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ABSTRACT

Percolation Theory for Analysis of Large Scale Network Epidemics

Ainur Zhaikhan

The foreseen massive deployment of the internet of things (IoT) is expected to suffer

from high security risks. This mainly results from the difficulty to monitor and cure

the IoT devices in such large-scale deployment. In this thesis, we propose a spatial

random deployment of special nodes (firewalls) which can detect and cure infected

nodes within certain radius. An important concern is to add sufficient number of

firewalls to make an epidemics finite and, hence, prevent malware outbreak over the

whole network. The problem will be analyzed using percolation theory. Namely, we

derive an upperbound for the critical intensity of spatial firewalls which guarantees

prevention of large-scale network epidemics, regardless of the intensity of regular

nodes. Using tools from percolation theory, we analyze the proposed solution and

show the conditions required to ensure its efficiency.
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Chapter 1

Introduction

1.1 Context and Motivation

Due to continuous increase in the number of IoT devices, networks are becoming more

vulnerable to illegitimate intrusions and malware spread. Hence, a secure connection

over long distances is a current major concern. To make the vulnerability problem

clear, consider a wireless communication network where, at a certain instance, a

malware originates at one of the communication devices and spreads in an epidemic

manner from each node to its neighbors. To prevent such malware outbreak, we

propose to deploy nodes with high capabilities (spatial firewalls) that can cure all

devices falling within their detection ranges. An obvious important concern here is

the minimum intensity of firewalls that will assure blockage of epidemics. We use

tools from percolation theory to analyze considered setup and optimize the proposed

solution.

1.2 Thesis Organization

To understand percolation theory we will need a notion of random graphs. So, in

Chapter 2 along with introduction of percolation theory we will define random graphs

and explain their classifications. Next, in Chapter 3 will make a detailed survey on

the use of percolation theory in wireless communication network. Finally, in Chapter

4 our work will narrow down on the application of percolation theory for the network

epidemics problem. At the same chapter the analysis of the proposed solution will be
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supported with simulation results.



13

Chapter 2

Percolation Theory and Random Graphs

2.1 Introduction

In this chapter, we provide background on Percolation Theory and Random Graphs.

2.2 Percolation Theory

2.2.1 Percolation Basics

Percolation theory was introduced in 1957 by Broadment and Hammersley to model

liquid penetration through porous material [1]. Later, it was used to address more

substantial topics such as fire spread across forests, epidemics in orchards, water

filtration through rocks, disease spread, the effective resistance of mixed conductors [2]

as well as network connectivity.

To understand the nature of percolation phenomenon let us study the follow-

ing basic model. Consider underlying a 2-dimensional square lattice Ls := G(V,E)

framed with vertex set V = Z2 and edge set E = {(x, y) ∈ V 2 : ||x− y|| = 1}. With

the condition that each edge in Ls exists independently with probability p, G(V,E)

turns to random graph. The tuning parameter p can be used to control the connec-

tivity of Ls. In particular, a sufficiently small value of p may give several connected

components (See Definition 1). As we increase p, these connected components merge

to constitute larger components and at some value of p we may observe an infinite

connected component, also called a giant component [2]. The phenomenon of ex-

istence of giant component and its probability is called percolation and percolation
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probability, respectively.

Definition 1 (Connected Component). A connected component is a sub-graph K ⊆

G(V,E) with the largest possible elements such that within K any vertex xi ∈ K can

always find a root through a set of consecutive edges to any other vertex xj ∈ K,

i 6= j.

Note: It is a common practice to specify a connected component with its single

element. So, for example, K(O) denotes a connected component containing the origin.

Definition 2 (Percolation Probability). Percolation probability is the probability of

existence of infinitely large connected component, i.e

θ(p) = Pr(|K(O)))| =∞). (2.1)

Formally, percolation is characterized with the following behavior

θ(p) > 0, for p < pc

θ(p) = 0, for p > pc.
(2.2)

In addition, we can say that θ(p) is a non-decreasing function of p and transition from

non-connectivity to connectivity state happens rather rapid (Kolmogorov Zero-One

law). So, A phenomenon occurring at pc is named a phase transition.

In the aforementioned case, when p is the probability associated with edges, we say

a bond percolation is happening in Ls. If the same condition is applied to vertices,

instead of edges, then it turns to a site percolation. Removal of a particular site

removes all edges associated with it. Hence, upon a proper transformation, a bond

percolation can be viewed as a special case of site percolation [3].

Another important characteristic of a percolating network is the mean out/in -

degree of the node, defined below. The difference between in and out-degree comes

from possible directivity of edges.
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Definition 3 (Out/In Degree [4]). In-degree of node n is the number of direct links

from other nodes (transmitters) to the node n (a receiver). Out-degree of node n

is the number of direct links from node n (transmitter) to the other nodes in the

network (receivers).

2.2.2 Useful properties of some percolation models

Now, we will list useful identities and inequalities related to critical probabilities in

bond (pbc) and site (psc) percolation models

1. For any infinite graph G, psc(G) is lowerbounded with pbc(G).

2. For any 2D lattice L and its dual L′ (see Definition 4) the following is hold

pbc(L) + pbc(L′) = 1.

3. Let Ld be 2D lattice recast from L by creating edges along all diagonals of all

faces in L. Then for any planar L and Ld,

psc(L) + psc(Ld) = 1.

.

4. Let ph and pv denote probabilities of horizontal and vertical link in square

lattice. Then in bond percolation model corresponding critical probabilities

satisfy (Sykes-Essam theory [5])

phc + pvc = 1.

.
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Table 2.1: Critical probability for popular planar lattice models

Lattice type Percolation model pc

Square bond
1
2

(Harris-Kesten theorem)

Triangular
bond 2 sin( π

18
)

site 1
2

Hexagonal bond 1− 2 sin( π
18

)
(Honeycomb) site 0.593

face1 1
2

5. Let a triangular lattice have a site retention probability ps and bond probabili-

ties pb1 , pb2 and pb3 , then corresponding critical probabilities follow [6]

psc
(
pb1c + pb2c + pb3c − pb1c pb2c pb3c

)
= 1.

In general, percolation over regular structures such as lattices are well understood

and studied in the literature. So, continuum percolation problems such as in random

geometric graphs are usually solved by mapping continuum percolation to discrete

one. Therefore, in Table 2.1, we provide known percolation thresholds for some lattice

models.

Definition 4 (Dual Lattice). Dual of the lattice is obtained by drawing bisectors to

each bond of an original lattice and taking intersection points of those bisectors as

vertices of a new lattice. Hence, dual of the square, triangular, and hexagonal lattices

are square, hexagonal, and triangular lattices, respectively.

2.3 Classification of Random Graphs

2.3.1 Introduction to Random Graphs

All graphs associated with some source of randomness, e.g., random edges/sites or

randomness due to the spatial location of nodes, form a big class of random graphs.

