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Abstract

This paper develops a new approach for solving optimal time and energy trajectory plan-

ning problems for Autonomous Underwater Vehicles (AUVs) in transient, 3D, ocean cur-

rents. Realistic forecasts using an Ocean General Circulation Model (OGCM) are used

for this purpose. The approach is based on decomposing the problem into a minimal time

problem, followed by minimal energy subproblems. In both cases, a non-linear program-

ming (NLP) formulation is adopted. The methodology is first tested in idealized, steady,

2D settings, to verify the effectiveness of the method in addressing the multi-objective

optimization problem. The scheme is then demonstrated for time-energy trajectory plan-

ning problems in the Gulf of Aden. In particular, the numerical experiments illustrate the

capability of generating Pareto optimal solutions in a broad range of mission durations.

In addition, the analysis also highlights how the methodology effectively exploits both

the vertical structure of the current field, as well as its unsteadiness, namely to minimize

travel time and energy consumption.
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Nomenclature

Sets, Indices

I indices for the time steps

M indices for the problems to be solved

T indices for time horizon

Parameters

χ the spatial domain

∆E energy step (constant along energy axis)

∆t time step (constant)

x(tf ) final position vector

x(t0) initial position vector

xf destination

x0 starting point

E
0

energy value corresponding to the minimum travel time

mmax number of problems to be solved in parallel

Mj partition of the set M into subsets, each with a number of elements mmax

amaxz upper bound on the acceleration of the vehicle relative to the current in the z

direction

amax upper bound on the acceleration of the vehicle relative to the current in xy plane

Ek,m energy consumption of the AUV obtained from problem m for the travel time tf,k

kmax the number of additional travel times to build the Pareto-optimal solution curve

N number of grid points in the time discretization

t0 initial time grid point

ti time grid point

Tmax the maximum travel times to build the Pareto-optimal solution curve

vmaxz upper bound on the velocity of the vehicle relative to the current in the z direction

vmax upper bound on the velocity of the vehicle relative to the current in xy plane

xfmax maximum x coordinate of the destination target

xfmin minimum x coordinate of the destination target

xmax maximum x coordinate of χ

xmin minimum x coordinate of χ

yfmax maximum y coordinate of the destination target
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yfmin minimum y coordinate of the destination target

ymax maximum y coordinate of χ

ymin minimum y coordinate of χ

zfmax maximum z coordinate of the destination target

zfmin minimum z coordinate of the destination target

zmax maximum z coordinate of χ

zmin minimum z coordinate of χ

Variables

u(x(t), t)) non-homogeneous varying ocean current field ((ux(x(t), t), uy(x(t), t), uz(x(t)), t))

a(t) acceleration of the vehicle with respect to the current (ax(t), ay(t), az(t))

v(t) instantaneous velocity of the AUV with respect to the current (vx(t), vy(t), vz(t))

g(x) smoothed indicator function, which defines whether the vehicle is inside or outside

the obstacle

tf time to get to destination

1. Introduction

Autonomous Underwater Vehicles (AUVs) are used in a wide range of applications.

In a civilian application context, these include coastal ecosystem monitoring, search and

rescue tasks, scientific exploration of deep sea, oil and gas exploration, inspection of un-

derwater installations, and management of shipping operations (Stommel, 1989; Blidberg

et al., 1991; Aghababa, 2012). AUVs are employed in military applications, e.g. for

surveillance of ocean vehicles and troops (Yuh, 2000; Soulignac et al., 2008; Lolla et al.,

2012).

The successful operation of AUVs relies on the integration of capabilities arising from

different areas, namely robotics, sensors and control, ocean science (modeling the envi-

ronment where the AUVs act), networking and communications, statistics, and decision-

making (off-line and on-line intelligence to adapt to unpredicted situations). All of these

areas are relevant to accomplish missions in different applications. In this work, we focus

specifically on trajectory planning of AUVs in complex environments.

Trajectory planning for AUVs is challenging due to the variability of ocean currents,

and the complexity of the bathymetry in the ocean. A related constraint is the limitation

of fuel or battery life when AUVs navigate in long missions. Therefore, there is a need
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to enhance the capability of vehicles to operate in the ocean, by either increasing the

energy capacity (Crimmins et al., 2006; Hagen et al., 2007; Rynne and von Ellenrieder,

2010), and/or taking advantage of energy of the ocean current (Rao and Williams, 2009;

Fernández-Perdomo et al., 2010; Smith et al., 2010; Subramani et al., 2016). Trajectory

planning is thus essential to increase the energy autonomy of AUVs and to determine

feasible trajectories from deployment locations to areas of operation (??).

There is significant amount of literature in 2D trajectory planning for AUVs (Wang

et al., 2016; Pêtrès et al., 2007; Sun et al., 2010; Yilmaz et al., 2008; Wang et al., 2019;

Warren, 1990; Soulignac, 2011; Garau et al., 2005; Lolla et al., 2012), however 3D trajec-

tory planning is relatively less explored. 3D trajectory planning and the ocean state in

which the AUV operates should be well characterized, so that safe and optimal decisions

may be determined and communicated to the vehicle. One also needs to characterize the

sub-sea terrain and other obstacles that might be encountered during the mission of the

AUV.

There have been attempts to solve the 3D path planning problem for AUVs. Ataei

and Yousefi-Koma (2015) investigated 3D optimal path planning for miniature AUVs,

and determined a set of optimal paths that have to pass through several waypoints. The

authors considered four criteria to evaluate the optimal path, namely total length of path,

safety margin, smoothness of the planar motion, and gradient of diving. Liu et al. (2015)

provided a 3D path planning method for AUVs using a modified firefly algorithm that

incorporates an autonomous motion strategy to avoid cases of invalid regions. Aghababa

(2012) estimated optimal paths by formulating a nonlinear optimal control problem, and

applying evolutionary algorithms to compute its solution.

One of the most common objectives of trajectory planning for AUV is to minimize

the total travel time of the journey. Fast marching method was applied by Pêtrès et al.

(2005, 2007) to obtain the minimum time path in a given current field. Soulignac et al.

(2009) used a novel approach, called symbolic wavefront expansion, to determine the path

that minimizes the total travel time of the AUV. Level set methods (Lolla et al., 2012,

2014) were used to find the time-optimal path of the AUV by solving a particle tracking

equation backward in time in the presence of the current. A mixed integer non-linear

programming model and solution approach for 2D trajectory planning for problems with

nonlinear flow fields to find the minimum time was proposed in (Wang et al., 2019).
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Another common objective of trajectory planning methods is minimize the energy

consumption. A variety of approaches have been demonstrated to plan energy optimal

paths for AUVs in the presence of a complex current field. In particular, the A* method

is widely used for AUVs path planning problems. Traditionally, the method deals with

stationary fields (Carroll et al., 1992), and the algorithm is used for computing obstacle-

free paths for AUVs by discretizing the space into cells. Lately, a modified version of

A* was proposed to account for the effects of velocity fields around the vehicle and to

minimize energy consumption (Garau et al., 2005, 2009; Koay and Chitre, 2013; Lee et al.,

2015).

Recently, Niu et al. (2019) integrated several algorithms, namely Voronoi roadmap,

Dijkstra’s searching, coastline expanding, and genetic algorithm to tackle the challenges

of determining energy-efficient paths in the presence of complex obstacles and spatially

and temporally varying ocean currents.

