Structure of NaF–TeO2 glasses and glass-ceramics

E.F. El Agammya, H. Doweidara, K. El-Egilila, R. Ramadanb, Mariusz Jaremko,c Abdul-Hamid Emwasd

aGlass Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
bMicrowave and Dielectrics Department, Physics Division, National Research Centre, Dokki, 12311, Cairo, Egypt
cKing Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), 23955-6900, Thuwal, Saudi Arabia
dKing Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia

ARTICLE INFO

Keywords:
NaF-TeO2 glasses
Raman and FTIR techniques
Amorphous and crystalline NaF
Concentration of structural species

ABSTRACT

The structure of NaF–TeO2 glasses and glass-ceramics has been studied by XRD, TEM, SEM, Raman and FTIR techniques. The results suggest that, for NaF ≤10 mol%, the entire NaF content enters the structure to convert TeO4 units into TeO3/2F and Na+[TeO3]+ units. It has also been shown that NaF partially forms amorphous and/or crystalline phases for higher NaF content, where the relative concentration of each phase depends on the NaF content. SEM images show agglomerates of different sizes, which are discrete and spread within the structure. XRD revealed formation of crystalline Te2O3F2 for NaF ≤50 mol%, and a dominant phase of crystalline NaF for NaF > 50 mol%. Raman and FTIR spectra have been analyzed to calculate the concentrations of the various structural units in glasses and glass-ceramics.

1. Introduction

Tellurite glasses are distinguished by high values of refractive index (usually larger than 2.0), wide infrared transmittance (expanded up to 6 μm), and good chemical durability [1–3]. As optical materials, oxyfluoride tellurite glass-ceramics have certain advantages, such as low phonon energy. The highest phonon energy in tellurite glasses (equivalent to ~ 750 cm−1) is quite lower than that in borate-phosphate glasses (~1000 cm−1) [1,4]. They also have high optical transmittance, low melting temperature and high up-conversion efficiency [2,5–7].

Without a modifier and/or other types of glass formers, tellurium oxide cannot form a glass under normal conditions [8–12]. It is indicated that [13,14] TeO2 glass consists of TeO4 trigonal bipyramids (tbp’s), with a lone pair of electrons occupying one of the equatorial sites. The connection between most of Te atoms is through vertices by linkage of Te–O–O–Te. It is stated that [9,15,16] a distorted TeO4 tbp is the principal structural unit in tellurite glasses with high TeO2-content. Increasing the content of modifier oxide leads to an increase in the fraction of TeO4 trigonal pyramids. By using different techniques [17–19] it is deduced that with adding modifiers in tellurite glasses, there are regrouped tetrahedra besides to the tbp’s in which the equatorial and axial sites of each tellurium atom has three and one oxygen atoms (TeO3+1 units, respectively).

Tellurite glass-ceramics containing nanocrystals were obtained upon preparing oxyfluoride tellurite glass-ceramics [20–22]. Because of the easy devitrification of tellurite glasses, oxyfluoride tellurite glass-ceramics cannot attain a high degree of transparency. Several studies on the effects of replacing oxygen ions by fluorine ions were reported for tellurite glasses. In XZnF2-(85 – X)TeO2-12PbO-3Nb2O5 glasses (X = 0–40 mol%) [23] it has been found that addition of ZnF2 allows substitution of a Te–F for Te–O binding. Because F− ion has almost the same radius as O2− ion, and its electronegativity is higher there is a high probability that oxygen ions will be replaced by fluorine ions. Interstitial positions could also be occupied by F− ions. In these glasses TeO3, TeO3+1 and/or Te(O,F)3 and Te(O,F)3+1 units are formed at the expense of TeO4 units upon substituting ZnF2 for TeO2.

Fluorine ions also contribute to modification of borate glasses in a similar manner. Doweidar et al. [24–27] pointed out that F− ions mainly tend to modify the tetrahedral borate units in MF2–B2O3 glasses (M = Ca, Ba, Cd and Pb). M2+[BO3/2F]− units can be formed in the borate network due to incorporation of MF2. Formation of Na+[BO3–F]− and Me6+[BO3–F]− oxyfluoride structural units was proposed by Sokolov et al. [28] in MF2–Na3B2O7 glasses where (Me = Mg, Ca, Sr and Ba). Recently, El Agammy et al. [29] proposed formation of Pb5+[TeO3+1]+ and TeO3-2F units in PbF2–TeO2 glasses and glass-ceramics through modifying TeO4 tbp’s by F− ions.