1equivalent to site percolation in triangular lattice
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Figure 2.1: Random Graph Taxonomy

Random Graphs

Grid
Random

Geometric Graphs
Tree

Abstract
Random Graphs

k-nearest
graphs [7–10]

Connectivity
function

Coverage
Gilbert model

Secrecy
[11–16]

Germ-grain
E-R model [17–19]

SINR-based
[20–25]
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Gilbert Disk
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Distance

Popular types of random graphs are grids (latices), trees, random geometric, and

abstract random graphs (RGGs and ARGs), as shown in Fig.2.1. The first two

are structured graphs. Grids have a certain underlying geometric structure which

becomes random due to uncertainty in a site or/and bond retention. Trees have a

hierarchical structure where the number of node offsprings is random.

Definition 5 (Random Geometric Graph). Random geometric graph is a graph type

where vertices are randomly scattered on Rd, and the existence of edges depends on

the location of vertices.

Due to fewer restrictions in the structure, RGGs have more practical sense, and

they are mainly used to model physical networks (e.g., a wireless communication

network). However, structured graphs are easier to study and, hence, for them, there

are more known percolation thresholds, as discussed in Sec. 2.2.2. So, commonly

percolation study in RGGs comes coupled with analysis of a lattice or tree models.

Definition 6 (Abstract Random Graphs). Abstract randoms graphs are graph types

where the location of vertices is of no importance, and edges are created randomly
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regardless of the spatial distribution of vertices.

Due to the abstractness of vertex locations, this type of graphs is used to model

virtual networks such as computer networks. Subcategories of RGGs and ARGs are

described in the following sections.

2.3.2 Random Geometric Graphs

As the existence of links is dependent on the spatial distribution of nodes, a wireless

communication network is mainly modeled with random geometric graphs (RGGs)

[7–16, 20–27, 29–34, 43–62]. A connection between nodes can be defined with a con-

nectivity function, e.g., based on distance, SNR, Signal-to-Interference-Ratio (SINR),

Secrecy rate. Another approach is coverage models [26–31], where each node is asso-

ciated with some predefined coverage region that frame potential locations for con-

nectable nodes.

Connectivity based RGGs

SNR-based RGGs can be viewed as a special case of SINR RGGs, while distance-

based RGG is equivalent to Gilbert Disk coverage model, discussed in Sec.2.3.2. So,

to avoid repetitions, we will only define only SINR- and secrecy- based RGGs.

Signal-to-Interference-Ratio Graphs (STIRG) STIRG was first introduced by

Douse et al. [63, 64]. It is a model where single hop connection between two nodes

depends not only on the spatial separation between them , but the interference level

caused by other nodes in the network. So formally, connectivity function for SITRG

is

−→
E =

{
−−→xixj :

Pil (xi − xj)
N0 + γ

∑
k 6=i,j Pkl (xk − xj)

≥ β

}
, (2.3)

where Pi is a transmit power of the node i, l (xi − xj) is a path loss between nodes i

and j, N0 is noise power, β is SINR threshold, and 0 ≤ γ ≤ 1 are inverse of processing
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gain of the system which abstracts imperfections in orthogonality of coding scheme.

Note overhead arrows in (2.3) which means that edges in the graph can be directional,

unlike in distance based models. However, original model of STIRG introduced by

Douse et al. [63] assumed bidirectional links, i.e. conditions of edge existence are

satisfied both in xi → xj and xj → xi directions.

Secrecy Graphs Connectivity function for Secrecy graph is

−→
E = {xixj : Rs (xi, xj) > rs} , (2.4)

where Rs (xi, xj), called a maximum secrecy rate, is a rate measured relative to the

highest eavesdropper rate in the network (Re∗).

Rs (xi, xj) = [R(xo)]
+ , 2 (2.5)

and rs is a fixed threshold.

Unlike in distance/Gilbert disk case, there is no analogy of a secrecy graph among

coverage models [65].

Coverage models

Gilbert Disk In Gilbert Disk graph G(λ, r) points are spatially distributed accord-

ing to Poisson Point Process (PPP) Φ with density λ and vertices (x, y) ∈ Φ create

an edge iff they are within distance r from each other.

Germ-grain model Germ-grain can be viewed as a generalization of Gilbert Disk

model. Germs (points) are scattered on Rd as a point process and coverage region(set

of grains) is of arbitrary shape.

2x+ = max(x, 0)
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k-nearest graphs

It is an undirected graph type where two spatially scattered nodes are connected

if either is at most k-th closest neighbor of the other one. A special case when

k = 1 is called the nearest neighbor graph. One of the earliest works related to

continuum percolation in k-nearest graphs is credited to Haggstrom and Meester

(1996) [7].They proved that for k = 1 (the nearest neighbor) percolation is impossible

in any dimension d (trivially except d = 1), while for k = 2 percolation may occur for

some finite d. More recent work by Shang-Hua and Y.Frances [8] showed that for any

finite dimension d > 1 there is always a threshold kd which assures phase transition,

in particular, for planar case (d=2) k2 < 213. Later, Balister and Bollobas found

a tighter bound k2 < 11 [9]. Connectivity of k-nearest graph was also studied for

finite area case. In finite k-nearest graph with area A under PPP assumption with

intensity 1, a percolation probability tends to zero for k < 0.074 logA, and tends to

1 for k > 5.1774 logA, as A→∞ [10]. Ballister et al. [66] improved these results to

0.3043 logA and 0.5139 logA respectively

2.3.3 Abstract Random Graphs

Gilbert model

G(n, p) is Gilbert random graph with n vertices and where any two distinct vertices

create an edge independently from other edges with probability p. Hence,

P (G(n, p)has M edges) = pM(1− p)(
n
2)−M . (2.6)

Erdos-Renyi (ER)

In ER model a graphG(n,M) with n vertices and M edges is chosen uniformly random

from space of all possible graphs with n vertices and M edges. So, probability of a
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single ER graph is

P (G) =

((n
2

)
M

)−1

. (2.7)

2.4 Conclusion

In this chapter, we provided relevant information about the percolation theory and

Random graphs so that a reader will feel comfortable with concepts, terms, and

notations used further.
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Chapter 3

Survey about Percolation Theory in Wireless

Communication Network

3.1 Introduction

In this chapter, we will discuss in more detail the types of graphs that are popular for

modeling of wireless communication networks and present related works. Percolation

theory in wireless networks is mainly used to study connectivity and secrecy of the

network. Therefore, the two main sections of the chapter will be dedicated to these

two subjects.

3.2 Percolation and Connectivity

3.2.1 Gilbert disk model

Gilbert disk is popular in modeling wireless sensor networks (WSN). Connectivity of

WSN based on Gilbert disk model was studied in [39]. One of the applications of

WSN is to detect intrusion or motion of an object within the interested region. So, in

this kind of application, it is not necessary to exploit the whole network area. Instead,

coverage of interested exposure path is sufficient. With this in mind, in [35], Liu et al.

applied site and bond percolation models, respectively, to find densities that prevent

path exposure. Based on site percolation, authors in [38] derived the critical density of

nodes to prevent exposure path in WSN with directional and omnidirectional sensors.

