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Abstract 

The Ensemble Adjustment Kalman Filter (EAKF) of the Data Assimilation Research Testbed 

(DART) is implemented to assimilate observations of satellite sea surface temperature, 

altimeter sea surface height and in situ ocean temperature and salinity profiles into an eddy-

resolving 4 km Massachusetts Institute of Technology general circulation model (MITgcm) of 

the Red Sea. We investigate the impact of three different ensemble generation strategies (1) 

Iexp – uses ensemble of ocean states to initialize the model on 1st January, 2011 and inflates 

filter error covariance by 10%, (2) IAexp – adds ensemble of atmospheric forcing to Iexp, and 

(3) IAPexp – adds perturbed model physics to IAexp. The assimilation experiments are run for 

one year, starting from the same initial ensemble and assimilating data every three days.  

Results demonstrate that the Iexp mainly improved the model outputs with respect to 

assimilation-free MITgcm run in the first few months, before showing signs of dynamical 

imbalances in the ocean estimates, particularly in the data-sparse subsurface layers. The IAexp 

yielded substantial improvements throughout the assimilation period with almost no signs of 

imbalances, including the subsurface layers. It further well preserved the model mesoscale 

features resulting in an improved forecasts for eddies, both in terms of intensity and location. 

Perturbing model physics in IAPexp slightly improved the forecast statistics and also the 

placement of basin-scale eddies. Increasing hydrographic coverage further improved the results 

of IAPexp compared to IAexp in the subsurface layers. Switching off multiplicative inflation in 

IAexp and IAPexp leads to further improvements, especially in the subsurface layers. 
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Plain Language Summary 

Ocean general circulation models, which provide three-dimensional view of the ocean physical 

parameters, are essential components of operational ocean forecasting systems, a critical 

element for the Blue economy. Ocean models are, however, subjected to various sources of 

errors owing to imperfect internal physics and inevitable uncertainties in their inputs such as 

initial and atmospheric forcing. Data assimilation, which incorporates observed information 

into models, is now recognized as the most efficient tool to minimize the impact of the model 

imperfections thereby enhancing its forecasting skills. The success of data assimilation largely 

depends on the accurate description of the sources of model errors, which has long been a 

challenging task. In the present study, we developed a high-resolution ensemble ocean data 

assimilation system for the Red Sea, by devising a methodology to provide quantitative 

description of model errors due to uncertainties in initial conditions, atmospheric forcing and 

internal model physics during assimilation. We show significant improvements in the resulting 

ocean state estimates with the improved methodology. This is a major step towards the 

development of a comprehensive reanalysis and forecasting system for the sparsely-observed 

Red Sea, which should benefit the many research and commercial activities currently being 

developed along the Red Sea.  

Keywords: Red Sea; Eddy-resolving MITgcm; Ensemble data assimilation; Ensemble 

atmospheric forcing; Perturbed model physics; Inflation. 
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1. Introduction 

A major component of ocean data assimilation systems is the background (forecast) error 

covariance, which spreads the observed information from one region to another in the model 

space (Edwards et al., 2015; Hoteit et al., 2018). Misrepresentation of the background error 

covariance may also lead to imbalanced ocean states, which could cause detrimental effects on 

the forecasts (Bannister, 2008a,b). Earlier studies (e.g. Ravichandran et al., 2013; Sivareddy, 

2015; Xie and Zhu, 2010; Toye et al., 2017; Waters et al., 2017; and the studies cited in the 

review paper of Martin et al., 2015) have indicated that such a situation generally arises with 

static estimates of the background error covariances, mainly due to absence/spuriousness of 

cross-correlations between prognostic variables. For instance, Ravichandran et al. (2013) and 

Waters et al. (2017) suggested that 3D-VAR resulted in degradations of non-observed variables 

when cross-correlations between prognostic variables were not accounted for. Xie and Zhu 

(2010) and Toye et al. (2017) reported similar limitations with Ensemble Optimal Interpolation 

(EnOI) assimilation systems that use climatological ensembles for describing the background 

covariance. Ensemble Kalman filters (hereafter EnKF) provide an efficient framework to 

update the background covariance in time, which should provide more balanced ocean 

analyses. The success of an EnKF largely depends on the appropriate initial selection and 

evolution of its ensemble. Many studies (e.g., Lawson and Hansen, 2004; Leeuwenburg et al., 

2005) have, however, argued that traditional EnKFs often suffer from the fast collapse of the 

ensemble spread. Although ad hoc inflation strategies could be used to increase the ensemble 

spread (e.g. Anderson and Anderson, 1999; Hoteit et al., 2002; Zhang et al., 2004; Whitaker 

and Hamill, 2012; Bowler et al., 2017), they may limit the impact of the flow dependent 

statistics developed in the EnKF (see review paper Houtekamer and Zhang, 2016).  

Several studies with ensemble atmospheric data assimilation systems suggested that 

describing the background errors with approaches based on multi parameter (e.g. Bowler et al., 
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2008; Murphy et al., 2011), multi physics (e.g. Fujita et al., 2007; Meng and Zhang, 2007; 

Houtekamer et al., 2009) and multi boundary conditions (Torn et al., 2006) in which the 

ensemble members are integrated with different (perturbed) configurations of the dynamical 

model may help preventing the collapses of the ensemble spread, and generally leads to 

improved forecasts (see review paper Houtekamer and Zhang, 2016). Many ocean studies later 

followed, implementing ensemble ocean data assimilation systems with perturbed atmospheric 

forcing and showing important improvements in the forecasts (e.g. Lisaeter et al., 2003; 

Evenson, 2004; Wan et al., 2008; Shu et al., 2011; Sakov et al., 2012; Karspect et al., 2013; 

Penny et al., 2015; Sanikommu et al., 2017, 2019). Other studies assessed the 

background/model error characteristics based on free model ensemble runs perturbing different 

parameters (Brankart et al., 2015), boundary conditions (Sandery et al., 2014), bathymetry 

(e.g. Lima et al., 2019) etc. It has been later suggested in a few studies (to the best of our 

knowledge from Luc and Barth, 2015 and Kwon et al., 2016) that combining perturbed 

atmospheric forcing and model physics leads to improved state estimates in ensemble ocean 

data assimilation systems. However, owing to the nonlinear nature of the ocean model 

equations, perturbations in the atmospheric forcing or model physics might also increase the 

errors in the ocean model if they are applied into a region not well covered by observations 

(Sanikommu et al., 2017). Ensemble assimilation systems are also subject to stability issues 

(potential threat for dynamical balances in the analysis) when implementing inflation alone 

strategies with atmospheric/ocean models (e.g. Anderson, 2009; Hoteit et al., 2013). The 

observational coverage in the ocean is generally sparse, particularly in the subsurface. In this 

context, it is important to assess whether the perturbation strategies result in improvements in 

ocean forecasts without disrupting dynamical balances, a pressing problem in ocean data 

assimilation, as discussed in the reviews of Martin et al. (2015) and Hoteit et al. (2018). 
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 In this study, we implement perturbed (ensemble) atmospheric forcing and model 

physics strategies within a 4 km resolution Ensemble Adjustment Kalman Filter- 

Massachusetts Institute of Technology general circulation model (EAKF-MITgcm) 

assimilation system of the Red Sea (RS), and assess their potential to address the 

aforementioned issues of dynamical imbalances while improving the ocean forecasts. The RS 

is indeed among the most unexplored parts of the Indian Ocean despite its important 

contributions to the salinity budgets of the intermediate layers all along the length of the 

western parts of the Indian Ocean (e.g., Beal et al., 2000). The RS surface circulation is 

governed by mesoscale eddies (e.g. Zhan et al., 2014, 2018) that are largely modulated by 

changes in the overlying atmosphere (e.g. Zhan et al., 2016, Zhan et al., 2018). The 

intermediate layers of the southern RS are insulated from the local changes in the atmosphere, 

particularly during the active intrusion of relatively cold-fresh Gulf of Aden Intermediate 

Water (GAIW) mass (Yao et al., 2014a, b).  The RS is not adequately covered by global ocean 

reanalyses, probably due to its narrow width (maximum width of ~300 km) and historically 

sparse observation coverage. Hence the present study is also a step toward developing a state-

of-the art ocean forecasting and reanalysis system for the RS.  