The work reported here investigates the structure of NaF–TeO2...
glasses and glass-ceramics, by using XRD, SEM, TEM, Raman and IR spectroscopy. Its main objective is to explore the type and concentration of structural units as a function of NaF content.

2. Experimental

As start materials with high purity (99%, Sigma-Aldrich), reagent grade of TeO₂ and NaF were used to prepare glasses and glass-ceramics with composition \(\text{XNaF} \cdot (100-\text{X})\text{TeO}_2 \) (0 \(\leq X \) \(\leq 75 \text{ mol\%} \)). After thorough mixing, the components were placed and melted in silica crucibles in an electric furnace, under normal atmospheric conditions. Batches were melted for 30 min, at 800–850 °C, depending on their respective compositions. The crucible was swirled repeatedly until the melt became visually homogeneous. Glass disks were obtained at room temperature after the melt was dropped on a steel plate and compressed by another one. Finally, a desiccator was used to keep the obtained samples until required.

X-ray diffractometry (Bruker AXS D8 Advance) was used to record X-ray diffraction patterns (XRD) of the prepared glass and glass-ceramic samples, using a Cu Kα X-ray tube radiation (\(\lambda = 1.5406 \text{ Å} \)) with a Super Speed position sensitive detector and a Gobel Mirror. The range of the 2-theta scale was 4°–70° with 0.4 s as a dwell time.

A JEOL–JEM–2100 was used to carry out transmission electron microscopy (TEM) and obtain electron diffraction patterns (EDP), at an electron acceleration voltage of 200 kV. The microstructure and surface modification of the glass and glass-ceramic samples were investigated using a scanning electron microscope (SEM) model JEOL–JSM–6510 LV, with magnification up 40,000 X, operating at 20 kV and attached with an energy dispersive X-ray (EDX) spectrometer. Gold was used as a coating material for SEM and TEM investigations.

Raman spectra were recorded for powder samples with Bruker dispersive Raman microscope (Senterra model). The range of wave-number is from 50 to 1200 cm\(^{-1}\). The data were recorded at intervals of 4.4 cm\(^{-1}\) with two scans for each sample. A He/Ne laser at 532 nm and power of 10 mW was used to excite the specimen.

The infrared absorption spectra were obtained at room temperature in the range 400–2000 cm\(^{-1}\) by a Fourier transform infrared spectrometer (Mattson 5000 FTIR Spectrometer) with a resolution of 2 cm\(^{-1}\). Transparent discs were made by subjecting portions of the mixture of 5 mg glass powder and 1 gm KBr to a load of 5 tons/cm\(^{2}\). IR absorption spectra were recorded for freshly prepared discs. The deconvolution technique has been used to analyze the IR spectra [30,31].

3. Results and discussion

3.1. X-ray diffraction and electron microscopy

Fig. 1 represents the XRD patterns of fused NaF, fused TeO₂ and \(\text{XNaF} \cdot (100-\text{X})\text{TeO}_2 \) glasses and glass-ceramics (10 \(\leq X \) \(\leq 75 \text{ mol\%} \)). The pattern of fused NaF has two principal sharp peaks at 2\(\theta \) = 38.8° and 56.06°, showing the crystalline nature of fused NaF. The pattern of fused TeO₂ exhibits many sharp peaks in the region 22°-66°. It is worth noting that, under normal conditions, tellurium oxide cannot form a glass without a modifier [11,12,32].

A broad diffraction hump in the range of 2\(\theta \) from 12° to 44°, can be observed for glasses and glass-ceramics with NaF \(\geq 10 \text{ mol\%} \). This is characteristic of the presence of amorphous matrix in the glasses and glass-ceramics. A sharp decrease is shown in the intensity of the three major diffraction peaks at 2\(\theta \) = 26.09°, 29.81° and 48.53° with the first addition of NaF (10 mol\%). These peaks are related to \(\alpha\)-TeO₂ crystalline phase (card 78-1713). The decrease in intensity of these peaks reflects a decrease in concentration of the TeO₄ tlp units. This might be accompanied by an increase in the concentration of TeO₃, TeO₃+1, and/or Te(O,F)₂ and Te(O,F)₃+1 units. Similar structural changes have been observed in previous separate studies on lead and zinc fluorotelurite glasses [29,33]. In the composition range (20 \(\leq X \) \(\leq 50 \text{ mol\%} \)) new diffraction peaks start appearing at (2\(\theta \) = 27.62° and 29.35°), which belong to crystalline phases of \(\text{Te}_2\text{O}_3\text{F}_2 \) (card 89-0619).