Some studies considered a multi-objective approach to trajectory planning. Aghababa

(2012) used the solution of optimal control problem with non-linear space equation to

find time-energy optimal path in the presence of the static and energetic obstacles, in this

work the current was not considered. Kularatne et al. (2016) presented an A* approach

that generates 2D time-optimal and energy efficient trajectories in time-dependent flow

fields. Subramani et al. (2015) and Subramani and Lermusiaux (2016) used stochastic

optimization methodology in conjunction with a level-set approach to find energy-optimal

paths of AUVs navigating in time-dependent fields.

In this paper, we develop a trajectory planning framework to simultaneously mini-

mize travel time and energy consumption for AUVs operating in realistic, 3D, unsteady

ocean current fields. To address the multi-objective optimization problem, a tailored ε-

constraint method is developed (Hwang and Masud, 1979) that for a given travel time

determines the trajectory having minimal energy consumption. We start from the min-

imal travel time problem, ignoring the energy constraints, by adapting the methodology

introduced in Albarakati et al. (2019) for this purpose. Specifically, the techniques used to

provide smooth interpolants of static Ocean General Circulation Model (OGCM) velocity

and obstacle data are extended to accommodate unsteady ocean currents. The extension

involves the incorporation of suitable space-time interpolants into the optimization pro-

cess. Starting from the energy unconstrained minimal time solution, our algorithm first
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attempts to locally minimize energy. Then a systematic exploration of a range of travel

times, bounded from below by the unconstrained minimal travel time, is pursued. The

exploration is based on discretizing the range of travel times using a fixed time step, and

a parallel solution algorithm is implemented in order to find the minimum energy solution

for each travel time and to explore a diversified set of initial conditions.

We first test the performance of the solution framework in idealized settings, and then

assess its performance using realistic OGCM data. To simplify the analysis, we rely on

an objective formulation in which the AUV energy expenditure consist of hydrodynamic

losses only. Whereas the methodology can readily accommodate more elaborate, mission-

oriented, objective functions, the assumptions used enable us to perform straightforward

comparison of different cases. Using this approach, numerical experiments are performed

which illustrate the capability of generating Pareto optimal solutions. Analysis of these

experiments highlights how the methodology effectively exploits both the vertical struc-

ture of the current field, as well as its unsteadiness, to minimize travel time and energy

consumption.

This paper is organized as follows. The statement of optimal time-energy trajectory

planning problem is discussed in Section 2. Section 3 introduces our decomposition ap-

proach to the solution of the multi-objective optimization problem, and outlines the NLP

formulation adopted to determine Pareto-optimal solutions. In Section 4, we specify the

setup of the case studies used to test the algorithm and demonstrate its performance. Re-

sults of the numerical implementations are discussed in Section 5. Section 6 summarizes

the main conclusions.

2. Problem Statement

We consider the 3D time-energy trajectory planning problem for an AUV within real-

istic time varying current fields simulated by an OGCM. The objective of our formulation

is to minimize travel time and the energy consumption of a single AUV from starting

point to destination subject to obstacle avoidance as well as kinematic constraints. To

account for the energy consumption, a simplified approach is adopted, based on the as-

sumptions that (i) hydrodynamic energy losses correspond to a constant drag coefficient;

and (ii) energy consumed by on-board instrumentation is ignored. Accordingly, we may

rely on a reduced expression of the energy consumption obtained by dropping the drag
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coefficient, and express the problem as:

min

∫ T

t0

1 dt = T − t0,

min

∫ T

t0

||v(t)||22 dt,

s.t.
dx(t)

dt
= v(t) + u(x(t), t),

d2x(t)

dt2
= a(t) +∇u(x(t), t) · dx(t)

dt
+ ∂tu(x(t), t),

x(t0) = x0,

x(T ) = xT ,√
v2
x(t) + v2

y(t) ≤ vmax,√
a2
x(t) + a2

y(t) ≤ amax,

‖vz(t)‖ ≤ vmaxz

‖az(t)‖ ≤ amaxz ,

g(x(t)) > 0,

x(t) ∈ χ ⊂ R3,

v(t), a(t) ∈ R3,

T ∈ R,

(1)

where x(t) = (x(t), y(t), z(t)) denotes the instantaneous position of the AUV at time t,

u(x(t), t) = (ux(x(t), t), uy(x(t), t), uz(x(t)), t) is the time varying current field, v(t) =

(vx(t), vy(t), vz(t)) is the instantaneous velocity of the AUV with respect to the current,

and a(t) = (ax(t), ay(t), az(t)) is the acceleration of the vehicle with respect to the current.

The total, ground-referenced, AUV velocity is u+v. The starting and ending time of the

AUV trajectory are denoted by t0 and T , respectively. The corresponding starting point

and ending point are x(t0) = (x0, y0, z0), x(T ) = (xT , yT , zT ), respectively. The vehicle’s

velocity and acceleration relative to the current in the x, y plane are bounded by vmax and

amax; the maximum velocity and acceleration of the AUV relative to the current in the

z− direction are respectively bounded by vmaxz and amaxz .

To enforce obstacles avoidance, we introduce the smoothed indicator function g, which
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is defined on the problem domain χ according to:g(x) > 0, x is in the fluid,

g(x) ≤ 0, otherwise.

(2)

In order for the trajectory to avoid all obstacles, g(x(t)) is required to be positive at all

times, t0 ≤ t ≤ T . The constraint x(t) ∈ χ forces the vehicle to navigate within the

problem domain.

The formulation above, provides the continuous multi-objective function and con-

straints for solving the AUV trajectory planning problem, which is known as a complex

NP-hard problem (Canny et al., 1991).

3. Solution Approach

We first present a time-discrete formulation of Problem (1) to obtain an amenable

formulation for an optimization solver, and then describe the solution approach to obtain

the Pareto-optimal solutions for the energy consumed vs travel time.

3.1. Time-discretization for constraints

Problem (1) describes the continuous objective functions and constraints for solving

the AUV trajectory planning problem. Let I = {0, 1, 2, 3, ..., N} be a set of indices, and

T = {t0, t1, t2, ..., tN} be a collection of discrete times. We use t0 = 0 as initial time, and

assume that the total travel time T ∈ T .

We use a time grid divided into steps of equal size, ∆t. We thus have

∆t = t1 − t0 = t2 − t1 = ... = tN − tN−1; ti = i ·∆t, i ∈ I. (3)

The discrete version of the kinematic equations is derived based on a Taylor expansion

at ti. Specifically, we use:

x(ti+1) ≈ x(ti) + v(ti) + u(x(ti), t) ·∆t+
1

2
a(ti) ·∆t2, i ∈ I, (4)

v(ti+1) ≈ v(ti) + a(ti) ·∆t, i ∈ I, (5)
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where the gradient of u with respect to space and time is ignored because the current is

slowly changing at the resolution afforded by the OGCM simulation.

3.2. Handling two objective functions

After discretizing the constraints, one needs to address the multi-objective optimiza-

tion problem, which admits a set of solutions (optimal energy consumption and travel

time), named nondominated solutions or Pareto-optimal solutions (Hwang and Masud,

1979). Basically, for each travel time the corresponding minimum energy consumption is

determined. These Pareto-optimal solutions are then represented in a chart that facilitates

selection of a single solution (energy consumed and travel time).