The 3D scenario of exposure path problem was considered in [36], while general

connectivity in 3D wireless sensor network was analyzed in [37]. In particular, authors
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in [37] found critical density for coverage and connectivity in 3D WSN.

With regard to other applications, percolation in Gilbert disk model was also used

to estimate node location in finite size network [40]. According to [40], the percolation

threshold is computed to guarantee that message will reach the borders of the network,

and the source site is predicted by measuring time delays. In addition, Gilbert Disk

model was used to study connectivity in urban areas [41] and in the Swarm Robot

network [42].

3.2.2 SNR graphs

In literature, SNR RGGs are usually simplified to basic distance-based RGGs. So,

works dedicated to purely SNR percolation models are scarce. As a special case of

the SINR graph, the directed SNR graph was studied in [67]. In particular, authors

in [67] found the following bounds for λc

λc <
4 ln 2(

π − 6 sin−1
(

1
4

)
− 3

√
3(
√

5−1)
8

)
r2

min

, (3.1)

λc ≥
1

[1− C ′t] π
∫ rmax
rmin

g(r)fR(r)dr
, (3.2)

where

R = L−1

(
N0β

P

)
,

rmin = l−1

(
N0β

pmin

)
,

rmax = l−1

(
N0β

pmax

)
,

(3.3)

fR and FR is a probability density function (PDF) and cumulative distribution func-

tion (CDF) of R, respectively

g(r) = r2 + 2

∫ rmax

r

r′ [1− FR (r′)] dr′, (3.4)
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pmin is the minimum transmit power assuming that transmit power of nodes P can

take values between [pmin pmax] according to some distribution fP (p); C ′t is the t-th

order cluster coefficient (for more details see [67]).

3.2.3 Interference-limited models

In SINR graphs, direct connectivity between two nodes does not only depend on their

spatial location, but locations and powers of other nodes participating in the network.

More formal definition can be found in Sec.2.3.2. One of the earliest works in SINR

based percolation models is Dousse et al [63,64]. They proved the following lemma.

Lemma 1 (Node degree in SITRG [63,64]). In SITRGs with finite support path loss

function a node degree cannot exceed (1 + 1
γβ

).

They reinforce finite support assumption for path loss function which means that

for some d < ∞ l(x) = 0 when x > d. In addition l(x) must be non-increasing

and isotropic. Finiteness of path loss function is important for the simplicity of

dealing with dependent edges. To have fair mapping, they define an open edge in

square lattice such that percolation in square lattice assures continuum percolation

in an original random graph. Namely, the definition of an open edge assures direct

connectivity of any two nodes falling within two squares adjacent to the edge. Due

to the interference-based definition of connectivity, not only adjacent squares need

to be sufficiently occupied. Also, a total number of nodes within these two squares

and their direct neighbors (sharing at least one common edge) must not exceed some

threshold number (derived explicitly in [21]). As the definition of open edge covers

more than just direct neighborhood (two adjacent squares to the edge), we may deal

with the dependency of edges, unlike in the Boolean model. In other words, the

probability of one edge is open will be correlated with the state of other neighboring

edges. At this stage, if path loss was defined over an infinite domain, it would be

difficult to frame the independence conditions of edges finitely. In practice, if nodes
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were allowed to communicate over infinite distances, it would be difficult to have an

idea about interference level at a node. So, some assumptions are required. In their

system model, tuning parameters are γ and λ, which are inverse of system processing

gain and density of nodes, respectively. By simulation they show percolation region in

(λ, γ) space. Hence, they framed sub-critical and super-critical regions for the given

model. In addition, they rigorously proved Lemma 2 given as follows.

Lemma 2 (Percolation in SITRG [63, 64]). Let λ0
c be a critical density of nodes in

SITRGs with finite support path loss function when γ = 0. Then for ∀λ > λ0
c, ∃ γc

such that ∀γ < γc the given model percolates.

In addition, they proved that no percolation occurs if γ > 1/β or λ < λ0
c . As

it can be recalled from Sec.2.3.2 γ is a coefficient depending on the coding/decoding

strategy of the system. Douse et al. [63,64] made an analysis for two coding schemes,

CDMA and TDMA. In the CDMA scenario, all nodes get active at the same time,

while in the latter case, the time interval is divided into n time slots, and each node

activates every interval at i-th time slot randomly chosen from 1, 2...n. Small values of

γ inherent to CDMA schemes are usually complex to realize and have little practical

sense. Using the well-known property of percolation that the time-slotted realization

of the network improves connectivity, they proved that percolation condition could

be better reached with TDMA as γ gets scaled with factor 1/n.

Douse et al. omitted finite support assumptions in [68]. Instead, the following

constraints were added

1. l(x, y) is a function of absolute value of the distance between x and y (i.e

l(|x− y|))

2. l(|x− y|) is strictly decreasing function, where l(|x− y|) ≤ 1

3. l(0) > βN/p
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4.
∫∞

0
xl(x)dx <∞

Even though unbounded support constraint was removed, condition 4 assures that

interference at a node is finite [69].

The new definition of open edge for the given SINR model was based on the

following two conditions

1. Occupancy of the neighbourhood of the edge. Let the neighbourhood be parametrized

with some d > 0. Then occupancy implies left to right crossing of rectangle

[xa − 3d/4, xa + 3d/4]× [ya − d/4, ya + d/4] ,

and top to bottom crossing of squares

[xa − 3d/4, xa − d/4]× [ya − d/4, ya + d/4] ,

and

[xa + d/4, xa + 3d/4] [ya − d/4, ya + d/4] ,

where (xa, ya) are the middle point coordinates of the considered edge.

2. Shifted shot noise limit. Shifted shot noise at the receiver which is defined as

follows

Ĩ(z) =
∑
k

l̃ (|z − xk|) ,

where

l̃(x) =

 l(0), x ≤
√

10d
4

l
(
x−

√
10d
4

)
, x >

√
10d
4

must not exceed some predefined threshold M.
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With proper choice of M and N [68] proved validity of Theorem 1 and Theorem 3

also for unbounded support case.

Authors in [67] apply the same assumptions for path loss function as in [68].