For glasses with 20 \(\leq X \) \(\leq 30 \text{ mol\%} \) the intensity of the peaks at 2\(\theta \) = 27.62° and 29.35°, increases with increasing NaF content, and then decreases for NaF \(\geq 30 \text{ mol\%} \). The decrease in intensity may be due to the decrease in quantity of TeO₂ available to form \(\text{Te}_2\text{O}_3\text{F}_2 \) crystal phase with increasing the NaF content.

For compositions with NaF \(> 50 \text{ mol\%} \), the intensity of the diffraction peaks at 2\(\theta \) = 38.77° and 56.2° increases with increasing NaF content. These peaks belong to the NaF crystalline phase (cards 89-2956, 89-3614, 73-1922 and 36-1455) and are identical in position to those of fused NaF. The evolution of these peaks, with increasing intensity, suggests formation of crystalline NaF in these glasses and glass-ceramics. In crystalline NaF, Na⁺ ions are octahedrally coordinated with F⁻ ions [34]. By using Scherrer's equation in XRD patterns, we found that the mean size of this crystalline phase was \(\sim 20.50 \text{ nm} \) at NaF = 65 mol\%. Therefore, for higher NaF content (\(> 50 \text{ mol\%} \)) it is assumed that most of NaF forms a crystalline phase from NaF₅ octahedral units. Recently, El Agamy et al. [29] stated that in \(\text{PbF}_2 \cdot (100-\text{X})\text{TeO}_2 \) glasses and glass-ceramics (0 \(\leq x \) \(\leq 90 \text{ mol\%} \)), for \(\text{PbF}_2 \geq 50 \text{ mol\%} \), amorphous and crystalline polyhedral units were formed, where \(\text{PbF}_2 \) forms cubic crystals. Also, Rojo et al. [35] indicated that, in \(\text{LiF} \cdot (100-\text{X})\text{TeO}_2 \) glasses with LiF \(> 50 \text{ mol\%} \), characteristic peaks of crystalline LiF were observed in the X-ray diffraction patterns.

Electron diffraction patterns in certain regions of the TEM micrographs show amorphous and crystalline phases (Fig. 2). Crystalline phases can be correlated with the XRD patterns in Fig. 1. In the composition range (20 \(\leq X \) \(\leq 50 \text{ mol\%} \)) the peaks shown in Fig. 1 are related to crystalline \(\text{Te}_2\text{O}_3\text{F}_2 \) phase. This phase appears at NaF \(= 30 \text{ mol\%} \) in transmission electron micrographs as dark regions spreading within the structure as in Fig. 2a.

The diffused circles in EDP patterns in Fig. 2a are characteristic of the amorphous matrix at NaF \(= 30 \text{ mol\%} \), which might be characteristic of a NaF–TeO₂ phase. Fig. 2b shows that for a higher concentration of NaF (65 mol\%) there is a crystalline phase. By comparing with Fig. 1, this phase might be NaF. It appears as dark regions in the TEM micrograph. The amorphous regions identified by EDP in Fig. 2b appear in TEM micrograph as gray particles. These particles are assumed to contain a large portion of the glassy NaF phase.

The morphology of the NaF–TeO₂ glasses and glass-ceramics was investigated using SEM. Before using SEM, some samples were etched in 5% HF solution for 10 min. Fig. 3 describes the microstructure of the glasses and glass-ceramics samples with NaF = 0, 10, 30, 50 and 65 mol\% after etching process.

Fig. 3a shows the SEM micrograph of fused TeO₂ (NaF = 0 mol\%). The general feature is the presence of discrete particles of different sizes, dispersed in a continuous matrix. On the basis of XRD pattern Fig. 1, these particles can be attributed to \(\alpha\)-TeO₂, the dominant crystalline phase for this composition. The base matrix in Fig. 3a may be formed of residual disordered TeO₂ phase that could not crystallize.

The morphology of the NaF–TeO₂ glasses and glass-ceramics was investigated using SEM. Before using SEM, some samples were etched in 5% HF solution for 10 min. Fig. 3 describes the microstructure of the glasses and glass-ceramics samples with NaF = 0, 10, 30, 50 and 65 mol\% after etching process.