Pareto-optimal curves are based on solutions of multiple optimization problems, and

therefore, building a high resolution curve can be computationally demanding. Also, the

decision-maker is faced with the selection of a solution from a curve, which may not be

trivial to select or it may require other relevant criteria. To overcome these chcallenges,

an alternative approach could be the determination of a single optimal solution, an ideal

or utopian point (?), which then facilitates the solution selection, but may also involve

computational challenges. This work investigates the trends of time-energy Pareto curves

for real-world ocean currents in 2D and 3D. The objective is to study time-energy Pareto

curves for problems involving currents that are transient and vary in the x-y plane and

with depth. Pareto-optimal solutions frequently exhibit monotonic curves, which in our

case are represented by curves with the energy consumption decreasing with the travel

time increasing. However, in time-energy trajectory problems, more elaborate Pareto-

optimal curves can be obtained. The analysis of the trends and trajectory solutions

of these curves is conducted below. Note that in the present formulation the energy

consumed by on-board sensors, actuators, and instrumentation is ignored. Thus, the

Pareto curves presented neglect the contribution of this hardware, which varies with

travel time.

The following sub-sections describe the problems solved and solution approach to build

the Pareto-optimal curves. For that, we rely on some of the characteristics of the problem,

namely that the set of travel times are the time grid points (greater than the minimum

travel time). Therefore, we first calculate the minimum travel time from the starting point

to the target neglecting the energy consumption objective function and constraints; and

then for that travel time, the corresponding minimum energy is calculated. We repeat
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this calculation process for each (admissible) travel time.

3.3. Minimum travel time and set of travel times

To find the minimum travel time, the solution approach proposed in Albarakati et al.

(2019) is used to solve a revised version of Problem (1) (including only the objective

function for the travel time).

3.4. Minimum energy for each travel time

Based on the minimum travel time and the value of ∆t, we construct a set of travel

times defined by

tf,k = tf + k∆t, k = 0, 1, . . . , kmax, (6)

where tf is the minimum travel time, ∆t is a time step as defined in Section 3.1, and kmax

is the number of additional travel times to build the Pareto-optimal solution curve. We

define the maximum time of interest for the trajectory planning as Tmax = tf,kmax , which

sets the interval [tf , Tmax] of interest to calculate the Pareto-optimal solutions.

For each tf,k, we are interested in finding the minimum energy consumption of an

associated trajectory from the starting point to the target. To address this problem, an

adapted version of the ε-constraint method (Hwang and Masud, 1979) is used, whereby

for each tf,k, we solve a set of problems with E ≤ E + m∆E, ∀m ∈ M, where E and

∆E are constants. E is described in detail later, and ∆E defines the resolution of the

Pareto-optimal solutions. Therefore, to find the minimum energy for each fixed travel
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time tf,k, ∀k ∈ K, we have one has to solve |m| problems:

min
x,v,a,E

tf,k

s.t. x(ti+1) = x(ti) + (v(ti) + u(x(ti)))∆t+
1

2
a(ti)∆t

2, ∀ti ∈ T ,

v(ti+1) = v(ti) + a(ti) ·∆t, ∀ti ∈ T ,√
v2
x(ti) + v2

y(ti) ≤ vmax, ∀ti ∈ T ,√
a2
x(ti) + a2

y(ti) ≤ amax, ∀ti ∈ T ,

‖vz(ti)‖ ≤ vmaxz , ∀ti ∈ T ,

‖az(ti)‖ ≤ amaxz , ∀ti ∈ T ,

g(x(ti)) > 0, ∀ti ∈ T ,

E =
tf,k∑
ti=t0

||v(ti)||22,

E ≤ E +m∆E,

x(t0) = x0,

x(tf,k) = (xt
f,k

, yt
f,k

, zt
f,k

),

x(ti) ∈ χ ⊂ R3, ∀ti ∈ T

v(ti), a(t) ∈ R3, ∀ti ∈ T

E ∈ R+.



∀m ∈M, ∀k ∈ K.

(7)

Problem (7) is a constrained nonlinear system with a fixed objective function tf,k and a

set of trajectory constraints derived according to the discretization of Section 3.1, and an

upper bound on the energy consumption of the AUV. Let Ek,m be the energy consumption

of the AUV resulting from problem m for the travel time tf,k, then the minimum energy

consumption of the AUV for tf,k is Ek = min
m

{
Ek,m

}
.

3.5. Solution approach to solve (7)

In the present setup, the Pareto-optimal trajectories are built for a nonlinear flow that

is time and space dependent. This may lead to a complex, non-monotonic Pareto curve.

The Pareto-optimal solutions may exhibit alternative trends depending on whether the

vehicle is traveling along the current or against it and the relative difference between

the maximum relative velocity of the AUV and the velocity of the current, which is not
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straightforward to assess, given the 3D transient ocean environment. Also, as the tf,k

increases, the size of the problems in (7) also increases in terms of number of variables

and constraints.

To overcome such complexities, a solution approach is proposed that accommodates

nonmonotonic Pareto curves. Two procedures are considered, depending on the value of

k: one for k = 0 and another for k > 0.

For k = 0, which corresponds to the minimum travel time found, the minimum value

of energy is always less or equal than the energy value corresponding to the minimum

travel time, denoted as E
0
. Therefore, we have E = E

0
and the set M is defined as

m ∈ {−mmax;−mmax + 1; . . . ;−1},

which means that for tf,0, Problem (7) is solved for a set of decreasing upper bounds on

the energy. If the problems were solved sequentially, this process would terminate when

for a given m the problem is infeasible, and therefore, the minimum energy would be

Ek = Ek,m−1.

For k > 0, M is defined to account for the case where the minimum energy for tf,k

can be greater or less than the energy Ek−1 from tf,k−1 (this is illustrated in the results).

Thus, M is defined as

m ∈
{
−mmax − 1

2
, . . . ,−1, 0, 1, . . . ,

mmax − 1

2

}
,

where mmax is assumed to be an odd number. At the end of the solution of all problems

in (7), we get the Pareto-optimal solutions, namely the pairs
(
tf,k, Ek

)
.

In the above general definitions of M, this set can be large and a sequential solution

of the problems would be computationally demanding. Therefore, we propose a parallel

implementation, whereby, for each tf,k, we partition the set M into subsets Mj, each

with a number of elements mmax, where mmax corresponds to the number of problems to

be solved in parallel. This implementation is presented in Algorithm 1 and Algorithm

2, and illustrated in Figure 1 with an example of a set of problems solved for tf,k, k =

0, 1, 2, and 3.
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Algorithm 1 Minimum energy search for a fixed tf,k and k = 0

Input: tf,k, E
0

Output: Ek

1: Set j = 0, Mj := {−mmax;−mmax + 1; . . . ;−1}, and E = E
0

2: while Ek = +∞ do
3: Solve Problem (7) in parallel
4: Let mj

L be the smallest element in the set Mj

5: if j = 1 and @ a solution ∀m ∈Mj then

6: Ek = E
0

7: return Ek

8: else if j > 1 and @ a solution ∀m ∈Mj then

9: Ek = E0,mj−1
L

10: return Ek

11: end if
12: if ∃! a solution for mj

L then

13: E = E0,mj
L

14: Mj+1 := {−(j + 1)mmax;−(j + 1)mmax + 1; . . . ;−(j)mmax − 1}
15: else if @ a solution for mj

L and ∃ a solution for m ∈Mj then
16: Ek = min

m
{Ek,m}

17: return Ek

18: end if
19: j = j + 1
20: end while

3.6. Remarks

• Previously computed solutions are utilized to initialize the solver and reduce the

computational time required to solve each problem. For example, the solution from

the minimum travel time problem is used to initialize the problems solved in parallel

for k = 0, for the first Mj. In the same fashion, the solution from the Problem (7)

corresponding to the minimum energy for tf,k−1 is used to initialize all problems for

tf,k.

• We assume that if the solver does not return a solution for a given problem (m, k),

then the problem is infeasible.