The paper is organized as follows. Section 2 describes the model and the assimilation 

system, and the design of the assimilation experiments. Data utilized for evaluating the 

assimilation system outputs are presented in Section 3. Results from the multiplicative inflation 

alone assimilation experiment are presented in Section 4, in which we investigate the issues 

related to the system stability. Sections 5 and 6 present and discuss the results from the 

assimilation experiments employing the different perturbation strategies. Section 6 also 

analyzes and discusses the enhanced EAKF-MITgcm abilities with the ensemble atmosphere 

and perturbed model physics strategies. Section 7 summarizes the results and main conclusions 

of the study.  
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2. Description of the assimilation system and experiments 

2.1. Ocean model 

We use the MITgcm which solves the Navier-Stokes equations using the implicit free surface, 

Boussinesq and hydrostatic approximations (Marshall et al., 1997). The model is configured 

for the domain 30°E-50°E and 10°N-30°N covering the whole RS, including the Gulf of Suez, 

the Gulf of Aqaba, and part of the Gulf of Aden where an open boundary connects it to the 

Arabian Sea. The model is implemented on Cartesian coordinates at an eddy-resolving 

horizontal resolution of 0.04° x 0.04° and 50 vertical layers, with 4m spacing in the surface 

and 300m near the bottom. The bathymetry is derived from the General Bathymetric Chart of 

the Ocean (GEBCO, available at http://www.gebco.net/data_and_products/gridded_ 

bathymetry_data). Unless specified, the model uses direct space time 3rd order scheme for 

tracer advection, harmonic viscosity with the coefficients of 30 m2/s in the horizontal and 7x10-

4 m2/s in the vertical direction, implicit horizontal diffusion for both temperature and salinity, 

and the K-Profile Parameterization (KPP) scheme (Large et al., 1994) for vertical mixing with 

a vertical diffusion coefficient of 10-5 m2/s for both temperature and salinity. The open 

boundary conditions (OBCS) for temperature, salinity, and horizontal velocity are prescribed 

daily from the Global Ocean Reanalysis and Simulation data (GLORYS; Parent et al., 2003) 

available at 1/12° horizontal grid. A sponge layer of 5 grid boxes with a relaxation period of 1-

day is implemented for smooth incorporation of open ocean conditions through the eastern 

boundary. The normal velocities at the boundary are adjusted to match the volume flux of 

GLORYS, which is estimated from GLORYS Sea Surface Height (SSH) variations inside the 

model domain. The resulting inflow at the eastern boundary ensures consistency between our 

model and GLORYS basin-scale SSH. See Supplementary Material Section 2 for a comparison 

of the model results from this new OBCS setup compared to our old OBCS setup implemented 

in previous studies (e.g. Yao et al., 2014a, 2014b; Toye et al., 2017; Gittings et al., 2018; Zhan 
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et al., 2018). The model was spun up for 31 years starting from 1979 to 2010 using the 

European Center for Medium Range Weather Forecast (ECMWF) reanalysis of atmospheric 

surface fluxes of radiation, momentum, freshwater sampled every 6-hour and available on a 75 

km x 75 km grid (Dee et al., 2011). The model simulations have been extensively validated for 

the RS by earlier studies (e.g. Yao et al., 2014a, 2014b; Toye et al., 2017; Gittings et al., 2018; 

Zhan et al., 2018). In this study, the same model configuration was integrated using a 6-hourly 

50 km x 50 km atmospheric ensemble with initial conditions obtained from a spin-up run. We 

used the ECMWF atmospheric ensemble available through The Observing System Research 

and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble project 

(TIGGE, Bougeault et al.,2010; https://www.ecmwf.int/en/research/projects/tigge). TIGGE 

provides 6-hourly ensemble forecasts at 00 and 12 UTC and full details about this product can 

be found in Buizza (2014). We combined the first 12-hour fields of the 00 and 12 UTC TIGGE 

forecasts as 6-hourly forcing for our ocean ensemble assimilation runs. For comparison with 

the assimilation runs (as further discussed in the next Section), we forced our ocean model with 

the atmospheric ensemble mean and we refer to this model free-run without assimilation 

as Fexp. 

2.2. Assimilation scheme 

Available observations are assimilated using EAKF available in the DART-MITgcm 

(Data Assimilation Research Testbed coupled to MITgcm) package (Hoteit et al., 2013, 2015) 

implemented for the RS by Toye et al. (2017). Here we implement DART-MITgcm with 50-

members, assimilate data every 3 days, with localization in the horizontal (not in the vertical) 

direction using a radius of ~300 km , and a multiplicative inflation factor of 1.1, as suggested 

by Toye et al. (2017). The choice of 50-member ensemble is solely due to the size of the 

available atmospheric ensemble. We assimilate four different types of observations (see 

Section 2.3 for more detail on observations and the observation error variances), satellite-based 
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sea surface temperature (SST) and SSH, and in situ temperature and salinity profiles. Errors 

associated with these observations are assumed uncorrelated, i.e., observational error 

covariance matrix is diagonal. The assimilation experiments are conducted over a 1-year period 

in 2011, starting from January 1st, 2011. Unless otherwise stated, the initial ensemble for the 

assimilation experiments (described below) is generated by randomly selecting 50 ocean states 

from Fexp hindcasts corresponding to ±15 days from January 1st, the starting date of 

assimilation. The initial ensemble so obtained is then re-centered around the ocean state of 

Fexp corresponding to 1st January, 2011.  

2.3. Assimilated observations 

Observations from three different sources are assimilated, including SST data extracted from a 

level-4 in situ and advanced very high resolution radiometer infrared satellite SST blended 

daily product available on a 0.25°x0.25° grid (Reynolds et al., 2007), along-track satellite level-

3 merged altimeter filtered sea level anomalies (SLA; corrected for dynamic atmospheric, 

ocean tide, and long wavelength errors) from Copernicus Marine Environment Monitoring 

Service (CMEMS; Mertz et al., 2017), and in situ temperature and salinity profiles made 

available by Ingleby and Huddleston (2007). While the SST observations are uniformly 

distributed, given the spatially complete level-4 gridded product, the altimeter SLA and in situ 

T/S observations are sparse in the RS. For instance, there are 5898 (~244) SLA observations 

(in situ temperature profiles) during the month of January, 2011 (the entire year 2011) spanning 

the whole model domain. No in situ T/S observations are available between August and 

December, 2011 and the salinity observations are even more sparse (only ~110 in situ salinity 

profiles in the entire year 2011). 