Fig. 3a shows the SEM micrograph of fused TeO₂ (NaF = 0 mol\%). The general feature is the presence of discrete particles of different sizes, dispersed in a continuous matrix. On the basis of XRD pattern Fig. 1, these particles can be attributed to \(\alpha\)-TeO₂, the dominant crystalline phase for this composition. The base matrix in Fig. 3a may be formed of residual disordered TeO₂ phase that could not crystallize. Fig. 3b (NaF = 10 mol\%) shows the presence of small white grains dispersed on the surface and in the bulk of mostly rectangular rods of width \(\sim 50–70 \mu\text{m} \). At higher magnification, it appears that the white grains form agglomerates dispersed in a continuous matrix (the darker background base). By comparing with the related XRD pattern in Fig. 1, the dominant crystalline phase in this composition must be \(\alpha\)-TeO₂. Therefore, the grain-like aspect seen on the SEM micrographs is likely due to the presence of \(\alpha\)-TeO₂ phase, with a background base of glassy NaF–TeO₂ matrix. Fig. 1 shows that the XRD pattern of sample with NaF = 10 mol\% has the broadest hump in all samples which reveals that this sample contains the greatest fraction of the glassy phase through the system.

Condensed agglomerates are seen on the micrograph of the sample containing 30 mol\% NaF (Fig. 3c); they are different in shape from those in Fig. 3b. These agglomerates consist of clusters of different sizes.
As the XRD pattern in Fig. 1 indicates, the prevalent crystalline phase in this composition is Te₃O₃F₂.

The micrograph of the sample with 50 mol% NaF (Fig. 3d) shows the presence of two types of precipitates: micro-rods and platelets. Based on the XRD patterns (Fig. 1), the crystalline phases found in this composition are NaF and Te₂O₃F₂. By comparing Fig. 3d with Fig. 3c, it can be assumed that the micro-rods in Fig. 3d are developed from the agglomerates appearing in Fig. 3c, i.e. these rods form the Te₂O₃F₂ crystalline phase. It follows that the platelets in Fig. 3d are the basis of crystalline NaF phase. According to Fig. 1, the XRD patterns of samples with NaF > 50 mol% are dominated by peaks of crystalline NaF. Therefore, it is supposed that in sample with X = 65 mol%, NaF is present in the glass-ceramic matrix in the form of amorphous and crystalline phases, as observed by SEM (Fig. 3e). Fig. 3e shows white agglomerates, assumed to be crystalline NaF developed from the platelets in Fig. 3d, in the structure of glass-ceramic. These agglomerates are discrete and spread out within the structure. It is expected that the fraction and degree of crystallinity increase with increasing NaF content. XRD patterns in Fig. 1 show that when the content of NaF in the samples with NaF > 50 mol% increases, the intensity of the peaks related to crystalline NaF increases. Fig. 4a shows higher magnification of the agglomerates of crystalline NaF phase in the sample containing 65 mol% NaF without etching, whereas the agglomerates have spherical form. They are discrete, separated and can be observed in samples with and without etching. The appearance of these agglomerates in samples, before (Fig. 4a) and after (Fig. 3e) etching, reveals that the etching process is useful to get more clarification of the formed phases without other influence on the structure. By using ImageJ software program in SEM micrographs of the sample 65 mol% NaF (Fig. 3e) it is found that the mean size of particles formed in this sample is ~ (21.52 ± 12) nm. The distribution of the particle size has a maximum in the region from 10 to 20 nm and represents ~50% of the total distribution as shown in Fig. 4b. EDX results for different regions of the sample with 65 mol% NaF (Fig. 5), as an example, reveal that only Na, F, Te and O elements are observed. This indicates that the sample has no contamination from the crucible.

3.2. Raman spectra

Raman [14] and NMR [36] spectroscopies revealed the formation of a three-dimensional network of paratellurite α-TeO₂. The basic building unit is TeO₄ tpb, sharing vertices and having just only Te=O=O–Te linkages. Further, pure TeO₂ glass is built up of distorted TeO₂ tpb units. It has been confirmed by many reports [37,38] on Raman scattering spectra that increasing the content of alkali- and/or alkaline-earth oxides generates a gradual change of the structural unit of TeO₂-based glasses, from an asymmetric TeO₄ tpb to a TeO₃ trigonal pyramid (tp) through TeO₃₊₁ polyhedra. Tatat et al. [39] showed that, for a binary CdF₂–TeO₂ glass system, with compositions below 20 mol% CdF₂, the transformation rate of TeO₄ to TeO₃₊₁ units is constant, and that it decreases for CdF₂ > 20 mol%. For compositions with CdF₂ > 15 mol% there is an increase of the transformation from TeO₄ to TeO₃ units. Some authors [40,41] showed that, in oxyfluoride tellurite glasses, the strong Te–O covalent network tends to be broken up by F⁻ ions by forming non-bridging, ionic M–F bonds (where M is a cation).