3.7. Diversification strategy to find additional Pareto-optimal solutions

The problems defined in (7) are constrained nonlinear problems that are non-convex

due to the nature of the flow field obtained from the OGCM data. Therefore, to make

an effort to find additional solutions for the problems that return infeasible solutions, a
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Algorithm 2 Minimum energy search for a fixed tf,k and k > 0
Input: tf,k, Ek−1

Output: Ek

1: Set j = 0, Mj :=
{
−mmax−1

2
; . . . ;−1; 0; 1; . . . ; mmax−1

2

}
. and E = Ek−1;

2: while Ek = +∞ do
3: Solve Problem (7) in parallel
4: Let mj

L be the smallest element in the set Mj

5: Let mj
U be the largest element in the set Mj

6: if j = 1 and ∃ a solution for mj
L then

7: E = Ek,mj
L

8: Mj+1 :=
{
−
(
mmax + mmax−1

2

)
;−
(
mmax + mmax−1

2

)
+ 1; . . . ;−mmax−1

2
− 1
}

9: else if j > 1 and ∃ a solution for mL then

10: E = Ek,mj
L

11: Mj+1 :=
{
−
(
mmax +mj

L

)
;−
(
mmax +mj

L

)
+ 1; . . . ;−mj

L − 1
}

12: end if
13: if j = 1 and @ a solution ∀m ∈Mj then
14: E = Ek−1

15: Mj+1 :=
{

mmax−1
2

+ 1; mmax−1
2

+ 2; . . . ; mmax−1
2

+mmax

}
16: else if j > 1 and @ a solution ∀m ∈Mj then
17: E = Ek−1

18: Mj+1 :=
{
mj

U + 1;mj
U + 2; . . . ;mj

U +mmax

}
19: else if @ a solution for mL and ∃ a solution for m ∈Mj then
20: Ek = min

m
{Ek,m}

21: return Ek

22: end if
23: j = j + 1
24: end while

diversification strategy is implemented that provides different initialization solutions. The

goal is to robustify the overall solution approach.

The diversification strategy randomly samples a specified number of waypoints, nw,

in the space. Each waypoint corresponds to one initialization and only one waypoint per

trajectory is fixed. As a result, we generate nw initial paths to the target that are used to

initialize the problems in (7). Therefore, we run the solution approach described before

for each initialization path with a specified waypoint and one run without waypoint. We

build the Pareto-optimal solution curves over all waypoints solutions. This diversification

approach is illustrated in the flowchart in Figure 2.

3.8. Implementation Details

We implemented Problem (7) and the solution approach in the modeling system GAMS

(GAMS, 2018). Problem (7) was solved with IPOPT 3.12 (Wächter and Biegler, 2006)
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and the optimization runs were performed on a workstation with 24 logical CPUs, each

with 2.5 GHz and 128GB the total RAM. The stopping criteria for the solution of each

set of problems solved in parallel defined by Mj is 100 seconds for Case 1 and Case 2,

and 300 seconds for Case 3 and Case 4.

4. Numerical Experiments

To demonstrate the proposed algorithm, and to study the behavior of Pareto curves

in controlled settings, we first consider two simplified cases involving idealized, steady,

current fields. The first case involves a steady uniform current, which we refer to as

Case 1. The second case, Case 2, involves a current exhibiting a vertical shear. Next,

we consider two cases on a realistic setting based on an unsteady OGCM flow. In the

first, Case 3, the AUV is restricted to move along the surface; in the second, Case 4, the

restriction is relaxed so that the optimization considers the full 3D transient OGCM field.

This section, provides a brief description of the current field in each of these four cases.

The results of these experiments are presented in the following section.

4.1. Case 1

As summarized in Table 1, the first example has uniform favorable, steady current in

the problem domain without any obstacles. The (normalized) magnitude of the current

velocity is 1, and the maximum relative velocity of the vehicle is 0.5.

4.2. Case 2

In this case, also summarized in Table 1, a time-independent current is considered

which varies along the z direction only, and is uniform in x. The vertical profile is

assumed to be given by:

ux(z, t) = exp(−α(z − z0)2). (8)

As specified below, two separate instances are considered in this case, corresponding to

favorable and adverse currents.

4.2.1. Instance I

In this Instance, exponentially decaying favorable current (8) is considered, with α =

1/100 and z0 = 50, from the straight line joining the starting point to the end point.

There are no obstacles in the domain of the problem. The magnitude of the current is
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defined in the interval [0, 1], see Figure 5, and the maximum magnitude of the relative

velocity of the vehicle is 0.5.

4.2.2. Instance II

In this Instance, exponentially decaying unfavorable current (8) is considered, with

α = 1/100 and z0 = 50, from the straight line joining the starting point to the end point.

There are no obstacles in the problem domain. The magnitude of the current is defined

in the interval [0, 1]; and the maximum magnitude of the relative velocity of the vehicle

is 1.

4.3. Time-dependent OGCM field

The realistic time-dependent ocean fields were simulated using an assimilative OGCM

of the Red Sea (Toye et al., 2017, 2018). The underlying assimilation system operates

sequentially as cycles of forecast-analysis steps, using the MIT ocean general circulation

model (MITgcm) for forecasting the Red Sea circulation, and an ensemble Kalman filter

(EnKF) for updating the model forecasts with satellite sea surface height and temperature

observations every time they become available (Hoteit et al., 2013). The system domain

extends from 30◦E to 50◦E and from 10◦N to 30◦N, covering the whole Red Sea, the Gulf

of Suez, the Gulf of Aqaba, and the Gulf of Aden. To measure Euclidean distance in the

problem domain, we consider 30◦ longitude, 10◦ latitude, and the sea level as the origin,

and measure all the distances from this point. The system was configured on a spherical

grid with a 0.04◦ × 0.04◦ horizontal resolution, resulting in 500× 500 grid points, and 50

vertical layers ranging from 4 m at the surface to 300 m near the bottom. The model

bathymetry was extracted from the gridded General Bathymetric Chart of the Ocean

(GEBCO), and the model was forced with 6-hourly atmospheric fields from the European

Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis. The eastern open

boundary conditions in the Gulf of Aden include velocities, temperature and velocity fields

and were obtained from the German contribution of the Estimating the Circulation and

Climate of the Ocean project (GECCO). After validating the model outputs with available

in situ and satellite remote sensing observations (Yao et al., 2014b,a), this ensemble

assimilation system was integrated to generate flow-fields conditioned for the month of

January 2006. From this data set, we selected the snapshots from January 19, January

22, and January 25, corresponding to the assimilated solution (ensemble mean over three
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days each).

Bathymetry and current functions were extracted from this data spatially with the

tri-cubic method also used in Albarakati et al. (2019). The current functions were also

interpolated linearly in time.

4.4. Case 3

In Case 3, we shift our focus to use time dependent current and a realistic OGCM

simulation field. First, we study a 2D case in the Gulf of Aden. This corresponds to

an AUV moving on the surface of the ocean. The selected region for the problem is

illustrated in Figure 7. The figure also shows the waypoints used for initialization and

the initialization paths.

4.4.1. Instance I

In this instance, the start and end point of the AUV are chosen so that the current is

mostly favorable.

4.4.2. Instance II

In this instance, the start and end point of the AUV are flipped so that the current is

mostly unfavorable.

4.5. Case 4

In Case 4, we study the same problem as in Case 3 but relax the sea surface constraint,

so the vehicle can also take advantage of diving.

4.5.1. Instance I

In this instance the start and end point of the AUV are again chosen so that the

current is mostly favorable.