The SLA observations are derived by subtracting 20 year (1993-2012) mean sea surface 

height (𝜂𝑀𝑆𝑆𝐻
𝑂𝑏𝑠 ) from instantaneous sea surface height (𝜂𝑆𝑆𝐻

𝑂𝑏𝑠) observations (AVISO 2015; Mertz 

et al. 2017). Since SLA represents the variable part of the 𝜂𝑆𝑆𝐻
𝑂𝑏𝑠 , one can only update 𝜂𝑆𝑆𝐻

𝑚𝑜𝑑𝑒𝑙 
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based on the altimeter SLA, by simply adding the 𝜂𝑀𝑆𝑆𝐻
𝑚𝑜𝑑𝑒𝑙 to the SLA measurements (e.g. 

Vidard et al., 2009; Costa and Tanajura, 2015; Zuo et al., 2019). This has the disadvantage of 

not reducing SSH biases, if any, in the climatological 𝜂𝑀𝑆𝑆𝐻
𝑚𝑜𝑑𝑒𝑙. In the present study, 

climatological biases in 𝜂𝑀𝑆𝑆𝐻
𝑚𝑜𝑑𝑒𝑙 are endeavored to keep minimal by averaging outputs between 

2002 and 2016 (15 years) from a free model run forced with 5 km resolution atmospheric fluxes 

dynamically downscaled from 75 km resolution ERA-interim product (Viswanadhapalli et al., 

2016) and ocean boundary conditions obtained from altimeter assimilated global ocean 

reanalysis product (Parent et al., 2003). The outputs of this run have been extensively validated 

in previous studies (e.g. Gittings et al., 2018; Zhan et al., 2018). Adding satellite along-track 

SLA to the 𝜂𝑀𝑆𝑆𝐻
𝑚𝑜𝑑𝑒𝑙 is only meaningful when temporal variations of 𝜂𝑆𝑆𝐻

𝑚𝑜𝑑𝑒𝑙 are allowed through 

the ocean boundary conditions, one of the major improvements of the present study compared 

to the Toye et al. (2017) EAKF-MITgcm configuration (see model description in Section 2.1 

and Section S2 of Supplementary Materials). This greatly improves the assimilation results for 

SSH as shown in the results presented in the Supplementary Materials (Section S2).  

Observation error variance is an important element of any data assimilation system (e.g. 

Hoteit et al., 2010; Sanikommu et al., 2019), and should account for errors due to: deficiencies 

in measurement devices, unresolved processes, unresolved subgridscale dynamics, and 

numerical errors in interpolation. Temporally static and spatially homogeneous observational 

error variance values of (0.04 m)2, (0.5°C)2 and (0.3psu)2 are used for the satellite along-track 

SLA, the in situ T and S, respectively. These error variances for T and S, which are chosen in 

accordance with the suggested ranges of in situ observational errors by earlier assimilation 

studies (e.g., Richman et al., 2005; Forget and Wunsch, 2007; Oke and Sakov, 2008; Karspeck, 

2016), are intended to account the expected dominant errors from unresolved scales and 

processes (Sivareddy et al. 2019). The SLA observational error of (0.04 m)2, which is slightly 

larger than the suggested altimeter accuracy (AVISO 2015; Hoteit et al., 2002), is based on the 
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sensitivity of our assimilation system to various choices of error variances, (0.04 m)2 , (0.07 

m)2 , and (0.1 m)2 (results not shown). The best-fit at such overall altimeter accuracy ranges 

may be explained to the native grid resolution of altimeter observations (~14 km) which is 

close to the resolving scales of 4 km MITgcm, essentially limitting the contribution of error 

from unresolved scales and process. Mapping errors, due to analysis process and the inevitable 

data gaps during dust events and satellite coverage, are the major source of observational error 

for the satellite blended level-4 SST observations. The 25 km x 25 km spatial resolution of the 

assimilated satellite blended SST observations in the present study is already close to the scales 

resolved by our 4 km MITgcm (Pielke 1984; Grasso, 2000), which allows us to discard the 

representation error in this particular application. The specified observational error variances 

for SST vary between (0.1°C)2 and (0.6°C)2 in accordance with the errors specified in the level-

4 gridded SST product of Reynolds et al. (2007).  

2.4. Assimilation experiments 

Three main assimilation experiments were conducted: Iexp, IAexp, and IAPexp as outlined in 

Table 1. The ocean model configuration of Iexp is the same as Fexp, differing only in terms of 

assimilating observations in Iexp (using EAKF with multiplicative inflation) using 50-member 

ensemble of model forecasts integrated from perturbed initial conditions. Therefore, in terms 

of background error covariance, Iexp accounts for uncertainties in the initial conditions only 

and through inflation. IAexp is the same as Iexp except that it also accounts for uncertainties in 

the atmospheric forcing by driving each ensemble model run during the forecast step by a 

different atmospheric field extracted from the 50-member atmospheric ensemble forcing of the 

TIGGE project (Bougeault et al., 2010). Figure 1 displays the spread of various atmospheric 

forcing parameters along the RS axis (indicated in Figure 2d). The spread in the downwelling 

shortwave radiation (DSW) is more pronounced over the southern RS (south of 22°N). It 

further exhibits marked seasonal variations with peak values (reaching 20 W/m2) in July-
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August and troughs in February. These spatiotemporal variations are more or less similar for 

the other forcing parameters, except for rainfall. The rainfall spread is not significant, which is 

due to the negligible amount of rainfall received by the RS (e.g. Dasari et al., 2017). The large 

ensemble spread for different variables during July-August, on the other hand, can be attributed 

to large variations in the atmospheric model during the strong Tokar jet, a southern Red Sea 

strong wind jet blows during July-August from the African continent through the Tokar 

Mountain Gap.  

Ocean general circulation models rely on various physical parameterization schemes to 

account for the effects of unresolved scales of motion (Brankart et al., 2013; Jia et al., 2015; 

Andrejczuk et al., 2015; Zhu and Zhang, 2019; also please refer the review of Fox-Kemper et 

al., 2019). Such schemes depend on different parameters that need to be tuned according to the 

model configuration and domain of interest. These constitute another source for model 

uncertainties (as discussed in Brankart et al., 2015 for example), in addition to those of the 

atmospheric forcing. IAPexp is designed to account for three sources of background error: 

initial conditions, model physics and atmospheric forcing. In IAPexp, each ensemble forecast 

model run is integrated with a set of model physics randomly selected from a predefined 

dictionary of model physics (here after MPD) at each assimilation cycle, meaning that a model 

run with a certain set of model physics in a given cycle is integrated with a different set of 

model physics in the next cycle. Table 2 summarizes the designed MPD for IAPexp. Three 

different categories of model physics are selected in the MPD: horizontal diffusion, horizontal 

viscosity, and vertical mixing. These three include different flavors of Gent-McWilliams/Redi 

sub-grid-scale eddy parameterization schemes for horizontal diffusion (Redi, 1982; Gent and 

McWilliams, 1990; Gent et al., 1995; here after GMREDI): slope clipping of Cox (1987) 

(hereafter GMREDI-clipping), tapering scheme of Danabasoglu and McWilliams (1995) 

