degradation of functional properties in some systems but not others. These results elucidate an important design guideline for thiophene-based active layer materials that any structural modifications of thiophene rings to enhance other properties such as solubility or processability should not contain any possibly reactive hydrogen atoms alpha to the ring 3-position.

ACKNOWLEDGEMENTS
The authors acknowledge support of this research by the National Science Foundation under award DMR-1608289. K.E.W. acknowledges financial support through an ARCS Foundation Scholarship and an ACS Division of Analytical Chemistry Fellowship sponsored by Eli Lilly and Company. M.M and I.M. acknowledge generous funding from KAUST for financial support. The authors also acknowledge very useful discussions with Professor Richard S. Glass regarding mechanistic aspects of this work. Use of the Stanford Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

SUPPLEMENTARY INFORMATION

The Supporting Information section contains unnormalized FTIR spectra of the ν(C≡N) region for three F₄TCNQ mole fraction subjected to progressive heating, pictorial representations and assignments of ν(C≡N) vibrational modes for each F₄TCNQ species, and FTIR spectra of the ν(C=C) region for 0.096 χF₄TCNQ subjected to progressive heating and grazing incidence wide angle x-ray scattering data of a 0.096 χF₄TCNQ subjected to progressive heating in a nitrogen glove box. The Supporting Information is available free of charge on the ACS Publications website at DOI: XXXXXXXXX.

REFERENCES