4.5.2. Instance II

In this instance the start and end point of the AUV are again chosen so that the

current is mostly unfavorable.

Table 2 lists the parameters of Cases 3 and 4, including the values of the start and

end points of the AUV journey, details of the spatial domain, time horizon, and distance

between start and end point.
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Note that for Cases 3 and 4, the maximum mission duration specified in Table 2 is

approximately 6 days, and one would generally require that this falls with the time horizon

over which the operational ocean forecast can be considered reliable. Though this time

horizon may depend on a variety of factors, including resolution, quality of observations

used in assimilation, frequency of observations or measurements, as well as prevailing

dynamical features of the local circulation, with state-of-the-art models (Chassignet et al.,

2018) and suitable resolution, OGCMs may be generally anticipated to provide reliable

forecasts for horizons of 1-3 weeks, i.e. over time periods that are larger than Tmax.

5. Results

This section presents the results of the optimization experiments for the case studies

described above. The computational cost of the algorithms and the size of the models

are summarized in Table 3. Advanced visualization tools are used to analyze and amplify

optimization results. The discussion follows each case individually.

5.1. Case 1

The Pareto curve of the numerical solution of Case 1 is shown in Figure 3, which

also shows the Pareto curve of the analytical solution of this problem. To estimate the

latter, we first note that because we have a uniform favorable current along the straight

line from the starting point to destination, and because we are minimizing energy and

time, all optimal paths are straight lines. Intuitively, the only reason the AUV would

veer off from a straight path will be to reach the target with a time delay, but the same

can be achieved by decreasing the velocity while simultaneously consuming less energy.

Hence straight paths are always optimum. In addition, because the energy is a quadratic

functional of the relative velocity, vx, we assume that vx is steady1, and thus estimate the

energy, E(T ), corresponding to travel time, T , simply according to:

E(T ) = v2
xT.

The travel time T may be expressed according to:

T =
Dx0→xf

vx + uc

1vx is assumed constant only in this analysis, in the remaining problems it is a variable.
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where uc = 1 is the current velocity, and Dx0→xf is the distance between the starting

point and the target. Consequently, for the present 1D example, we have:

E(T ) =

(
Dx0→xf

T
− uc

)2

T,

with T in the range

Dx0→xf

uc + vmax

≤ T ≤ Dx0→xf

uc − vmax

, with uc − vmax > 0,

where vmax is the maximum AUV velocity. For the parameters specified in Section 4.1

and Table 1, the estimates above indicate that there is a zero energy solution around time

80, which is the time it takes the current to transport the vehicle from its starting point

to the target. For shorter or longer travel times, the vehicle has to spend energy to either

speed up or slow down. This also means, that before time 54 and after time 160 there are

no feasible solutions.

Figure 3 shows that the numerical results are in close agreement with the analytical

solution, in the entire range of feasible travel times. This demonstrates that, in the present

case involving a convex problem, the algorithm yields the global optima.

5.2. Case 2

In this case we consider two instances.

5.2.1. Instance I

In Instance I, a favorable current field is considered which has vertical shear as given

by Equation 8. The Pareto curve of the numerical solution is shown in Figure 4a, and

the paths for a few sampled points on the Pareto curve in Figure 5. Note that as the

travel time increases from its minimum value, the energy spend monotonically decreases,

and vanishes at tf = 87. For this travel time, the AUV does not consume energy, as the

current transports to its destination. Also note that for travel times ranging from the

minimum to tf = 87, the trajectories correspond to a straight line path, for which energy

consumption increases as travel time decreases.

For travel times tf > 87, the AUV may oppose the favorable current and follow a

straight line to the target, which requires more energy. Alternatively, the AUV can dive

towards regions of weaker current, which will increase the travel time without requiring
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consuming energy to fight the favorable current. Hence, as we increase time past the value

tf = 87, the vehicle diverts from the straight line path and the deviation increases as the

travel time increases.

5.2.2. Instance II

Instance II is designed by simply switching the starting point and the target of the

AUV journey. Because of this, the current is now adverse, with the strongest adverse

effect occurring along the straight path joining the starting point and the target. The

Pareto curve for the numerical solution of this problem is given in Figure 4b. Figure 6

presents the paths for a few sampled points on the Pareto curve. Notice that since we

are minimizing both time and energy, the optimum path for the vehicle would always

avoid regions of strong adverse current. In this instance, this corresponds to diving lower

depth. As can be seen in Figure 6, as the travel time increases, the AUV dives to greater

depths to reach a region of weak adverse currents. In fact, almost all the initial energy

consumed by the AUV is used to move away from the region of strong adverse current,

even if it means moving away from the target. Notice from Figure 4b that as the travel

time increases from its minimum value, the energy first drops rapidly, but then exhibits

milder decay as the travel time becomes larger. This is consistent with the fact that in

this case adverse current intensity drops exponentially with depth.

5.3. Case 3

In Cases 3 and 4, the domain in which the AUV is allowed to navigate is a region

located in the Gulf of Aden; see Figure 7. In both cases, the starting point and target are

at the ocean surface. In Case 3, the motion of the AUV is restricted to the ocean surface;

this restriction is relaxed in Case 4.

An OGCM simulation for a two-week period starting 19 January, 2006 is used to de-

scribe the unsteady ocean current. As illustrated in Figure 8, the flow is characterized by

strong eddy variability (Yao and Hoteit, 2016). This flow enables us to test the perfor-

mance of the solution algorithm in conditions involving significant spatial and temporal

ocean current variability.

5.3.1. Instance I

In this first instance, for most of its journey the AUV navigates in a favorable current,

except for a strong eddy close to the target region (see Figure 9). The strength of this
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eddy decreases with time, and the current magnitude drops from around 1.56 m/s to

around 0.7 m/s, over the period 19 January 2006 to 25 January, 2006 (Figures 9a–9d)

An interesting point to notice is the slight dip in the paths right before the AUV

reaches the vortex region (marked with A in Figure 9b). This dip is explained by several

factors, namely a) the opposite directions of the current on the left and right sides of the

region marked with A; b) the low relative velocities in the trajectories with lower energy

consumption; but also c) as a response of the trajectory planning to the transient strong

current of the vortex region. Note that along the straight line path from the starting

point to the destination, there are strong currents at earlier times, see Figure 9a, and

at later times, see Figure 9d, with a time window with weaker currents between the 42

hours and 98 hours, approximately. The trajectory obtained for the minimum travel

time reaches the vortex after strong currents have passed, see Figure 9b. Whereas, the

trajectories obtained with higher travel times and lower energy consumption arrive later

to the vortex region, taking advantage of the time window with weaker currents, see

Figure 9c. However, because of the lower relative velocity of the AUV, the vortex current

still induces the steer of the AUV resulting in the dip of the path.

Figure 9e shows that in the trajectory obtained with the minimum travel time, the

magnitude of the relative velocity of the AUV is at the maximum value during all the

travel time. Towards the end of the journey (around 42 hrs), when the AUV arrives at

the vortex, the magnitude of the current velocity becomes higher, but it does not add

much to the magnitude of the total velocity. These values of the magnitude of the total

velocity mean that the AUV goes through the strong vortex almost perpendicularly, see

Figures 9b and 9e.

The trajectory obtained with the minimum energy consumption has a low magnitude of

the relative velocity and a lower magnitude of the total velocity, see Figures 9f, compared

with the minimum travel time solution. However, when the AUV reaches the vortex, it

almost glides to the destination taking advantage of the vortex current. This gliding effect

is observed through the analysis of the magnitude of the total velocity, which increases

substantially when the vehicle reaches the currents of the vortex, see Figures 9c, 9d and

9f.