Applying mapping to hexagonal lattice with side length d, they derived lower and

upper bounds for critical γ = γc in relation to λ

~γc(λ) ≤ c2

λ− c′2
, (3.5)

where

c2 = 2
√

3(pmax−βN0)
9(1−θ)βpminl(2d)d2

,

c′2 = 2
√

3
3(1−θ)d2 ,

(3.6)

θ =

√
10

d 4
√

27
√
λc
. (3.7)

R.Vaze in [70] fixed γ = 1 and proved that for large enough β, there is a closed

interval of λ within which percolation probability is 0 and for small enough β there

is the corresponding interval for strictly positive percolation probability. Then they

make an analysis for a finite area network with n number of nodes. For the analysis,

they use colored square lattice where each different colored squares depict nodes hav-

ing orthogonal signals. Thus, only nodes corresponding to the same color square can

interfere. They show that a sufficient number of colors that assures full connectivity

of the network with high probability is O(log n). For the case when transmit powers

are no more fixed but i.i.d random variables authors in [71] derived an interesting

result that γc ≤ 1/(2β) for ∀λ, β > 0.

Applications

Authors in [72] use percolation theory to study unicast capacity in the ad-hoc net-

work with SINR assumption. [73] applies SINR percolation model to study multicast

capacity of wireless ad-hoc networks under Gaussian channel model. SINR models in
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Table 3.1: Notations

Term Description Term Description

rp Communication range of primary nodes Pd Probability of detection
rs Communication range of secondary nodes Pf Probability of false alarm

RI Interference range of primary receivers PN Noise power

rI Interference range of secondary receivers PPT Transmit power

λp Density of primary transmitters σ Path loss coefficient

λs Density of secondary nodes ε Outage probability threshold

λc(1)
Critical intensity of nodes for Boolean model
with unit communication range

N Number of channels

more complex networks such as cognitive radio and secrecy graphs are discussed in

details in the following sections.

3.2.4 Heterogeneous network (Cognitive Radio)

A typical cognitive radio model consists of primary and secondary networks. As the

name implies, primary network (PN) is the first priority in spectrum access. Two

secondary nodes intending to communicate in single-hop must satisfy both their own

connectivity conditions and some tolerances of primary nodes varying from case to

case.

The most common scenario of CRN is studied by W.Ren et al. in [56, 57], where

secondary and primary nodes have some fixed communication ranges rs and rp, respec-

tively and fixed interference tolerance distances for primary and secondary receivers

RI and rI respectively. So, in order to have an edge between two secondary nodes,

they should be at a distance less than rs from each other and at least RI and rI far

away from primary receivers and transmitters, respectively. The locations of primary

and secondary nodes are modeled as two independent PPPs with densities λp and

λs correspondingly. Each primary transmitter has one primary receiver placed uni-

formly at random within a circular region centered at the corresponding transmitter
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and with radius Rp. Hence, PPP of primary receivers is dependent on PPP of pri-

mary transmitters, and both processes have the same density. The authors studied

the effect of (λs, λp) pair on the connectivity of secondary networks (SNs) and de-

fined connectivity region, which depicts all values of (λs, λp) resulting in percolation

of secondary networks. Applying the Boolean continuum percolation model and the

concept of the infinite vacant component, they found useful bounds and conditions

for the connectivity region. First one is the condition for the intensity of primary

transmitters that assures no percolation of secondary network regardless λs

λp ≥
λc(1)

4 max {R2
I , r

2
I} − r2

s

. (3.8)

Second one is a sufficient condition for connectivity given as

λp <
1

π [R2
I + r2

I − I (RI , rp, rI)]
ln

1− exp
(
−λsr2s

8

)
1−

(
1
3

)(2k+1)2
, (3.9)

where

k =
⌈
8 max

{
RI +

rs
4
, rI +

rs
4

}
/rs

]
− 1, (3.10)

I {r, rp, rI〉 = 2

∫ r

0

t
SI (t, rp; rI)

πr2
p

d, (3.11)

SI (t, Rp; rI) is the area of intersection of two circles with centers at a distance of t

and respective radii Rp and rI .

[58] consider a similar scenario but with multiple channels. Connectivity between

secondary nodes is a function of two parameters: communication range and proba-

bility of channel availability. Multiple channel condition can modelled as overlay of

multiple PPP distributed primary networks of intensity λp. Hence, using the defini-

tion of PPP the probability of one channel availability for two secondary nodes can

be written as

P = e−λpγ1πR
2
I , (3.12)
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where a term γ1πR
2
I is the area of two intersecting circles which comes from inter-

ference limit of primary receivers. Namely, according to the assumed interference

model, there is a link in secondary network if both end nodes are at least RI away

from primary transmitters. In other terms, two circular regions centered correspond-

ing two secondary nodes and with radii RI must be free of primary users. Assuming

the entire network has m channels, they derive the probability of at least one channel

is available for two secondary nodes Ps as

Ps = 1− (1− P )m = 1− (e−λpγ1πR
2
I )m. (3.13)

Making use of multi-type branching process, clustering coefficient methods authors

in [58] found necessary and sufficient conditions for full connectivity as follows

λs = Θ

(
log n

r2
sπP

)
. (3.14)

and an upperbound on critical intensity of secondary users λcs as follows

λs >
1

πr2
sP(1− C)

, (3.15)

where C = 1 − 3
√

3
4π

is a cluster coefficient defined in [59]. Authors in [47] used a

percolation-based approach to study the connectivity of the two-tier network. PPP

distributed primary network is parametrized with the density λp, communication

range rp, and the probability of primary link activity, while the connectivity of sec-

ondary network depends on density, communication rs and interference tolerance ri

ranges of primary nodes. They prove that simultaneous percolation of both pri-

mary and secondary networks is impossible when the primary network operates in

an aggressive mode, i.e. both probability of link activity and density is sufficient for

percolation of the primary network (Figure 3.2). However, the last is related to only
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instantaneous connectivity. For the scenario with primary link activity changing in

time slotted manner, primary network with large enough density can still percolate in

long term sense even if the probability of active link is not sufficient for instantaneous

percolation (conservative region in Figure 3.2). Hence, allowing percolation of only

secondary network at all time slots, [47] proved possibility of simultaneous long term

connectivity of both networks. Moreover, it is important to note that [47] made the

conclusion about non-feasibility of simultaneous instantaneous connectivity for only

special case when rI > max {rs, rp}2. One of the latest relevant works [48] proved

that instantaneous percolation of two overlaying networks is actually possible, but if

the following necessary conditions are hold:

2rI > rs,

λs > r−2
s λc(1),

λp > r−2
p λc(1),

λp <
(
4r2

I − r2
s

)−1
λc(1).

(3.16)

[62] provide generic analysis for interferer-user type models such as cognitve

network, jamming attack, shadowing effect. They consider conditions for percolation

in a space of 3 parameters (λs, λp, RI) , so called 3D connectivity region. They prove

that 3D connectivity region is continuous in (λs, λp, RI) space and monotonic in the

direction of axes. In particular, for fixed λs, a connectivity region surface curve is

monotonically decreasing with RI , while for fixed λp, it is monotonically increasing

with λs. In addition, they derived sufficient and necessary conditions for percolation

in terms of parameters (λs, λp, RI), which are as follows respectively

(
1− exp

(
−λsr

2
s

5

))2
(

1−
(

1− e−
λp
N
γπ

(
Rp+ rs√

16

)2
)N)

>
1

2
, (3.17)
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rp <

√
Nλc(1)

λp
+
r2
p

4
, (3.18)

where N is the number of channels.