(hereafter GMREDI-dm95), and tapering scheme of Large et al. (1997) (hereafter GMREDI-
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ldd92) that uses a minimum diffusion coefficient of 100 m2/s, and two other configurations, 

one with simple-explicit harmonic diffusion coefficient value of 100 m2/s and another with 

implicit diffusion (same as in Fexp). The horizontal viscosity category in the MPD includes 

three different schemes: simple-harmonic with a value of 30 m2/s (same as in Fexp), simple-

bi-harmonic of Holland (1978) with a value of 107 m4/s, and harmonic flavor of 

Smagorinsky/Leith (Smagorinsky, 1993; Griffies and Hallberg, 2000; hereafter SMAGLEITH-

harmonic and SMAGLEITH-Biharmonic) scheme with a value of 30 m2/s. The Smagorinsky 

and Leith coefficients are respectively set to 2.5 and 1.85 as suggested by Griffies and Hallberg 

(2000) and Leith (1996). For vertical mixing, four different schemes are included in MPD: the 

default nonlocal K-Profile Parameterization scheme of Large et al., (1994) (hereafter KPP), 

the schemes of Pacanowski and Philander (1981) (hereafter PP81), Mellor and Yamada (1982) 

(hereafter MY82), and Gasper et al. (1990) (hereafter GGL90). The vertical diffusivity 

coefficient is the same in all these schemes. For all other coefficients, we used the default 

values as provided in the MITgcm. This MPD was designed after a careful examination of a 

large number MITgcm simulations using various options of model physics. The basic criterion 

in the selection process was to obtain a set of model physics that provides distinct, but not 

spurious forecasts around the forecast ensemble mean. More information on the selection 

process and the comparison of forecasts under the selection process is provided in the 

Supplementary Materials.           

In addition to the above assimilation experiments we have conducted two more 

experiments IAPcruiseexp and IAcruiseexp to assess the impact of the observational coverage. 

These experiments are identical to IAPexp and IAexp but further assimilate CTD observations 

of temperature and salinity profiles collected in the RS between 15th September and 8th October, 

2011 (as indicated in Figure 5). This dataset includes 206 profiles collected by a joint Woods 

Hole Oceanography Institute (WHOI) and King Abdullah University of Science and 
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Technology (KAUST) cruise along the eastern part of the RS, with a horizontal spacing of 10 

km (Zhai et al., 2015; hereafter WHOI/KAUST summer cruise). The two experiments are run 

starting 15th September, 2011 (starting period of the summer cruise data) till the end of the year 

using the analysis IAPexp and IAexp ensembles on that date as initial conditions, respectively. 

For straightforward comparison, we used the same perturbed model configurations of IAPexp 

(IAexp) in IAPcruiseexp (IAcruiseexp).  

3. Data used for evaluating the assimilation solution 

Unless otherwise stated, we analyze daily averaged ocean forecasts as they result from the 

different experiments. For the evaluation of the subsurface features, CTD observations of 

temperature and salinity from WHOI/KAUST summer cruise are utilized. Root-Mean-Square-

Differences (RMSD) of analysis snapshots and daily averaged forecasts for SST and SSH are 

computed with respect to the corresponding assimilated observations. Spatially, SST is 

compared to a high-resolution daily averaged level-4 SST product from the Operational Sea 

Surface Temperature and Sea Ice Analysis (OSTIA; Stark et al., 2007; Donlon et al., 2012). 

OSTIA is generated on a 0.054° (~6 km) grid by combining SST data from various satellites 

and in situ observations using an Optimal Interpolation (OI) technique.  

Multi-mission altimeter merged satellite level-4 gridded Absolute Dynamic 

Topography (ADT) provided by CMEMS (here after CMEMS-L4; Mertz et al., 2017) is used 

for spatial evaluations of model simulated sea surface height (SSH). The ADT product is 

available on a 0.25° grid with temporal resolution of one day for the RS. The maximum formal 

mapping error of the ADT (provided along with the CMEMS-L4 ADT product) during the 

analysis period 1st January to 31st December, 2011 is estimated to be between 1.8 cm - 4 cm in 

the southern RS and reaches up to 6.7 cm in the northern RS (not shown). In order to use it to 

evaluate the assimilated SSH solution, we adjust the CMEMS-L4 ADT by replacing its 15-



 
©2020 American Geophysical Union. All rights reserved. 

year average by 𝜂𝑀𝑆𝑆𝐻
𝑚𝑜𝑑𝑒𝑙, similar to the treatment of the assimilated along-track SLA data (see 

Section 2.3). 

4. Impact of assimilation with the multiplicative inflation-alone strategy 

The Iexp solution is first compared against that of Fexp to provide insights on the issues of 

assimilation with the Iexp strategy. Figure 2 displays biases and correlations between SST 

forecasts from Fexp and OSTIA (a and d), and Iexp and OSTIA (b and e). Iexp reduces SST 

biases by about 0.5°C over the RS and yields improved correlations in the northern RS by about 

0.05, but slightly degrades those in the southern RS. Examining the time evolution of the 

RMSD (with respect to the assimilated SST observations)  of SST forecasts in the RS suggests 

that Iexp SST-RMSDs are always smaller than those of Fexp, with improvements reaching up 

to 0.6°C during July, 2011 (Figure 3a). However, its time-variations are not stable, with strong 

seasonality similar to that of Fexp. The posterior SST-RMSDs also reveal similar results 

(Figure 3b), suggesting an inefficient use of SST observations in the Iexp assimilation strategy.  

Figure 3c and 3d plot RMSD (with respect to assimilated SSH observations) time series 

of daily-averaged SSH forecasts and posterior-SSH from Iexp and Fexp. Unlike the SST 

results, no marked seasonality is observed in SSH-RMSDs of Iexp, and it is closer to that of 

the RMSDs in CMEMS-L4. The RMSDs fluctuate between 4-9 cm in Iexp and between 2-15 

cm in Fexp, with the average RMSDs around 5 cm in Iexp and 8 cm in Fexp. The SSH-RMSDs 

in Iexp are smaller than those of Fexp, except for a short period around the first week of June 

and during the period August-November, where the SSH-RMSDs in Iexp are larger by ~2 cm 

compared to those of Fexp. The larger SSH-RMSDs in Iexp during summer seem to be due to 

the spurious forecast error correlations in Iexp, as discussed in the subsequent paragraphs.   

Figure 4 displays in situ observations of SST and sea surface salinity (SSS) from 

WHOI/KAUST summer cruise overlaid on spatial maps of SST and SSS, averaged over the 

cruise period of 15th August-10th October, 2011, from satellite merged product and 
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model/assimilation experiments. The spatial patterns of SST are better described in Iexp 

compared to Fexp. In contrast with SST, SSS is poorly represented in Iexp. For example, while 

the spatial patterns of SSS in Fexp blends reasonably well with the SSS observations (Figure 

4f), Iexp shows anomalous freshening, particularly in the southern RS (Figure 4g). This may 

have also spread to the SSS by horizontal advection through the western coast of the RS (Yao 

et al., 2014b).  

We further examined subsurface temperature and salinity profiles during the 

WHOI/KAUST summer cruise.  Figure 5 displays subsurface patterns of temperature and 

salinity from the cruise and the corresponding (in space and time) forecasts of temperature and 

salinity as resulting from Fexp and Iexp. Fexp shows cold biases in the upper layers of the 

northern basin and warm biases in the subsurface layers throughout the RS axis. The salinity 

structure is reasonably well captured in Fexp, except for saline biases between 18°N-20°N. 