The spectra shown in Fig. 6 can be used to get the fraction N₄ of four coordinated tellurium atoms TeO₄ tpb in the studied glasses and glass-ceramics. N₄ is the ratio of the concentration of tellurium atoms in trigonal bipyramid units with four bridging oxygen atoms to the total concentration of tellurium atoms in the matrix. By using the deconvolution technique [31,42,43], the area under the absorption envelopes can be determined and used to calculate N₄ from Raman and IR spectra (Appendix 1). This technique was recently used for tellurite glasses by El Agammy et al. [29] for Raman and IR spectroscopies. Fig. 7 clarifies the deconvolution, in Gaussian bands, of IR spectrum for the sample 50NaF–50TeO₂, as an example.

Table 1 shows the assignment used in the deconvolution technique for Raman and IR spectra. Fig. 8 shows the dependence of N₄ as obtained from Raman and IR spectra on NaF content. The average N₄ and theoretical values calculated from the formula N₄ = 1-2X/(100-X), where X is the concentration of NaF (mol%) [29,36] in XNaF–(100–X)TeO₂ glasses and glass-ceramics, are also presented. It appears
that N_4 decreases when increasing the content of NaF. The curve can be divided in two regions: the first one is that for NaF \leq 10 mol%, where N_4 decreases almost linearly with increasing NaF content, and the second one is the region for NaF > 10 mol%, where N_4 tends to reach a steady value ($\sim 0.60 \pm 0.05$). A similar behavior [29] was observed in $x\text{PbF}_2 \cdot (1-x)\text{TeO}_2$ glasses and glass-ceramics ($0 \leq x \leq 90$ mol%) where N_4 decreased almost linearly for PbF$_2$ \leq 10 mol% and for PbF$_2$ > 10 mol%, it decreases gradually with a decreasing rate. Further, the change was rather limited for PbF$_2$ \geq 30 mol%.

Fig. 9 presents a graphical illustration of different structural units in NaF–TeO$_2$ glasses and glass-ceramics. These are proposed forms of the evolved structural units when NaF is added to TeO$_2$. Upon introducing NaF, the bond between O and Te atoms in Te$_{eq}$O$_{ax}$-Te linkage will be broken and $[\text{TeO}_3]^{-}$ with one non-bridging oxygen and TeO$_{3/2}$F units are formed (Fig. 9b). The negative charge on $[\text{TeO}_3]^{-}$ unit will be compensated with the positive charge of Na$^+$ ion and form a Na$^+$ $[\text{TeO}_3]^{-}$ unit. For NaF > 10 mol% two TeO$_{3/2}$F units are linked together to form a Te$_2$O$_6$F$_2$ unit with three bridging oxygens (Fig. 9c), then crystalline octahedral NaF phase is formed. To understand the behavior in Fig. 9, it is worth recalling the theoretical hypothesis introduced by Sakida et al. [36]. In the composition $x\text{NaF} \cdot (1-x)\text{TeO}_2$, with x being the molar fraction of NaF, the molar fraction of tellurium is...
Fig. 3. Scanning electron micrographs of NaF–TeO$_2$ glasses and glass-ceramics having (a) 0, (b) 10, (c) 30, (d) 50 and (e) 65 mol% NaF after etching. From left, figures have three magnifications x500, x2500 and x5000 for each sample with length of scale bar 50 μm, 10 μm and 5 μm, respectively.
(1–\(x\)), and every NaF molecule converts two TeO\(_4\) to [TeO\(_3\),\(_1\)]\(^{+1}\) and TeO\(_3\),\(_2\)F units. The number of modified units is 2\(x\), hence \(N_3\) and \(N_4\) are represented by:

\[
N_3 = \frac{2x}{1 - x} \quad \text{and} \quad N_4 = 1 - N_3
\]

Fig. 4. (a) Scanning electron micrograph before etching of 65NaF–35TeO\(_2\) glass-ceramic at x10000 magnification and 1 \(\mu\)m length of scale bar, (b) distribution of particle size.