[53] presents necessary and sufficient conditions for the k-connectivity of sec-

ondary user (SU) network in cognitive radio (CR). k-connectivity implies a type of

connectivity where a network has an infinite size k-connected component. A compo-

nent is said to be k-connected if, after removal of less than k vertices, a component

still remains connected. An alternative definition for the k-connected component is

when any two vertices in the component can be connected through k edge-disjoint

paths. [32] derives closed-form expression for distribution of percolation degree. Per-

colation degree is the minimum number of neighbors for each node that will assure

the k-connectivity of the network. So, we can notice that k-connectivity is similar to

the k-nearest model, but the former one does not ignore the spatial communication

range of nodes.

Y. Liu et al. . [33] studies the connectivity of secondary networks when connectiv-

ity within secondary users is defined with Random Connection Model. Specifically, at

some time instance, t each link can be independently at either of two states ’reliable‘

or ’not reliable,‘ hence characterized by Bernoulli Random Variable X(t). Connec-

tivity within secondary users f(d) is defined with the function f(d) = Pr(X(t) = 1)

which is assumed to be a non-increasing function of the distance between nodes d.

As the work accounts for the time domain, three types of connectivity regimes are

analyzed: disconnectivity, long term, and instantaneous connectivity (Fig.3.1). Ac-

cording to [33], the last two depend on the reliability of links, while disconnectivity

does not.

Similar to Y. Liu et al. . [33], [44] incorporated the time into the scenario and

worked with terms instantaneous and long term connectivity. However, for the latter,

time variance is related to the spatial distribution of the primary network, but not
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Figure 3.1: Connectivity region of secondary network in (λp, λs) plane

to the reliability of the links. W.Ren et al. in [44] assume temporal dynamics of the

traffic in primary network keeping secondary one static. Specifically, PPP character-

izing primary network is allowed to vary in each fixed time slot as the number of, and

locations of active primary nodes may vary due to traffic change and motion of nodes.

Meanwhile, PPP distributed secondary network is fixed. Connectivity of the network

in the timely changing environment is characterized by finite delay (fd)-connectivity.

The network is said to be fd-connected if the minimum multihop delay (MMD) be-

tween two random nodes of the network is finite with positive probability. [44] shows

that with temporal dynamics of primary network density greater than the critical

density of secondary users in a homogeneous network scenario (with no primary net-

work) is sufficient condition for fd-connectivity regardless instantaneous densities of

primary transmitters. Another difference of [44] from [33] is that the latter one as-

sumes Gilbert disk model for connectivity, rather than RCM, hence considering only

path loss and ignoring possible effects of shadowing and fading.

In [55], W. Ren et al., using continuum percolation, studied multi-hop delay in

CRN and came to the following conclusions. In instantaneous connectivity region,
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Figure 3.2: Connectivity region of secondary network in (p, λp)
plane

the distance between two end nodes does not significantly affect to the asymptotic

behavior of multihop delay while for long-term connectivity multihop delay is a linear

function of the distance

In [34] for PPP distributed primary and secondary networks connectivity of sec-

ondary users is studied with consideration of probabilities of false alarm, correct and

miss detection. They find an upper bound of critical intensity of secondary users

for the network with fixed non-zero intensity of primary users λcs(λp), given critical

intensity of secondary users for the network without primary users λcs(0)

λcs(λp) ≥ λcs(0)− λpλcs(0)ηπr2
sPd − λsPf

(
1− λpηπr2

s

)
, (3.19)

where Pd is the probability of detection and Pf is the probability of false alarm.

Another interesting case is presented in [43]. This work studies connectivity of

secondary users with the account of internetwork interference and outage probability

of primary users. For 2D space defined with transmit power and density of secondary

users, Dong et al. found the upper and lower bounds of the percolation region. It
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turned out that the percolation region is not always possible. In other words, an

outage probability constraint of primary users and percolation of secondary users

cannot always be both satisfied.

[45] accounts for probability of false alarm (Pf ) and correct detection (Pd) in

multi-channel cognitive radio network. The percolation problem is analyzed using the

branching technique, namely degree distribution and generating function. [45] have

verified that more number of channels may cause less tight bounds for percolation

condition. In addition, it was shown that smaller Pf and larger Pd do not always

improve the connectivity of SU.

Mapping continuum percolation model to discrete one, authors in [46] prove that

in the space of (λs, λp) connectivity region of interference free cognitive radio network

is a subset of connectivity region in interference-limited scenario. In other words,

conditions allowing connectivity of SUs without interference also satisfy for the con-

nectivity in the interference-limited network. The last leads to the conclusion that

interference does not worsen the connectivity of SUs.

A study on connectivity in multi-channel CRN was conducted by [61]. Their

model assumes fixed communication range based connectivity within networks and

fixed protection range for primary users. A communication link in the graph is created

if both geographical and radio links exist. A geographical link is created if two nodes

satisfy a spatial proximity condition, while the radio link exists if both nodes have at

least one common spectrum opportunity. The problem was analyzed using a newly

introduced Cognitive Radio Graph Model (CRGM), where a multi-channel model was

represented as a union of multi-layer graphs. They derived an upperbound on the

critical density of primary nodes

λcp <
N log(1− N

√
1− λs

λs
)

2R2
p

(
π − arccos rs

2Rs

)
+ rs

√
2R2

p −
r2s
4

. (3.20)
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A similar study on multi-channel access was conducted in [49]. According to their

system model, connectivity within secondary nodes is defined based on 1)interference

threshold and 2) common channel use between two end nodes of the link. It is assumed

that each node of the network can choose a set of channels out of all available in a

random manner. As two potentially connectable nodes share more than one common

channel, the problem can be viewed as a multi-layered graph (MLG) (similar to

CRGM). However, according to the second condition of connectivity, an edge between

two nodes can be created if they share at least one common channel. So, it does not

matter in what layer the connection is established, and we can simply take the union

of all layers by mapping all existing edges from all layers to a single projection layer.

Hence, the problem was solved using a 2-dimensional percolation model. Namely, for

the described case, they show that even though interference and multiple channels

worsen the connectivity in combination, these two are not always adverse.

A conclusion about the benefit of cooperation was also made by [54]. [54] study the

scenario with the number of ad-hoc and infrastructure networks acting as secondary

networks and coexisting with the number of primary interfering networks.