Assimilation with Iexp improves the cold biases in the north, but increases the warm biases in 

the subsurface layers and further increases salinity errors. The subsurface layers below 150 m 

indeed show spurious features of anomalous warm and saline waters. Iexp simulates the 

intrusion of cold and fresh waters between 60-80 m south of 18°N, as indicated in the 

observations and Fexp, but the Iexp waters are anomalously colder and fresher than in the 

observations.  

The pockets of spurious features in Iexp, such as those discussed above, can be related 

to long-range spurious correlations in the forecast ensemble (e.g., Evenson, 2009; Sanikommu 

et al., 2017), which migrate through the filter updates with the observations. Figure 6 displays 

the spatial patterns of temperature analysis increment after the filter update on 1st October, 

2011 at various depths (2 m, 50 m, 180 m, and 300 m). As can be seen, the temperature 

increment in Iexp is almost close to zero at the surface but is larger in the subsurface layers. 

The spatial patterns of the increments in the subsurface layers appear noisy. For instance, the 
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region surrounding 17.5°N at 50 m, where spurious cold waters are noticeable in the subsurface 

comparison plots, show large (up to 0.5°C) positive and negative increments. Similar scattered 

patterns can be seen at 180 m, where spurious features of temperature and salinity were noticed. 

As discussed earlier, there is no single subsurface observation available in the entire RS during 

September and October, and only surface observations were assimilated during this period. 

Hence the resulting increments in the subsurface layers must have been propagated through the 

correlations with the surface layer in the forecast ensemble. Figure 7 shows vertical correlations 

in the temperature ensemble at various locations. As can be seen from Figure 7, the correlation 

profile is indeed scattered in Iexp, indicating spurious correlations in the sub-surface layers. 

Further, as can be seen from Figure 8, the multiplicative inflation alone strategy shows 

negligible spread at the surface and unrealistically large spread in the deeper layers of the 

southern basin from August to the end of the simulation, in agreement with earlier studies 

(Anderson 2009; Bowler et al., 2017) that showed spurious spread with a multiplicative 

inflation alone strategy in sparsely observed (atmospheric) regions. Statistically, such a 

spurious ensemble spread in the subsurface layers causes large corrections/increments even for 

small surface innovations, which may further explain the unrealistic subsurface features in Iexp 

with this strategy. Several approaches have achieved some success in mitigating such spurious 

corrections in atmospheric and ocean data assimilation systems: through for example, adaptive 

inflation (e.g. Anderson, 2009; Miyoshi, 2011; Penny et al., 2013; Lee et al., 2017), and the 

implementation of explicit balance operators in the modelling of background covariance 

(Weaver et al., 2005). Directly accounting for model uncertainties may be a more 

straightforward approach to address this issue as already demonstrated in atmospheric data 

assimilation (e.g. Fujita et al., 2007; Bowler et al., 2008; Houtekamer et al., 2009), as also 

suggested by the assimilation results presented in the next two sections.  
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5. Impact of ensemble atmospheric forcing  

This section discusses the results of assimilation with ensemble atmospheric forcing, i.e. IAexp. 

As can be seen in Figure 8, IAexp, leads to a more reasonable ensemble temperature spread in 

the whole ocean column, and also increases the ensemble spread at the surface. As expected, 

the temporal evolution of the surface spread in the ocean (Figure 8) is similar to that in the 

atmospheric forcing (Figure 1). The atmospheric ensemble forcing increases the ensemble 

spread in the ocean at 50 m too, owing to its influence on the mixed layer depth variations and 

the intrusion of Gulf of Aden Intermediate waters (Sofianos and Johns, 2007; Yao et al., 2014; 

Xie et al., 2019). The deeper layers (e.g. 150 m) generally exhibit less spatiotemporal 

variations, and are less influenced by the perturbed atmospheric forcing, hence show less 

spread compared to surface layers. Unlike Iexp, IAexp yields relatively organized correlations 

(Figure 7) and updates (Figure 6) in the entire ocean column. For instance, at (38°E, 21°N), the 

vertical correlations of temperature between the surface and subsurface in the forecast 

ensemble of Iexp on 1st October, 2011 shows scattered patterns in the vertical correlations. 

IAexp on the other hand shows positive correlations in the upper layers and insignificant 

correlations in the deep layers (Figure 7). As a result, the temperature analysis increments are 

less noisy and more organized in IAexp, with larger increments in the surface (Figure 6). This 

also help to mitigate spurious spread in the deeper layers, which was prominent in Iexp 

(compare Figure 8c and 8g).  

The ocean forecasts from IAexp show no anomalous features of salinity, both at surface 

and subsurface (Figure 5). The cold and saline biases in the upper 50 m in Fexp north of 23°N 

and the warm biases in the subsurface layers are significantly improved with IAexp. The 

deepening of isotherms at 26°N in the observations is reasonably reproduced by IAexp. The 

intrusion of subsurface cold and fresh waters in the southern latitudes are also better represented 

in IAexp compared to Iexp and Fexp. The spatial patterns of surface parameters in IAexp, 
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including SSS, are more blended with the observations (Figure 4). In addition, the RMSDs of 

SST and SSH in IAexp are smaller than the interpolated products of OSTIA and CMEMS-L4, 

respectively, suggesting the efficient use of observations during assimilation. The RMSDs of 

SSH and SST are respectively consistently below 8 cm and 0.8 °C throughout the study period 

with a reduced seasonality, and are significantly improved compared to Fexp and Iexp (Figure 

3). Note, however, that such a seasonality of SST-RMSDs may be also attributed to increased 

errors of satellite measurements in dust covered regions (prevalent during summer in the RS as 

suggested by Ravi et al., 2018) as we notice similar seasonality in the observation-based 

interpolated product of OSTIA. The improvements in SST (SSH) forecasts of IAexp, with 

respect to Iexp and Fexp, reach 0.4°C and 1°C (2 cm and 6 cm), respectively, during July 

(October and April), 2011. The cold biases in the Gulf of Aden in Iexp are also significantly 

improved with IAexp (Figure 2). There are noticeable improvements in the spatial patterns of 

temporal variability of SST in IAexp compared to that of Fexp and Iexp (Figure not shown). 

The correlations along the southeastern coast of the RS further increase from 0.85 in Fexp to 

0.9 in IAexp (Figure 2).  

In order to further assess the influence of IAexp on the eddies, which are important 

elements of the RS circulation, we compare the spatial patterns of SSH in IAexp and Fexp with 

those of the satellite measurements. Figure 9 displays the spatial map of SSH from the different 

assimilation experiments and observations in three distinct regimes. The upper panels, 

corresponding to 12th February, 2011, showcase the cyclonic eddy of the northern RS (e.g. Yao 

et al., 2014a), a permanent feature that is mainly influenced by thermohaline forcing (Zhan et 

al., 2018). The middle panels, showing SSH in the southern RS on 11th August, 2011, 

correspond to the regime during which a dipole eddy feature, generated under the action of 

strong cross-basin Tokar winds, is prevalent (e.g. Zhai and Bower, 2013; Zhan et al., 2018). 