Fig. 5. Energy dispersive X-rays (EDX) analysis for different regions of the sample with 65 mol% NaF.

Fig. 6. Normalized Raman spectra of the \(x\)NaF–(100–\(x\))TeO\(_2\) glass\-ceramics. Numbers on the graphs refers to the content of NaF (mol%).
have four bridging oxygens to the total concentration of tellurium atoms in the matrix. The data presented in Fig. 8 can be analyzed following the same method as the one used in previous studies [26,27,29].

The almost linear decrease of N_4 with NaF content up to 10 mol% implies that in the glass network the entire content of NaF converts TeO$_4$ units into [TeO$_3$+1]$^-$ and TeO$_3$/2F units. In this case, each NaF molecule converts two TeO$_4$ units into TeO$_3$/2F and Na$^+$[TeO$_3$+1]$^-$ units. In addition to these units, NaF partially modifies the tellurite network in the region of NaF > 10 mol% forming Te$_2$O$_3$F$_2$ crystal phase and the rest of NaF starts to form its own amorphous matrix in the form of NaF$_6$ octahedra. This conclusion is consistent with the crystalline phases exhibited in the XRD patterns of samples with NaF > 10 mol% (Fig. 1).

In TeF$_4$ crystal, the Te–F stretching vibration absorption peaks in Raman spectra occur at 190, 293, 337, 395, 567, 659, 696 and 731 cm$^{-1}$ [59]. Yoko et al. [60] stated that, according to the Bent rule, F atoms added to TeO$_2$ in LiF–TeO$_2$ glasses possibly take an axial position where the electronegativity of F atom is larger than that of O atom. It is suggested that, when adding NaF to TeO$_2$ it breaks Te–eqOax–Te bridging bond. F will take an axial position and the formed non-bridging oxygen in an equatorial position will have high ability of donating electrons [60]. This causes strengthening of the Te–Oeq bond and the negative charge on this bond will be compensated with that of Na$^+$ ion.

Based on the above assumptions, the concentration of developed structural units can be obtained as follows:

$$C_{Te4} = N_4 C_{Te}$$ \hspace{1cm} (3)

$$C_{Te3} = C_{Te} - N_4 C_{Te}$$ \hspace{1cm} (4)

Table 1

<table>
<thead>
<tr>
<th>Band assignment of IR and Raman spectra for XNaF-(100–X)TeO$_2$ glasses and glass-ceramics.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrared bands</td>
</tr>
<tr>
<td>Band center (cm$^{-1}$)</td>
</tr>
<tr>
<td>418–446</td>
</tr>
<tr>
<td>–565</td>
</tr>
<tr>
<td>590–600</td>
</tr>
<tr>
<td>620–670</td>
</tr>
<tr>
<td>677–688</td>
</tr>
<tr>
<td>680–724</td>
</tr>
<tr>
<td>756–767</td>
</tr>
<tr>
<td>770–790</td>
</tr>
<tr>
<td>817–875</td>
</tr>
<tr>
<td>877 and 443</td>
</tr>
</tbody>
</table>

Fig. 7. Deconvolution of Raman spectrum of the glass-ceramic 50NaF–50TeO$_2$ as an example.

Fig. 8. Compositional change of the fraction N_4 of TeO$_4$ tp in the glasses and glass-ceramics investigated. N_4 values are calculated from Raman spectra (□), IR spectra (◊), average values obtained from Raman and IR spectra (●) and theoretical data (○). N_4 values are accurate to ±7%.

Fig. 9. Schematic presentation of different structural units in NaF–TeO$_2$ glasses and glass-ceramics. (a) α-TeO$_2$ (TeO$_4$ units) (b) TeO$_3$/2F and Na$^+$[TeO$_3$+1]$^-$ units (c) Te$_2$O$_3$F$_2$ and NaF$_6$ units.
\[C_{\text{Te3}} = \frac{C_{\text{Te3}}} {2} \]
\[C_{\text{Na(f)}} = C_{\text{Na(f)}} - C_{\text{Na(m)}}. \]

Here \(C_{\text{Te3}} \) is the quantity (mol\%) of TeO\(_2\) converted to TeO\(_3\), TeO\(_{3+1}\) and/or Te(O,F)\(_3\), Te(O,F)\(_{3+1}\) units, \(C_{\text{Te4}} \) is the total TeO\(_2\) content in glass and glass-ceramic. \(C_{\text{Na(m)}} \) refers to the quantity of NaF that works as modifier and \(C_{\text{Na(f)}} \) is that creating NaF\(_6\) units (the NaF former part).