A composite animation of Pareto-optimal trajectories, including the minimum time

and minimum energy solutions, and surface current is made available in the supplementary
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material.

5.3.2. Instance II

Case 3 Instance II is defined by interchanging starting point and destination Case 3

Instance I. This interchange makes the current along the straight line between these two

points mostly unfavorable, which is translated into a higher minimum travel time in

this case, 84 h, compared with 58 h in Instance I. In addition, the paths obtained for the

different travel times and energy consumption are highly influenced by the strong currents

in the vortex, see Figure 10. The paths shown in Figure 10, start by the AUV moving to

the left and down and then right taking advantage of the central current, see Figure 10a,

after exiting the vortex, the AUVs adapt their path to take advantage of non-adverse

currents to approach and arrive to the destination from the bottom, see Figure 10b.

Figure 10c, shows that in the trajectory obtained with the minimum travel time, the

magnitude of the relative velocity of the AUV is mostly at the maximum value, but the

magnitude of the total velocity drops below the relative velocity due to adverse currents.

The trajectory corresponding to the minimum energy consumption exhibits higher and

more volatile magnitudes of the relative velocity of the AUV than observed in Instance I.

For both instances, the energy consumptions for the travel times equal to 120 h and 145 h

show a considerable difference, 12 and 5 in Instance I versus 49 and 38 in instance II.

These energy consumption differences result also from the adverse currents in Instance II.

A composite animation of Pareto optimal trajectories, including the minimum time and

minimum energy solutions, and of the surface current is also given in the supplementary

material.

The Pareto curves for Case 3, Instances I and II, are presented in Figure 11. For

Instance I the Pareto curves for all waypoints are similar and are almost monotonic, and

for Instance II, there are minor differences between Pareto curves for different waypoints.

As mentioned before, Instance I exhibits a smaller minimum travel time and for the same

travel times lower levels of energy consumed.

5.4. Case 4

Case 4 is a 3D case in the Gulf of Aden region, where the AUV can travel at any

depth between the sea surface and the sea floor. We have tested two instances for this

case, both corresponding directly to the instances of Case 3 (Section 4.5), where the AUV
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was constrained to the sea surface.

5.4.1. Instance I

Modeling the ability of the AUV to exploit the depth dimension has an impact on the

size and complexity of the optimization problems, as well as on the results. Although it

is difficult to make definitive claims about the global optimality of a trajectory planning

solution in the presence of nonlinear time varying current fields, considering the depth

dimension allows the exploration of regions of more favorable currents.

The trajectories for the minimum time and minimum energy consumption are shown

in Figures 12 and 13, respectively. The trajectory obtained for the minimum travel

time shows a top view path similar to the one in Case 3, Instance I, but in this case the

trajectory exhibits substantial depth variation; see Figure 14a for a comparison. However,

the travel time in Case 4 is slightly greater than in Case 3, 60 hours versus 58 hours.

The minimum energy consumption solution also leads to a trajectory with depth

variations, but the results show similar trends as in Case 3, namely in terms of the

top view path, travel time, and energy consumption. See Figure 14b for a comparison.

Animations of the AUV trajectory and the ocean current for the minimum time and

minimum energy solutions for Case 4 Instance I are provided in the supplementary ma-

terial.

5.4.2. Instance II

This instance is the mirror version of Case 4, Instance I, where we have swapped the

starting point and destination of the AUV journey. The trajectories for the minimum

time and minimum energy consumption are shown in Figures 15 and 16, respectively.

In this instance, we see a clear impact of the depth dimension in the trajectory results

and Pareto-optimal solutions. Given the locations of the starting point and destination,

and the adverse, time and depth varying, currents at three locations: a) the surface; b)

along the straight line between starting point and destination; and c) along the path

from Case 3, Instance II; the trajectories are completely distinct from Case 3 and Case 4,

Instance I. The trajectories are different in terms of path, travel time, energy consumption,

and depth. In this instance, the results show that the proposed optimization framework

is able to find solutions that take advantage of the degrees of freedom available.

In the minimum time solution, we observe a different top view path, lower travel times,
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and lower energy consumption when comparing with the solution from Case 3, Instance

II. Specifically, the top view path is distinct from the top view path from Case 3, Instance

II; see Figure 14c for a comparison. The travel time is 62 hours in Case 4 versus 84 hours

in Case 3, and the energy consumption in Case 4 is 60 versus 82 in Case 3. The depth

of the trajectory is below 500 m most of the travel time, which is lower than in Case 4,

Instance I, to avoid adverse currents.

In the minimum energy consumption solution, we observe a different top view path,

and a lower energy consumption comparing to the same travel time of Case 3, Instance

II. The top view path reported in Case 4 is distinct from that from Case 3; see Figure 14d

for a comparison. The energy consumption in Case 4 is 23 versus 38 in Case 3.

Animations of the AUV trajectory and the ocean current for the minimum time and

minimum energy solutions for Case 4 Instance II are provided in the supplementary ma-

terial.

Figures 17a and 17b, show the Pareto curves for Case 4 Instances I and II, respectively.

We Observe that whereas the Pareto curves from different waypoints of Case 3 (Figure 11)

are all similar, adding waypoints has a significant effect on the solutions in Case 4. This

is because with the addition of the depth axis, the size of the domain increases and many

local minima appear. Also notice that the solution of the case of no waypoint is the worst

amongst all solutions. We conclude that adding waypoints is essential in 3D scenarios to

obtain reasonable solutions.

Figure 18a compares the best solutions (minimum energy across all waypoints for each

time) for the 2D and 3D cases. Theoretically, the 3D solutions are equal or less than the

2D solutions for all values of time, since the 2D domain is a subset of the 3D domain.

However, the 3D solutions are slightly worse than the 2D solutions. We ascribe this to

the fact that with favorable currents the 2D solutions at the surface are good solutions,

and thus, the third dimension does not improve the solution; and to the complexity of

the problem and the existence of local minima in the 3D case.

In contrast, comparing Instance II of Case 3 and Case 4, see Figure 18b, the 3D

solutions are much better than the 2D solutions, as discussed above. This is because the

current is mostly adverse, so the optimization framework can find better solutions taking

advantage of the depth axis to move the trajectory to regions of low adverse currents in

the 3D case.

24



6. Conclusions

We developed a new approach to determine time-energy optimal trajectories using

realistic, 3D, time-dependent, OGCM data. In the proposed NLP approach, we first solve

the original problem for the minimum travel time without the energy objective function

and constraints; and then for each travel time we minimize the energy consumption.

Parallelization and diversified initialization strategies are incorporated in order to reach

solutions efficiently and to avoid local minima. The overall approach enables to determine

the time-energy Pareto-optimal curve for complex problems.

The proposed framework was initially tested using idealized scenarios involving steady

currents. This includes a 1D example admitting a closed form solution, as well as a 2D

example involving a current field with a vertical shear. The results show that even for

small cases, non-monotonic Pareto-optimal curves can be obtained depending on the

maximum magnitude of the velocity of the AUV and the current, and relative position of

the starting point and destination and direction of the flow.