The bottom panels, corresponding to 10th July, 2011, showcase the typical anti-cyclonic eddy 
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in the Gulf of Aden (GoA) that is influenced by various factors, including its advection from 

the adjacent Indian Ocean through instabilities in the Somali current and modification by local 

wind (e.g. Al Saafani et al., 2007). One can see from Figure 9 that there are noticeable 

differences between CMEMS-L4 and along-track SSH observations in terms of their 

magnitudes, which can be attributed to the sparse altimeter coverage in the region. Nonetheless, 

CMEMS-L4 still captures the aforementioned cyclonic eddy in the northern RS, dipole eddies 

in the central RS, and anti-cyclonic eddy in the GoA, consistant with earlier studies (Yao et al., 

2014a; Zhai and Bower, 2013; Al Saafani et al., 2007). Fexp captures the anti-cyclonic eddy 

of the GoA reasonably well, but it overestimates the intensity of the cyclonic eddy in the 

northern RS. Although the anti-cyclonic eddy of the dipole features in the central RS is 

reasonably well simulated by Fexp, it underestimates the intensity of the cyclonic eddy. This 

may be attributed to the insufficient resolution of the atmospheric forcing to represent the cross-

basin Tokar jet as suggested by earlier studies (e.g. Clifford et al., 1997; Zai and Bower, 2013; 

Bower and Farrar, 2015). IAexp significantly improves the SSH biases and the placement of 

the eddies. Comparing the results with along-track SSH indicates that IAexp outperforms even 

the interpolated altimeter product, i.e. CMEMS-L4. For instance, compared to Fexp and 

CMEMS-L4, the SSH in IAexp is close to along-track SSH in all three regimes, particularly in 

the northern RS. The size and intensity of the anti-cyclonic eddy in the GoA are better 

represented by IAexp compared to Fexp and CMEMS-L4. Regarding dual eddies in the southern 

RS, IAexp improves the intensity of the anti-cyclonic eddy and captures the cyclonic eddy too, 

which was completely overlooked by Fexp.     

Toye et al. (2017) argued that an increase in the model spread through seasonal 

ensemble optimal interpolation improved the analysis for the assimilated variables, but 

degraded the RS forecasts due to the disruption of dynamical balances. Such imbalances 

manifest themselves as spurious vertical velocities in the assimilation system outputs (e.g. 
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Anderson et al., 2000; Hoteit et al., 2010; Raghukumar et al., 2015; Waters et al., 2017; Park 

et al., 2018). Compared to Iexp, IAexp shows increased ensemble spread and results in 

significant improvements in the tracer fields and eddy features. To assess the dynamical 

balances in IAexp, we further examined the daily averaged forecasts of vertical velocities. 

Figure 10 displays the maximum vertical velocity in the ocean column (here onwards 

|𝑊(𝑧)|𝑚𝑎𝑥) along the RS axis as resulting from the model free-run and assimilation 

experiments. |𝑊(𝑧)|𝑚𝑎𝑥in Fexp exhibits important spatio-temporal variability, with larger 

magnitudes in the regimes dominated by eddies (e.g. north RS during winter) and water-mass 

confluence zones (e.g. south RS), in agreement with earlier studies (e.g. Pedro and Joaquin, 

2001). Compared to Fexp, the spatial extent of |𝑊(𝑧)|𝑚𝑎𝑥 is increased in Iexp, with 

magnitudes reaching 40 m/d, particularly between 18°N -20°N during August-December, the 

period during which spurious structures of subsurface temperatures and salinities were 

noticeable. The spatio-temporal structures and magnitudes of |𝑊(𝑧)|𝑚𝑎𝑥 in IAexp, on the other 

hand, show no striking differences between Fexp and IAexp, suggesting no significant 

dynamical imbalances.  

6. Impact of perturbed model physics 

Here, we examine whether incorporating another source of background error from perturbed 

physics, in addition to the ensemble atmospheric forcing and initial conditions, would provide 

further improvements in our Red Sea particular setting compared to IAexp. As can be seen in 

Figure 8, combining the three sources of background error led to a smoother and increased 

spread in IAPexp, although no significant changes are noticeable in the timing of peaks and 

lows. The increase in the spread is larger in the surface than in the subsurface, which is related 

to the larger sensitivity of perturbed internal physics to the zones of larger kinetic energy. The 

IAPexp strategy has also improved the spread in the northern parts of the RS compared to 

IAexp. As a result, although the structure of horizontal (Figure not shown) and vertical 
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correlations in IAexp and IAPexp are quite similar, they differ mainly in terms of smoothness. 

The temperature correlations are more robust in IAPexp, compared to IAexp, irrespective of the 

chosen location (e.g. Figure 7). The spatial patterns of temperature increments in IAPexp are 

better organized owing to such smooth and organized correlations. The abrupt jumps in vertical 

velocities are further improved in IAPexp (Figure 10d), indicating more dynamically balanced 

ocean forecasts. 

Comparing the SST forecasts and posterior in IAexp and IAPexp reveals that the latter 

results in some improvements, although not substantial, in terms of RMSDs and correlations 

(Figure 2, 3a, and 3b). The RMSD time series of SSH forecasts and posterior also indicate 

slightly better state estimates from IAPexp (Figure 3b and 3d). Visual comparisons of the eddy 

features suggest a slight improvement in the position of the basin-scale eddies in IAPexp. For 

instance, the cold core cyclonic eddy of the northern RS is placed closer to the along-track SSH 

observations in IAPexp. The dipole eddies, particularly the cyclonic eddy, in the southern RS 

are also better represented in terms of size and magnitude. The size of the anti-cyclonic eddy 

in the GoA is further reduced in IAPexp in closer agreement with along-track SSH 

observations.  

Comparing the assimilated solutions with the WHOI/KAUST summer cruise T and S 

observations that were not assimilated here (but only in experiments IAcruiseexp and 

IAPcruiseexp discussed in the next paragraph), indicates that IAPexp improves the warm biases 

in the deeper (below 150 m) layers. In contrast to the improvements at the surface and deeper 

layers, IAPexp appears to limit the improvements obtained with IAexp at the intermediate 

layers. For instance, in situ observations show intrusion of fresh and cold waters south of 20°N 

at around 50m depth (Figure 5b). Fexp managed to capture the intrusion of this water mass, 

although they are restricted to the area within 17°N (Figure 5c and 5d). While IAexp improves 

the extension of the intrusion (Figure 6g and 6h), IAPexp fails to simulate this intrusion (Figure 
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5i and 5j). Also, IAPexp seems to degrade the salinity forecasts in the northern RS (Figure 5j 

and Figure 4i), which could have been avoided by not using multiplicative inflation (see next 

paragraph). Careful examination of the ocean forecasts in IAPexp indicates that it diffuses the 

high-resolution spatial features, mostly mesoscale (size ~50 km). For example, as can be seen 

from Figure 9g and 9j, the anti-cyclonic eddy close to the eastern coast of the northern RS, 

which was reasonably well represented in IAexp, is not well reproduced in IAPexp. It is worth 

mentioning that the MPD based on which the IAPexp ensembles were generated was designed 

such that the ensemble members do not deviate much from each other (please see 

Supplementary Materials Section S1). The high resolution features are still present in the 

ensemble members, but they are smeared in the ensemble mean, which is taken here as the final 

estimate (forecast and analysis) in our EnKF system, formulated around Gaussian forecast (and 

noise) distributions (Hoteit et al., 2018). This Gaussian framework may be less adequate for 

IAPexp given the enhanced degree of mixing due to the random parameterizations. This means 

that the ensemble mean may not be the best estimate of the most likely ocean state, though it 

is still the one with least errors on average.   