Ao et al. in [50,51] consider cognitive radio network with overlaying multiple PPP

distributed secondary and primary networks. The system model accounts for inter-

ference at SU due to multiple primary networks, interference constraint at primary

receivers due to SUs, and the effect of channel fading. For this kind of heteroge-

neous network, it was shown that cooperation improves connectivity. Cooperation

here implies the case when a user of one secondary network relay through the user

of another secondary network. Connectivity of typical secondary network was found

by first deriving degree distribution of secondary users and the probability of active

SUs. Those two findings are then applied in problem mapping to the site percolation

model, which provides the percolation threshold.

[52] study Cognitive Radio-based operation of Device-to-Device (D2D) and cel-
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lular network. The site percolation model is used to find an upper bound for the

minimum probability of active transmission of devices that will assure large-scale

connectivity of D2D network in the presence of a primary cellular network.

[60] apply percolation to analyze probabilistic flooding in the interference-limited

cognitive radio network. The objective was for each node to minimize the fraction of

rebroadcasting neighbors P while keeping the network percolating. As the Boolean

model is not appropriate for consideration of interference limit SINR percolation

model discussed in [23] was used. Based on this analysis they propose novel Neighbor

Aware Probabilistic Flooding (NAPF) method. The idea behind NAPF is to make

the number of rebroadcasting neighbors always above percolation threshold, i.e more

than λcsπR
2
s, where λcs critical intensity of SINR percolation model in CRN.

Applies percolation theory to study cooperation in CRN. Their system model as-

sumes that a certain secondary user that falls within the interference range of primary

transmitter can still be used as a relaying node in the way to achieve corresponding

primary receiver. It is important to note that interference ranges are not fixed, but

functions of outage probability thresholds of primary transmitters. Namely,

λP =
λc(1)(

rDf
)2 −

( rsvc
2

)2 , (3.21)

where rDf is radius of circular area around primary transmitter that approximate re-

gion where secondary networks can not be active except relaying secondary secondary

node, and it is found as

rDf =
rSRI + max

{
rSRI , rPRI + rPTc

}
2

, (3.22)

where

rSRI =

[
PN
PPT

(√
1− εSR

−δ − 1
)]−δ−1

. (3.23)



38

3.3 Percolation and Secrecy

Secrecy graphs were first introduced by M.Haengi in [74]. He gave geometry (distance)

based definition for directed secrecy graphs (SGs).

Definition 7 (Directed SG. Distance-based definition [74]). Directed SG
−→
G sec is a

subgraph which includes all edges in the network satisfying

E =
{−−→xixj : |xi − xj| < |xj − e∗j |

}
, (3.24)

where e∗j is the closest eavesroppper to xj.

In other words, for
−→
G sec a directed edge −−→xixj is created if xi is closer to xj than

any other eavesdropper in the network. This work also introduced concepts of basic

and enhanced undirected SGs.

Definition 8 (Strong undirected SG). Undirected enhanced SG Gb
sec is a subgraph

which includes all edges in the network satisfying

E =
{
xixj : |xi − xj| < min(|xj − e∗j |, |xi − e∗i |)

}
, (3.25)

where e∗i is the closest eavesdropper to xi.

Definition 9 (Weak undirected SG). Enhanced undirected SG Ge
sec is a subgraph

which includes all edges in the network satisfying

E =
{
xixj : |xi − xj| < max(|xj − e∗j |, |xi − e∗i |)

}
, (3.26)

Another contribution of this work is a derivation of a node out degree (Definition 4)

distribution for directed SG . For the case, when legitimate users and eavesdroppers

are independently PPP distributed with intensity 1 and λ respectively a node out
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degree was found to be geometric with mean 1
λ
. For general case when intensity of

legitimate users is λ a node out degrere is geometric with mean λ/λE, as given in [65].

Authors in [65] also derived moment generating function for a node in-degree, Kin

E
(
etKin

)
= E

(
eA(et−1)/λ

)
, (3.27)

where A is a cell area of Voronoi tessellation. As the tessellation is formed with

PPP (of unit intensity) A is random variable. Hence, corresponding pmf of a node

in-degree [14] is found as

P(Kin = k) =
1

k!

∫ ∞
0

f2(t)e−t/λ(t/λ)kdt. (3.28)

Unfortunately, f2(t), which is pdf of A, is still unknown. Moreover, a distribution

of Vd, an equivalent of A in d-dimensional tesselation, remains an open question,

except for d = 1.

Pinto et al. [12] gave the definition of secrecy graph from information-theoretic

perspective. Namely, he made a connectivity function based on Maximum Secrecy

Rate. Existence of phase transition for the given model was proven using 1) discrete

percolation in hexagonal lattice, and 2) discrete percolation in square lattice and 3) a

thinning property of PPP. As percolation does not guarantee connectivity of all nodes

in the network, part of [12] was dedicated to full connectivity study.

Another important study of secrecy problems is given in [16]. Here, due to the

unity AWGN assumption, a problem was reduced to distance-based secrecy graph,

as in [74]. They studied both regular and random deployment of nodes. In the

first case, legitimate users were placed at vertices of square/triangular lattice, while

eavesdroppers appeared with some fixed probability inside a single square/triangle.

If a square is intruded with at least one eavesdropper, all four legitimate users at

vertices of that square will fail. The probability of having eavesdropper at a single
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square/triangle was considered as percolation parameter. Lower and upper bounds

for the critical probability of eavesdroppers in a square lattice denoted with pEc , were

derived to be

1− 1
16
√

2
≤ pcE ≤

3−
√

5

2
, (3.29)

which was an improvement of previous result

1

18
≤ pcE ≤

3−
√

5

2
, (3.30)

obtained in [75].

Similarly, a critical probability for triangular lattice ptc, according to [16], is bounded

as:

1− 1
24
√

2
≤ ptc ≤

4

3
− 1

3

 3

√
25−

√
621

2
+

3

√
25 +

√
621

2

 . (3.31)

To model random deployment of legitimate nodes, they applied homogeneous PPP

Φ of intensity 1. Their system model assumes that eavesdroppers’ exact location is

unknown. Instead, we know regions within which eavesdroppers may occur. Namely,

they are circular regions with a fixed radius and centers distributed according to PPP

Ψ, independent of Φ. Legitimate users are aware of those eavesdropper regions in

which centers lie within the communication range of the users. So, another objective

of the study was to explore the effect of uncertainty in the eavesdropper location. In

particular, lower and upper bounds for mean node degree were derived analytically.

Another work with the random deployment of nodes in the secrecy graph is pre-

sented in [14]. The main difference of their system model from [16] is that eavesdrop-

pers themselves, not centers of circles with eavesdroppers, are PPP distributed. In

other words, in [14], there are no uncertainty regions associated with eavesdroppers.