\[C_{\text{Na(m)}} = C_{\text{Te3}} / 2 \]
\[C_{\text{Na(f)}} = C_{\text{Na}} - C_{\text{Na(m)}}. \]

Fig. 10 shows that, with increasing NaF content, \(C_{\text{Te4}} \) decreases almost linearly in two regions. These are \(0 \leq \text{NaF} \leq 10 \text{ mol\%} \) and \(20 \leq \text{NaF} \leq 70 \text{ mol\%} \), where the rate of change is lower in the second region. At the same time, \(C_{\text{Te3}} \) and \(C_{\text{Na(f)}} \) show a maximum at \(20 \text{ mol\%} \) NaF. \(C_{\text{Na(f)}} \) seems to be negligible up to \(10 \text{ mol\%} \) NaF and then it steadily increases with increasing NaF content. Decreasing of \(C_{\text{Te4}} \) and increasing of \(C_{\text{Te3}} \) for \(\text{NaF} \leq 20 \text{ mol\%} \) reflect greater ability of NaF to modify the tellurite matrix in this region, as deduced from the high decreasing rate in \(N_4 \) (Fig. 8). The increase of \(C_{\text{Na(f)}} \) for \(\text{NaF} > 10 \text{ mol\%} \) and the decrease of \(C_{\text{Te3}} \) and \(C_{\text{Na(f)}} \) for \(\text{NaF} \geq 20 \text{ mol\%} \) indicate that NaF starts to modify the tellurite network. There is a limited decrease in \(N_4 \) for \(\text{NaF} \geq 20 \text{ mol\%} \) (Fig. 8), which might indicate that most of the added NaF content is consumed for forming its matrix and sharing in forming Te\(_2\)O\(_6\)F\(_2\) phase. A similar trend was noticed before in PbF\(_2\)-TeO\(_2\) glasses and glass-ceramics [29]. The conclusions drawn from this analysis are in good agreement with those obtained from the XRD, TEM and SEM results.

3.3. Infrared spectra

The IR spectrum of pure TeO\(_2\) glass is dominated by a shoulder at \(\sim 780 \text{ cm}^{-1} \) and a major wide absorption band at \(\sim 635 \text{ cm}^{-1} \) [50]. According to some investigators [49], the first band is related to vibrations of the symmetric Te–O\(_{ax}\) bond and the second one is related to asymmetric vibrations of the Te–O\(_{eq}\) bond in the units of TeO\(_4\). In a recent study based on first principles calculations [61], the bond order has values of 0.3 and 1.7 for these two bonds, respectively. So, the first band (2.12 \(\text{Å} \)) can be categorized as mostly covalent, while the second bond (1.87 \(\text{Å} \)) is most likely of electrostatic nature.

Yoko et al. [60] showed that the center of axial band observed at \(\sim 628 \text{ cm}^{-1} \) in the infrared spectra of LiX–TeO\(_2\) glasses (X = Br, Cl, F and O) shifted towards lower wavenumbers with increasing LiX content. The extent of the shift in the band center followed the sequence:

Br < Cl < F < O. A decrease in the bond strength of Te–O\(_{ax}\) in the same order revealed that the weakening of a bond is responsible for the shift towards lower wavenumbers.

The spectra shown in Fig. 11 can be used to obtain the \(N_4 \) fraction of four coordinated tellurium atoms TeO\(_4\) tpb in the studied glasses and glass-ceramics. By using the deconvolution technique we can calculate \(N_4 \) from IR spectra. Fig. 12 clarifies an example of the deconvolution parameters and the deconvoluted pattern of the IR spectra of 50NaF–50TeO\(_2\) glasses and glass-ceramics. Deconvolution data are given in Appendix 2. Fig. 8 shows the dependence of \(N_4 \) which is calculated for the following...
from Raman and IR spectra. There is a similarity in behavior between the curve of \(N_4 \) related to Raman spectra and that of IR spectra and the values of \(N_4 \) are close to each other with an average standard deviation (\(\pm 0.038 \)). Similar conclusions to those obtained from the analyzed Raman spectra can be drawn for the structural changes of TeO\(_2\) with increasing NaF content.