To investigate the impact of multiplicative inflation on IAPexp (IAexp), we conducted 

one more experiment APexp (Aexp), similar to IAPexp (IAexp), in which multiplicative 

inflation was not used. Comparing the RMSDs of SSH and SST of APexp with their 

counterparts of IAPexp indicate that discarding inflation improves the SST (Figure 13a) and 

SSH (Figure 13b), with the improvements reaching up to 0.3°C and 1 cm, respectively, during 

summer. The salinity (Figure 13j) and temperature (Figure 13i) biases in the subsurface are 

also considerably improved in APexp. Similar improvements are noticeable in Aexp also, 

suggesting that the assimilation system may rely less on multiplicative inflation when 

background errors are properly accounted for. 
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To further investigate the impact of the perturbed atmospheric forcing in IAPexp, we 

conducted another experiment (IPexp) without using an ensemble of atmospheric forcing (just 

the ensemble mean) in IAPexp, so basically accounting for uncertainties in the initial 

conditions and the physics only. This generally resulted in a degradation of the assimilation 

solution, increasing the SST and SSH RMSDs by ~15-25% (and up to 0.2°C and 3 cm - Figure 

3). The ensemble generation using perturbed physics still however provides better assimilation 

results than the multiplicative inflation alone strategy.  

In order to provide insights on the enhanced capabilities of IAPexp strategy for 

assimilating hydrographic observations, we conducted additional experiments with IAPexp and 

IAexp assimilating the in situ temperature and salinity profiles from the WHOI/KAUST 

summer cruise (which were so far used for validation only). Figures 11 and 12 respectively 

show the spatial patterns of SSS and subsurface features of temperature and salinity from these 

two experiments, which we refer to as IAcruiseexp and IAPcruiseexp. Almost no improvements 

can be reported in IAcruiseexp compared to IAexp. In contrast, IAPcruiseexp yields large 

improvements in the salinity structure in the south. The SSS observations are now well blended 

in IAPcruiseexp, better than any other experiment, with improved representation of the fresh 

water intrusion and saline water advection in the southern and central-eastern parts of the RS, 

respectively (Figure 12h). The deepening of the isotherm at 26°N and warm biases in the sub-

surface layers are further improved in IAPcruiseexp (Figure 12g). The larger improvements 

resulting from the IAPexp strategy with the assimilation of additional observations suggest its 

higher potential for areas with more observational coverage. 

7. Summary and conclusions  

Three different assimilation strategies, (1) multiplicative inflation alone: Iexp, (2) 

multiplicative inflation with ensemble atmospheric forcing: IAexp, and (3) multiplicative 

inflation with ensemble atmospheric forcing and perturbed model physics: IAPexp, are 
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implemented and tested within a 50-member 4 km ocean ensemble EAKF-MITgcm data 

assimilation system of the Red Sea assimilating SST, SSH, and in situ temperature and salinity 

data. These were compared against the model solution without assimilation, Fexp. The relative 

impact of these strategies on the ocean forecasts was thoroughly examined. Iexp mostly 

improved the surface compared to Fexp owing to the homogeneous coverage of SST and SSH 

observations. It, however, shows abnormal vertical velocities and substantial degradations in 

the sparsely observed subsurface layers due to spurious vertical background error correlations.  

Accounting for uncertainties in the atmospheric forcing by driving the ocean forecasts 

with an ensemble of ECMWF fields significantly improved the spatial and vertical correlations 

in the forecast ensembles, thereby helping to obtain noticeable improvements in the ocean 

forecasts. The warm and cold biases of SST in the southern and northern RS are significantly 

improved with IAexp. The improvements, in terms of RMSDs, reach 1°C and 0.2 psu in the 

temperature and salinity forecasts, respectively. Substantial improvements were obtained in the 

subsurface layers too, with less temperature biases compared to Fexp. The size and location of 

the eddies are further better captured in IAexp. In addition, the IAexp ocean state estimates 

show very limited dynamical imbalances, which has long been a desirable property for ocean 

data assimilation systems. 

Accounting for another source of background errors through perturbed model physics, 

the IAPexp strategy did not yield substantial improvements compared to IAexp, though still 

result in some qualitative differences. The lack of in situ data might have limited the 

improvements from IAPexp, and the assimilation of more profiles is needed further to assess 

the relevance of internal perturbations. Nonetheless, the IAPexp strategy helped reducing the 

warm biases in the deeper layers and enhanced the placement of the basin-scale eddies. IAPexp 

also provided more dynamically balanced ocean forecasts, owing to more robust correlations 
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in the forecast ensemble. Discarding the multiplicative inflation altogether yielded further 

improvements.  

A high resolution reanalysis for this region will be important not only for exploring the 

physical dynamics in this historically sparsely observed basin, but to also deepen our 

understanding of the regional biological process. The improved ensemble and balanced ocean 

forecasting system using ensemble atmospheric forcing and perturbed model physics presented 

in this study is an important step toward the development of the first ocean forecasting and 

reanalysis system for the Red Sea. Further enhancement of the performances of the present 

system by using flow-and-depth-dependent observation error variances (e.g., Sanikommu et al., 

2019) will be the focus of our next effort.     
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Table 1. Summary of the conducted experiments. 

Experiment 
Initial 

condition 

Atmospheric 

Forcing 

Model 

physics 
Assimilated observations 

Multiplicative 

Inflation 

Fexp 

Single 

member on 

1st January, 

2011 

Ensemble 

mean 
Standard None NA 

Iexp 

50-member 

ensemble on 

1st January, 

2011 

Ensemble 

mean 
Standard 

Reynolds-SST, Altimeter 

SSH, and in situ temperature 

and salinity as available 

from Ingleby and 

Huddleston (2007) 

1.1 

IAexp 

50-member 

ensemble on 

1st January, 

2011 

50-member 

ensemble 
Standard 

Reynolds-SST, Altimeter 

SSH, and in situ temperature 

and salinity as available 

from Ingleby and 

Huddleston (2007) 

1.1 

IAPexp 

50-member 

ensemble on 

1st January, 

2011 

50-member 

ensemble 
Random 

Reynolds-SST, Altimeter 

SSH, and in situ temperature 

and salinity as available 

from Ingleby and 

Huddleston (2007) 

1.1 

IPexp 

50-member 

ensemble on 

1st January, 

2011 

Ensemble 

mean 

Random, 

but same 

as 

IAPexp 

Reynolds-SST, Altimeter 

SSH, and in situ temperature 

and salinity as available 

from Ingleby and 

Huddleston (2007) 

1.1 

IAcruiseexp 

50-member 

ensemble on 

1st 

September, 

2011 from 

IAexp 

50-member 

ensemble 
Standard 

Reynolds-SST, Altimeter 

SSH, and in situ temperature 

and salinity as available 

from Ingleby and 

Huddleston (2007), and 

CTD observations collected 

during WHOI/KAUST 

cruise 

1.1 

IAPcruiseexp 

50-member 

ensemble on 

1st 

September, 

2011 from 

IApexp 

50-member 

ensemble 

Random, 

but same 

as 

IAPexp 

Reynolds-SST, Altimeter 

SSH, and in situ temperature 

and salinity as available 

from Ingleby and 

Huddleston (2007), and 

CTD observations collected 

during WHOI/KAUST 

cruise 

1.1 

Aexp 

50-member 

ensemble on 

1st January, 

2011 

50-member 

ensemble 
Standard 

Reynolds-SST, Altimeter 

SSH, and in situ temperature 

and salinity as available 

from Ingleby and 

Huddleston (2007) 

No inflation 
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APexp 

50-member 

ensemble on 

1st January, 

2011 

50-member 

ensemble 

Random 

but same 

as 

IAPexp 

Reynolds-SST, Altimeter 

SSH, and in situ temperature 

and salinity as available 

from Ingleby and 

Huddleston (2007) 

No inflation 
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Table 2. Dictionary of model physics and associated coefficients considered in the present 

study. Coefficients of vertical mixing schemes vary according to the typical values set 

by MITgcm, unless otherwise stated. In the table, entries in italic indicate the standard 

scheme. Each ensemble member of the experiments that use perturbed physics  selects 

a scheme randomly from each column.  