The method was then applied to realistic 2D and 3D scenarios using OGCM simula-

tions of the oceanic circulation in the Gulf of Aden. Results of the numerical experiments

show the capability of the method to generate Pareto-optimal solutions in a broad range

of travel times. Detailed visualization experiments are used to examine the predicted

Pareto-optimal solutions. These visualizations illustrate how the AUV trajectory (path,

velocity, and depth) adapts to the 3D structure of the current field, as well as its unsteadi-

ness, to minimize travel time and energy consumption. The specific case of navigating

against surface currents with starting point and destination at the surface highlights the

capability of the optimization approach to find better solutions in a 3D structure than

in a 2D. In this case, the trajectories take advantage of the third dimension to find more

favorable currents and minimize travel time and energy consumption. The Pareto-optimal

curves for the realistic scenarios are approximately monotonic due to the maximum time

of interest considered, but also due to the characteristics of the current and velocity of

the AUV considered.

Future work will focus on extending the present framework along different directions.

This includes generalizing the formulation to account for forecast uncertainty, and ac-

cordingly implement risk-aware planning. A particularly attractive approach consists in

exploiting ensemble-based methods (Wang et al., 2016; ?; ?; ?), which provide a nature
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means to capitalize information afforded by ensemble OGCM forecasts. Other avenues

that are worthwhile exploring include fast online replanning following data assimilation

and forecast updates, as well as incorporation of more elaborate objective functions par-

ticularly to include specific mission goals.
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Chassignet, E. P., Pascual, A., Tintoré, J., Verron, J. (Eds.), aug 2018. New Frontiers in

Operational Oceanography. GODAE OceanView.

26



Crimmins, D. M., Patty, C. T., Beliard, M. A., Baker, J., Jalbert, J. C., Komerska, R. J.,

Chappell, S. G., Blidberg, D. R., 2006. Long-endurance test results of the solar-powered

AUV system. In: OCEANS 2006. pp. 1–5.
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Seasonal overturning circulation in the Red Sea: Part 1. Model validation and summer

circulation. Journal of Geophysical Research: Oceans 119, 2238–2262.

Yilmaz, N. K., Evangelinos, C., Lermusiaux, P. F. J., Patrikalakis, N. M., 2008. Path

planning of autonomous underwater vehicles for adaptive sampling using mixed integer

linear programming. IEEE Journal of Oceanic Engineering 33 (4), 522–537.

Yuh, J., 2000. Design and control of autonomous underwater robots: A survey. Au-

tonomous Robots 8 (1), 7–24.

30



Table 1: Domain size and parameters for Case 1 and Case 2.

Parameters Values Units

Domain χ
(xmin, zmin) (0, 0) m
(xmax, zmax) (100, 50) m

Dx0→xf 80 m
∆t 1 s

Case 1

x0 (10, 50) m
xf (90, 50) m
vmax 0.5 m/s
amax 0.5 m/s2

ux(z, t) 1 m/s
Tmax 160 s

Case2

Instance I

x0 (10, 50) m
xf (90, 50) m
vmax 1 m/s
amax 1 m/s2

ux(z, t) exp(−(z(t)− 50)2/100) m/s
Tmax 300 s

Instance II

x0 (90, 50) m
xf (10, 50) m
vmax 1 m/s
amax 1 m/s2

ux(z, t) exp(−(z(t)− 50)2/100) m/s
Tmax 1500 s

Maximum time set† Energy optimization step 100 s s

† - Maximum time set per iteration in the solution procedure described in Section 3.

31



Table 2: Domain size and parameters for Case 3 and Case 4.

Parameters Values Units

Domain χ
(xmin, zmin) (1466090, 117500,−900) m

(xmax, zmax) (1766880, 248750,−2) m

Dx0→xf 234931.3 m
∆t 3600 s

vmax 1 m/s
amax 1 m/s2

vmaxz 0.15 m/s
amaxz 0.15 m/s2

umax 1.53 m/s
Tmax 145 h

Case 3
Instance I

x0 (1728207, 213518) m
xf (1499340, 160484) m

Instance II
x0 (1499340, 160484) m
xf (1728207, 213518) m

Case 4
Instance I

x0 (1728207, 213518,−2) m
xf (1499340, 160484,−2) m

Instance II
x0 (1499340, 160484,−2) m
xf (1728207, 213518,−2) m

Maximum time set† energy optimization step 300 s
† - Maximum time set per iteration in the solution procedure described in Section 3.

Table 3: Size of the models and computational results

minimum time minimum energy at tmax
average over
all problems

# VAR # EQ T (s) # VAR # EQ T (s)
Case 1 751 747 30 4661 4657 156

Case 2
Instance I 813 809 36 21013 21009 185
Instance II 813 809 32 101513 101609 264

Case 3
Instance I 762 872 795 1893 2177 258
Instance II 762 872 890 1893 2177 289

Case 4
Instance I 827 947 734 1971 2267 274
Instance II 827 947 918 1971 2267 298

#VAR: number of variables; #EQ: number of equations; T : wall clock time; T: average
wall clock time per energy consumption minimization step. Note that the number of

equations and variables in Case 2 is due to the larger final time (cf. Tmax in Table 1).
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Figure 1: Illustrative example with mmax = 3 that shows that for tf,0 only decreasing levels of energy
are considered to solve Problem (7); the minimum energy is found with m = −5. For tf,1, the procedure
starts with M1|m ∈ {−1; 0, 1} to solve Problem (7) and then it moves to M2|m ∈ {−2; −3, −4}; the
minimum energy is found with m = −3. For tf,2, the procedure starts with M1|m ∈ {−1; 0, 1} to solve
Problem (7) and then it moves to M2|m ∈ {−2; −3, −4}; the minimum energy is found with m = −1,
because no feasible solution was found in M2 . For tf,3, the procedure starts with M1|m ∈ {−1; 0, 1}
to solve Problem (7) and then it moves to M2|m ∈ {2; 3, 4}; the minimum energy is found with m = 4.
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Figure 2: Diversification strategy to find additional Pareto-optimal solutions by using waypoints to find
minimum time solutions. Note that the waypoints are not considered to solve Problem (7).

34



(s)
50 70 90 110 130 150

time (h)

0

10

20

30

40

50

60

70

80

90

en
er

gy
 (m

2 /s
)

nwp
wp1
wp2
wp3
wp4

50 70 90 110 130 150
time (h)

0

10

20

30

40

50

60

70

80

90

en
er

gy
 (m

2 /s
)

nwp
wp1
wp2
wp3
wp4

(a) Instance I.

50 60 70 80 90 100 110 120 130 140 150
time (h)

0

10

20

30

40

50

60

70

80

90

en
er

gy
 (m

2 /s
)

nwp
wp1
wp2
wp3
wp4

(b) Instance II.

Figure 10: Time-energy Pareto-optimal curves for Case 3. Curves are generated for di↵erent initializa-
tions, as indicated.

31

50 70 90 110 130 150
time (h)

0

10

20

30

40

50

60

70

80

90
en

er
gy

 (m
2 /s

)
nwp
wp1
wp2
wp3
wp4

(a) Instance I.

50 60 70 80 90 100 110 120 130 140 150
time (h)

0

10

20

30

40

50

60

70

80

90

en
er

gy
 (m

2 /s
)

nwp
wp1
wp2
wp3
wp4

(b) Instance II.

Figure 10: Time-energy Pareto-optimal curves for Case 3. Curves are generated for di↵erent initializa-
tions, as indicated.
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Figure 10: Time-energy Pareto-optimal curves for Case 3. Curves are generated for di↵erent initializa-
tions, as indicated.

(a) Time = 4 h. (b) Time = 51 h.

(c) Velocity and depth profile.