4. Conclusion

NaF enters the glass and glass-ceramic network to convert TeO\(_4\) units into TeO\(_3\), Te\(_{2}O_{3}\)F\(_{2}\) and/or Te(O,F)\(_3\), Te(O,F)\(_3\)F\(_2\) with a non-bridging Te–F bond. The remaining NaF enters the structure in both amorphous and crystalline phase forms, presumably as NaF\(_6\) octahedra. It also participates in the formation of the crystalline Te\(_2O_{3}\)F\(_2\) phase in compositions with NaF > 10 mol\% as evidenced by XRD. Raman and FTIR spectroscopies are used to obtain the fraction \(N_4 \) of TeO\(_4\) tbp units. The latter could be used to calculate the concentration of the various structural species in the studied compositions. Separated agglomerates of Te\(_2O_{3}\)F\(_2\) phase forming grains of different size are detected by SEM. For NaF > 50 mol\%, crystalline NaF is the dominant phase.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendices

40 group TeO\(_4\) TeO\(_3\) TeO\(_4\) TeO\(_3\)
B.C. 64.4 115.8 144.2 174.3
A 0.8 6.2 8.2 4.5
A 0.6 0.7 8.1 10.4
R.A. 0.7 5.8 7.6 4.2

Appendix (1)

Deconvolution parameters of Raman spectra of the \(X\)NaF\(-(100-X)\)TeO\(_2\) glasses and glass-ceramics. B.C. is the component band centre (cm\(^{-1}\)), A is the area of the component bands and R.A. is the relative area (%) of the component band.

<table>
<thead>
<tr>
<th>NaF (mol%)</th>
<th>Structural units and band parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>TeO(_4)</td>
</tr>
<tr>
<td>5</td>
<td>TeO(_3) TeO(_4) TeO(_3)</td>
</tr>
<tr>
<td>10</td>
<td>TeO(_3) TeO(_4) TeO(_3) TeO(_3)</td>
</tr>
<tr>
<td>20</td>
<td>TeO(_3) TeO(_4) TeO(_3) TeO(_3)</td>
</tr>
<tr>
<td>30</td>
<td>TeO(_3) TeO(_4) TeO(_3) TeO(_3)</td>
</tr>
<tr>
<td>40</td>
<td>TeO(_3) TeO(_4) TeO(_3) TeO(_3)</td>
</tr>
<tr>
<td>50</td>
<td>TeO(_3) TeO(_4) TeO(_3) TeO(_3)</td>
</tr>
<tr>
<td>60</td>
<td>TeO(_3) TeO(_4) TeO(_3) TeO(_3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NaF (mol%)</th>
<th>Structural units and band parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>TeO(_3) TeO(_4) TeO(_3) TeO(_3)</td>
</tr>
</tbody>
</table>

Appendix (2)

Deconvolution (2) of the infrared spectra of the NaXeF-(100–X)TeO2 glasses and glass-ceramics. B.C is the component band centre (cm⁻¹), A is the area of the component bands and R.A. is the relative area (%) of the component band.

<table>
<thead>
<tr>
<th>NaF (mol%)</th>
<th>Structural units and band parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>group</td>
</tr>
<tr>
<td></td>
<td>B.C</td>
</tr>
<tr>
<td>0</td>
<td>521</td>
</tr>
<tr>
<td>5</td>
<td>487</td>
</tr>
<tr>
<td>10</td>
<td>571</td>
</tr>
<tr>
<td>20</td>
<td>576</td>
</tr>
<tr>
<td>30</td>
<td>538</td>
</tr>
<tr>
<td>40</td>
<td>541</td>
</tr>
<tr>
<td>50</td>
<td>543</td>
</tr>
<tr>
<td>60</td>
<td>552</td>
</tr>
<tr>
<td>70</td>
<td>551</td>
</tr>
</tbody>
</table>

References

luminescence properties in $\text{Yb}^{3+}/\text{Er}^{3+}$-doped transparent oxyfluoride tellurite glass ceramics, Chin. Optic Lett. 8 (2010) 197–198.

[27] I.A. Sokolov, V.N. Naraev, A.N. Nosakin, A.A. Pronkin, Influence of MeF_2 ($\text{Me}=\text{Mg}, \text{Ca}, \text{Sr}$, and Ba) on the electrical properties of glasses in the $\text{MeF}_2\cdot\text{Na}_2\text{B}_4\text{O}_7$ system, Phys. Chem. Glasses 26 (2000) 383–389.