Another important remark, this work employs an original (distance-based [74]) defi-
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nition of secrecy graphs. For the given case, [14] surveyed on techniques that can be

used to find the critical intensity of eavesdroppers in directed SG. Namely, branching

processes, mapping Gilbert disc model to lattice percolation, and rolling ball method

were studied. Branching process could give an upper bound for critical eavesdropper

intensity 1 λE < 1, while legitimate user intensity is 1. It was suggested that an

infinite-dimensional geometric distribution branching process with a mean one could

be a good approximation for the study of secrecy models in higher dimensions. Ac-

cording to [12, 65], a lattice, in particular, a hexagonal face, percolation can be used

for secrecy graphs. Finally, the rolling ball method can give lower bound for the

critical intensity of eavesdroppers in strong undirected secrecy graphs (Definition 9).

Despite being a rigorous proof, all three methods gave loose bounds. Thus, [74] found

more tighter bounds numerically with high confidence, based on [9, 76,77].

R.Vaze and S.Iyer [11] enhanced Secrecy graphs by accounting for the effect of

SINR and called it Information Secure SINR Graphs. Based on the analysis of super-

critical and sub-critical percolation regimes [11] proved the existence of phase transi-

tion for Information Secure SINR Graphs. In addition, for fixed eavesdropper inten-

sity, lower and upper bounds of the critical intensity of legitimate nodes were derived

rigorously.

3.4 Conclusion

In this chapter, we reviewed wireless communication network works where percola-

tion was applied. For convenience works were grouped under two large categories:

connectivity and secrecy. Another possible application of percolation theory in a

wireless network is security. Therefore, in the next chapter, we will explain how the

percolation theory can be used to analyze the network epidemics problem.

1In the context of [14]), a critical intensity refers to infinite out-connected component
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Chapter 4

Percolation Theory in Network Epidemics

4.1 Introduction

In this chapter, we will present the network epidemics problem in the context of the

percolation theory. Namely, we will describe the system model as RGG and apply

the concepts of percolation theory to find an efficient condition for the blockage of

epidemics. Derived results will be verified with simulations.

4.2 System Model

As shown in Fig. 4.1, we consider a network that is composed of three types of nodes:

Susceptible nodes are regular nodes that have a potential to be infected with mal-

ware.

Anti-malware agents are nodes with special capability to cure all infected nodes

within their coverage areas.

Protected nodes are regular nodes that fall within protection range of a anti-

malware.

Throughout this thesis, both susceptible and protected nodes will be simply referred

to as regular nodes.

Detailed definition of anti-malware agents anti-malware nodes are designed

with special capability to filter detect infection in neighbour nodes(within fixed range)

(e.g detect infection). In addition, anti-malware nodes are equipped with required
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Figure 4.1: System model

Figure 4.2: Epidemics blockage with antimalware
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mechanisms and anti-malware software to implement on-demand software patching

for the infected nodes within their range.

Assumptions

1. Distanced based connection: ra and rr are communication range of anti-malware

and regular nodes,respectively.

2. ra ≥ rr

3. Malware type: Worm

4. Topology: ad-hoc wireless network

5. All regular nodes have no other seciruty system other than antimalware

Let us comment on some of the above assumptions. The second assumption is in-

troduced to fit the analysis constraints, discussed later in this chapter. However,

even from a practical perspective, this assumption seems to be meaningful. Nodes

with special capabilities, such as anti-malware, tend to have greater coverage range

compared to regular communication nodes.

With regards to the third assumption, viruses and Trojans cause harm to the system

if an infected file is exchanged or/and executed while worm spread happens automat-

ically without host interventions. Therefore, Worm spreads more easily and hence

represents the highest security threat, compared to Virus and Trojan. So, to consider

the worst-case scenario, we assume Worm as a specific malware type of our system

model.

According to the last assumption, all nodes, except protected by anti-malware nodes,

are vulnerable to infection via communication link. In practise, it is not always the

case because usually all devices are empowered with built-in firewalls which are sup-

posed to protect from malware intrusions. Malware passes from one node to another
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if there is faults in the protection system of the destination. So, existence of commu-

nication link does not guarantee infection spread. However, condition for blockage of

epidemics in the scenario when all nodes are vulnerable to infection by simply creating

communication link will also work when not all nodes are susceptible to infection. So,

with assumption 5, we will deal with the worst-case scenario and hence, get simplified

analysis with generally valid results.

The regular nodes (devices) are scattered in R2, where their locations are modeled

as a Poisson Point Process (PPP) Φ ≡ {xi} ∈ R2 with intensity λr. These devices

can communicate if they are within distance rr from each other. In addition, we

model the locations of anti-malware agentsas a PPP Ψ ≡ {ak} ∈ R2 with intensity

λa, independent of Φ, and have a fixed detection range ra. The network of regular

users is modeled as Random geometric graph G(V, E), where V, standing for a set of

vertices, includes ∀xk ∈ Φr, and E refers to the set of edges, which reflects susceptible

links between regular nodes. Hence, E can be formally defined as follows

E = {xixj : |xi − xj| ≤ rr ∧ |x− a| ≥ ra} , (4.1)

where x = xi, xj, a = arg min
ak∈Ψ
|x − ak|, ra and rr are communication range of anti-

malware agents and regular nodes respectively. The above definition implies that

malware can transfer from one regular node to another only if both of them are not

within the protection zone of anti-malware nodes.

4.3 Problem formulation

Recalling (4.1), we observe that the percolation of G(V, E) implies the susceptibility

of the network to malware. In particular, due to percolation, the infection of one

node might lead to an epidemic throughout the network. Hence, the objective is

to employ enough anti-malware agents to ensure breaking the giant component into
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smaller, isolated components, as shown in Fig. 4.2. This, in turn, ensures a contained

outbreak that can be quarantined and recovered.

4.4 Phase transition

The first main result in this thesis is proving the existence of critical value for the

density of anti-malware agents λca. A formal description of this result is provided

next.

Theorem 3 (Phase transition). Let θ(λa) denote the percolation probability of G(V,E),

then for ∀λr > 0 there exists a critical value λca <∞ for the density of curing agents

such that

θ(λa) > 0, for λa < λca

θ(λa) = 0, for λa > λca

. (4.2)

Proof. As mentioned in Chapter. 4 discrete percolation model is simpler for analysis.

Hence, the proof of phase transition will include the following steps

1. Mapping our problem to discrete percolation model in hexagonal lattice, we

prove that ∀λr > 0 there exists some λL <∞ such that θ(λa) > 0, for λa < λL.

Hence, we will study subrcritical regime.

2. Mapping our problem to discrete percolation model in square lattice we prove

that ∀λr > 0 there exists some λU < ∞ such that θ(λa) = 0, for λa > λU .

Hence, we will study supercritical regime.

3. Finally, using basic properties of PPP we prove that θ(λa) is a continuous non-

increasing function of λa, hence show that there should be some critical λca

reflecting phase transition of the system. [12].
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4.4.1 Subcritical regime:

In this part we will assume that rr = ra. As it will be discussed later the condition

that assures percolation in rr = ra also works for the case when rr ≤ ra.

Proposition 4 (Sufficient condition for zero percolation). For ∀λr > 0 and rr > 0 if

λa >
3.65

r2
r

, (4.3)

then θ(λa) = 0.