Figure 11: Minimum time solution for Case 4, Instance I. (a) - (b) - Each subfigure shows two views: 1) a
top view of the vehicle path over instantaneous distributions of the current at the trajectory depth; and
2) a side view of the path. (c) - Velocity profile along the vehicle’s path. The path of the vehicle as the
flow are color coded with their velocity magnitudes. Depth has been scaled by 30. Hours counted from
19 January 2006.
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Figure 3: Time-energy Pareto-optimal curve plot for case 1. Plotted are numerical and analytical solutions
as indicated. The minimum time solution is indicated with (�).
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Figure 10: Time-energy Pareto-optimal curves for Case 3. Curves are generated for di↵erent initializa-
tions, as indicated.
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tions, as indicated.

(a) Time = 4 h. (b) Time = 51 h.

(c) Velocity and depth profile.

Figure 11: Minimum time solution for Case 4, Instance I. (a) - (b) - Each subfigure shows two views: 1) a
top view of the vehicle path over instantaneous distributions of the current at the trajectory depth; and
2) a side view of the path. (c) - Velocity profile along the vehicle’s path. The path of the vehicle as the
flow are color coded with their velocity magnitudes. Depth has been scaled by 30. Hours counted from
19 January 2006.
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Figure 10: Time-energy Pareto-optimal curves for Case 3. Curves are generated for di↵erent initializa-
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tions, as indicated.

(a) Time = 4 h. (b) Time = 51 h.

(c) Velocity and depth profile.

Figure 11: Minimum time solution for Case 4, Instance I. (a) - (b) - Each subfigure shows two views: 1) a
top view of the vehicle path over instantaneous distributions of the current at the trajectory depth; and
2) a side view of the path. (c) - Velocity profile along the vehicle’s path. The path of the vehicle as the
flow are color coded with their velocity magnitudes. Depth has been scaled by 30. Hours counted from
19 January 2006.
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Figure 5: Case 2; Instance I. Left: Optimal path in the x-z plane for different values of travel time
and energy. The color contours depict the current velocity, and the central large gray arrow shows the
direction of the current. The starting point is indicated by a red circle ( ) and the target destination
is specified in a green circle ( ). The number on each path corresponds to the time-energy solution on
the Pareto-optimal curve in Figure 4a. Right: vertical profile for the current velocity.
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Figure 6: Case 2; Instance II. Left: Optimal path in the x-z plane for different values of travel time
and energy. The color contours depict the current velocity, and the central large gray arrow shows the
direction of the current. The starting point is indicated by a red circle ( ) and the target destination
is specified in a green circle ( ). The number on each path corresponds to the time-energy solution on
the Pareto-optimal curve in Figure 4b. Right: vertical profile for the current velocity.
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Figure 7: Gulf of Aden region. The rectangle indicates the problem domain (coordinates are in meters
from origin of simulation domain) for Case 3 and Case 4, and the color contours indicate bathymetry.
The red ( ) and green ( ) circles indicate the starting and end points for Instance I. (This is reversed
in Instance II).The straight yellow curve is the no-current initialization without waypoint. The remaining
curves are no-current initializations corresponding to different waypoints ( ).

37



(a) Time = 0 days; Depth = -2m (b) Time = 3 days; Depth = -2m (c) Time = 6 days; Depth = -2m

(d) Time = 0 days; Depth = -400m (e) Time = 3 days; Depth = -400m (f) Time = 6 days; Depth = -400m

Figure 8: Snapshots of the current field at different times and depths, as indicated (days counted from 19
January 2006). Arrows depict current velocity, colors indicate surface current magnitude, the rectangle
indicates the problem domain (cf. Figure 7).
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(c) Time = 98 h. (d) Time = 134 h.

(e) Minimum time solution (labeled 1 in Figure 9a). (f) Minimum energy solution (labeled 4 in Figure 9a).

Figure 9: Case 3 Instance I. (a) - (d) - instantaneous distributions of the surface current at different
times and paths with different travel times, as indicated (hours counted from 19 January 2006). (e) - (f)
- velocity profiles of the AUV for the minimum time and minimum energy solutions.
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(a) Time = 5 h. (b) Time = 117 h.

(c) minimum time solution (labeled 1 in Figure 10a). (d) minimum energy solution (labeled 4 in Figure 10a).

Figure 10: Case 3 Instance II. (a) - (b) - instantaneous distributions of the surface current at different
times and paths with different travel times, as indicated (hours counted from 19 January 2006). (c) - (d)
- velocity profiles of the AUV for the minimum time and minimum energy solutions.
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(a) Instance I.
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(b) Instance II.

Figure 10: Time-energy Pareto-optimal curves for Case 3. Curves are generated for di↵erent initializa-
tions, as indicated.
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(a) Instance I.
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(b) Instance II.

Figure 10: Time-energy Pareto-optimal curves for Case 3. Curves are generated for di↵erent initializa-
tions, as indicated.
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Figure 11: Time-energy Pareto-optimal curves for Case 3. Curves are generated for different initializa-
tions, as indicated.

(a) Time = 4 h. (b) Time = 51 h.

(c) Velocity and depth profile.

Figure 12: Minimum time solution for Case 4, Instance I. (a) - (b) - Each subfigure shows two views: 1) a
top view of the vehicle path over instantaneous distributions of the current at the trajectory depth; and
2) a side view of the path. (c) - Velocity profile along the vehicle’s path. The path of the vehicle as the
flow are color coded with their velocity magnitudes. Depth has been scaled by 30. Hours counted from
19 January 2006.

41



(a) Time = 8 h. (b) Time = 42 h.

(c) Time = 98 h. (d) Time = 134 h.

(e) Velocity and depth profile.

Figure 13: Minimum energy solution for Case 4, Instance I. (a) - (d) - Each subfigure shows two views:
1) a top view of the vehicle path over instantaneous distributions of the current at the trajectory depth;
and 2) a side view of the path. (e)- Velocity profile along the vehicle’s path. The path of the vehicle as
the flow are color coded with their velocity magnitudes. Depth has been scaled by 30. Hours counted
from 19 January 2006.

42



(a) Instance I – minimum time (b) Instance I – minimum energy

(c) Instance II – minimum time (d) Instance II – minimum energy

Figure 14: Optimal paths for Case 3 and Case 4, colored using the relative velocity of the AUV, as
indicated. Each subfigure shows top and vertical views.
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(a) Time = 4 h. (b) Time = 34 h.

(c) Velocity and depth profile.

Figure 15: Minimum time solution for Case 4, Instance II. (a) -(b) - Each subfigure shows two views:
1) a top view of the vehicle path over instantaneous distributions of the current at the trajectory depth;
and 2) a side view of the path. (c)- Velocity profile along the vehicle’s path. The path of the vehicle as
the flow are color coded with their velocity magnitudes. Depth has been scaled by 30. Hours counted
from 19 January 2006.
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(a) Time = 4 h. (b) Time = 118 h.

(c) Velocity and depth profile.

Figure 16: Minimum energy solution for Case 4, Instance II. (a) - (b) - Each subfigure shows two views:
1) a top view of the vehicle path over instantaneous distributions of the current at the trajectory depth;
and 2) a side view of the path. (c)- Velocity profile along the vehicle’s path. The path of the vehicle as
the flow are color coded with their velocity magnitudes. Depth has been scaled by 30. Hours counted
from 19 January 2006.

(a) Instance I. (b) Instance II.

Figure 17: Time-energy Pareto-optimal curves for Case 4. Curves are generated for different initializa-
tions, as indicated (hours counted from 19 January 2006).
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(a) Instance I. (b) Instance II.

Figure 18: Comparison of the time-energy Pareto-optimal curves for Case 3 and Case 4.
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