Horizontal Viscosity Vertical Mixing Horizontal diffusion 

Simple-Harmonic with 

viscosity coefficient 30 m2/s 
KPP 

Implicit diffusion for 

temperature and 

salinity 

Simple-Bi-harmonic with 

viscosity coefficient 107 m4/s 
PP81 

Explicit coefficients 

of 100 m2/s for 

temperature and 

salinity 

SMAGLEITH-Harmonic 

with viscocity coefficient 30 

m2/s, Smag coefficient 2.5 and 

Leith coefficient 1.85 

MY82 

GMREDI-clipping, 

with background 

diffusion set to 100 

m2/s 

 

GGL90 

GMREDI-dm95 with 

background diffusion 

set to 100 m2/s 

  GMREDI-ldd92 with 

background diffusion 

set to 100 m2/s 
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Figure 1. Temporal evolution of spread in the ECMWF ensemble atmospheric forcing along 

the axis of the Red Sea (indicated in the left panel). Spread is shown for (b) 

downwelling shortwave radiation (W/m2), (c) downwelling longwave radiation 

(W/m2), (d) air temperature at 2m (°C), (e) Zonal wind at 10m (m/s), and (f) Meridonal 

wind at 10m (m/s). Black straight line in the panel ‘a’ is drawn to indicate the Red Sea 

axis, which is used in various plots of the study. 
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Figure 2. Spatial maps of SST bias (°C) between (a) Fexp and OSTIA, (b) Iexp and OSTIA, 

(c) IAexp and OSTIA, and (d) IAPexp and OSTIA. Panels (e-h) are the same as (a-d) 

except that they show correlations. Statistics are computed based on the period from 1st 

March, 2011 to 29th December, 2011.  
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Figure 3. Time series of Root-Mean-Square-Difference (RMSD) for daily averaged (a) SST 

(c) SSH forecasts from level-4 gridded products (OSTIA for SST and CMEMS-L4 for 

SSH; black), Fexp (red), Iexp (green), IAexp (blue), IAPexp (pink), and IPexp (maroon). 

RMSD is computed by collocating the daily averaged model forecasts onto the 

corresponding observation locations. 10-day smoothing is applied to better highlight 

the differences between the assimilation results. Units are in “°C” and “cm” for SST 

and SSH, respectively. Panels (b) and (d) are similar to (a) and (c) but calculated for 

the analysis with no smoothing, as the plotting interval is already 3 days due to 

assimilation cycle. 
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Figure 4. Spatial maps of temporally averaged SST (°C) from (a) OSTIA, (b) Fexp, (c) Iexp, 

(d) IAexp, and (e) IAPexp during the period pertained to the WHOI/KAUST summer 

cruise (15th September -8th October, 2011). Near surface in situ temperature from the 

CTD data collected during the summer cruise is also shown with filled circles on each 

plot. Panels (f-i) are same as (b-e) but for SSS in psu. 
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Figure 5. Subsurface temperature (in °C) and salinity (in psu) from in situ CTD observations 

(a-b) and the collocated (in space and time, during the WHOI/KAUST summer cruise 

conducted during 15th September – 8th October, 2011) daily averaged temperature and 

salinity forecasts as resulted from Fexp (c-d), Iexp (e-f), IAexp (g-h), and IAPexp (i-j). 

Temperature and salinity are smoothed by 1° and 10m in latitudinal and vertical 

direction to better highlight subsurface features. Latitudes corresponding to the cruise 

observation locations are indicated as black vertical dashes at the top of each panel.  
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Figure 6. Ensemble mean temperature increments (analysis – forecast) in Iexp on 1st October, 

2011 at (a) surface, (b) 50m, (c) 180m, and (d) 300m. Panels (e-h) and (i-l) show similar 

plots for IAexp and IAPexp, respectively.  Units are in °C. 
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Figure 7. Zero-lag single point ensemble correlations in the vertical direction on 1st October, 

2011 from Iexp (green), IAexp (blue), and IAPexp (pink), between SST and temperature 

at (a) North RS (36°E & 25°N), (b) central RS (38°E & 21°N) and (c) south RS (40°E 

& 18°N)  locations. 
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Figure 8. Temporal evolution of spread in various variables along the axis of the Red sea. 

Spread is shown for temperature (in °C) at surface, 50m, 150m, and sea surface salinity 

(in psu) from Iexp (a-d), IAexp (e-h), and IAPexp (i-l).  
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Figure 9. Spatial maps of 3-day averaged SSH forecast (in cm) corresponding to 12th February, 

2011 (top), 11th August, 2011 (middle), and 10th July, 2011 (bottom) from (a-c) merged 

altimeter CMEMS-L4. Panels (d-f), (g-i), and (j-l) show similar plots from Fexp, IAexp 

and IAPexp forecasts, respectively. Along track SSH observations are also overlaid on 

each map. 
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Figure 10. Temporal evolution of the daily averaged forecasts of vertical velocity 

|𝑊(𝑧)|𝑚𝑎𝑥(m/day) in the ocean column along the axis of the Red Sea from (a) Fexp, 

(b) Iexp, (c) IAexp, and (d) IAPexp.  |𝑊(𝑧)|𝑚𝑎𝑥(m/day) is smoothed by 0.2° and 5-days 

in the latitudinal and temporal direction to better highlight the features. 
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Figure 11. Spatial maps of temporally averaged SSS (psu) from (a) IAcruiseexp, (b) 

IAPcruiseexp, and (c) APexp during the WHOI/KAUST summer cruise period (15th 

September -8th October, 2011). Near surface in situ salinities from the CTD data 

collected during the summer cruise is also layed out with filled circles on each plot.  
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Figure 12. Same as Figure 6 except that the results are from IAcruiseexp (c-d), IAPcruiseexp 

(e-f), Aexp (g-h), and APexp (i-j).  
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Figure 13. (a) Difference between SST RMSDs (°C) of Aexp and IAexp (Aexp-IAexp; blue). 

Positive value indicate degradation in Aexp from IAexp and vice versa. The pink line in 

the figure is for the difference between APexp and IAPexp (APexp-IAPexp). Panel b is 

ame as “a” but for SSH (cm). RMSD is computed by collocating the daily averaged 

model forecasts onto the corresponding observation locations. 10-day smoothing is 

applied to better highlight the differences between the assimilation results.  

 

 

 