Proof. Mapping to a Hexagonal Lattice: Let Lh be hexagonal lattice with side

equal to communication range of regular nodes rr. In discrete model each hexagon

H composing Lh is called a face which can be of either open or closed state.

Definition 10 (Closed face). Let {Ti}3
i=1 denote non-adjacent equilateral triangles

composing H as shown in fig.. Then, a face H is said to be closed if each of these

triangles is occupied with at least one anti-malware agent.

Otherwise, it is called open face. Definition 10 was chosen, such that no percolation

in Lh assures no percolation in the given continuum model. Sequence of connected

closed faces form a closed path. If a path starts and ends at the same face, then it

is called a closed circuit, Fig. 4.4. Referring back to our scenario closed face can

be analogically treated as anti-malware in the discrete model and set of open faces

surrounded by the closed circuit as a confined region of infection.

Lemma 5 (Circuit coupling). Let KG(0) ⊆ G(V,E) and Kh(0) ⊆ Lh denote a

connected component around the origin 1 in the given continuum and discrete models

respectively. If the origin is surrounded with closed circuit C(0) in Lh then KG(0) is

finite

1Due to homogeneity of PPP without loss of generality we can assume that the infection starts
at the origin
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Proof. If there is a closed circuit around the origin, there are a finite number of open

faces on the inner side of the circuit. Hence, |Kh(0)| < ∞ 2. and a region covered

by Kh(0) involves finite number vertices of G(V,E). So, if we prove that no edge of

G(V, E) cross C(0), then we prove that KG(0) is finite. So, let us consider an extreme

scenario shown in Fig. 4.3. Assume each of the triangles T has only one anti-malware

(the lowest possible according to Definition 10), and they are placed in a way to get

the minimum coverage of the closed face. By minimizing coverage of anti-malware

agents, we can see how close two regular nodes (red dots) from different sides of C(0)

can get to each other without being neutralized by agents. So, now let us consider

the critical position of regular nodes shown in Fig.4.3. Since the lattice side equals

rr, two red nodes can communicate, but they fall within the coverage region of anti-

malware agents. If nodes move apart, they will no longer be affected by anti-malware

agents, but now they are out of the communication range of each other. If they move

closer communication range is satisfied, but they will appear under the protection

region of anti-malware agents. So, both conditions of edge existence can never be

satisfied simultaneously, and hence, no edge can cross C. If we find the conditions

for no percolation when rr = ra, the result will also work for the case when ra ≥ rr

as the probability of percolation decreases with an increase of ra. Since the lattice

side equals to the communication range of nodes, two regular nodes can establish the

connection. However, according to Definition 10 xi and xj appear under guard zone

of at least one agent, even if the agent is at the furthest possible position, which is

corresponding vertices of the hexagon (See Fig.4.3). So, we can conclude that a link

crossing C(0) does not exist even in most favorable conditions for communication,

and according to the previous reasoning |Kh(0)| <∞.

Lemma 6 (Closed circuit in Lh). if ∀λr > 0 and rr > 0, the following condition is

2|.| denotes a cardinality of the component
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satisfied (
1− e−λa

√
3

4
r2r

)3

>
1

2
, (4.4)

then C(0) exists in Lh.

Proof. According to [78] the origin is a.s surrounded with closed circuit C(0) in Lh if

P (H is closed) >
1

2
. (4.5)

Probability of closed face, according to Definition 10, is

P (H is closed ) = P (∧i=1,2,3 |Ti ∩ Φ| ≥ 1)

(a)
= (1− P (|T1 ∩ Φf | = 0))3 =

(
1− e−λa

√
3

4
r2
r

)3

,
(4.6)

where (a) is due to the fact that {Ti}3
i=1 are identical and non-overlapping regions.

Substituting (4.6) into (4.5) we get the condition stated in Lemma 6.

Rearranging the terms of (4.4) and following to the statement of Lemma 5 we can

reach that there is a closed circuit C(0) in Lh if λa > 3.65/r2. Meanwhile according

to Lemma 6 existence of C(0) assures Kh(0) <∞. So, λa > 3.65/r2 is the condition

that guarantees G(V,E) does not percolate which finalize the proof of Proposition

4.

4.4.2 Super-critical regime:

Proposition 7 (Sufficient condition for positive percolation probability). If rr > 0

λa satisfies

λa <
2 ln (1− e−λrs2)− ln (1− β)

NAs2
, (4.7)
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Figure 4.3: Closed face

Figure 4.4: Closed circuit

where β = (11−2
√

10
27

)N , N and NA are some finite integers, s = rr√
5
, then θ(λa) > 0.

Proof. Mapping to a Square Lattice: Let Ls be a square lattice with side s =

rr/
√

5. A dual lattice Lds is defined by the following transition Ls + ( s
2
; s

2
) and we

assume one of vertices of Lds is the origin of coordinate system. Let e denote an edge

common to two adjacent squares S1(e) and S2(e) in L and ed is the corresponding

dual edge in Lds. and e can be either open or closed.
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Definition 11 (Open edge). Let { vk}4
k=1 denote vertices of a rectangle compounded

by S1(e) and S2(e) and A(e) is the smallest square containing circles {C(vk , ra)}4
k=1.

Then an edge e is defined to be open iff:

1. both S1(e) and S2(e) have at least one regular node

2. there are no anti-malware agents within A(e).

As the diagonal of S1(e) ∪ S2(e) equals to rr any two regular nodes within this

rectangle are at a distance allowing to establish communication. Moreover, condition

2 in Definition 11 requires that all anti-malware lie outside region A(e). So, even if

regular node lies at the boundaries of S1(e) ∪ S2(e) any anti-malware will be at a

distance d
√

5ra
rr
e rr√

5
+ ε1 > ra, where ε1 > 0. Hence, no regular node inside S1(e) ∪

S2(e) can be neutralized. So, if e is open according to (4.1) any two nodes within

S1(e) ∪ S2(e) satisfy for conditions of edge existence. Hence, all nodes within this

region create one connected component. In general, Definition 11 was chosen such

that percolation in Lds assures percolation in G(V,E) as we will see later.

Lemma 8 (Dual and primal coupling). Let Ks(0) denote connected component con-

taining origin in Lds. If Ks(0) is infinite then KG(0) is also infinite.

Proof. Let a path Pd denote a sequence of connected open edges in Lds. Since there

is one to one mapping between dual and prime edges Pd is uniquely associated with

another path P in Ls which all edges are also open. In its turn, P is associated

with sequence of (S1(ei), S2(ei)) pairs where each pair composed of single connected

component of regular nodes according to the Definition 11. So, if infinite path is

given in Lds then there is infinite sequence of connected components which merge and

create one infinite connected component in G(V,E). In other words, if Ks(0) < ∞

then KG(0) <∞.

So, to study supercritical regime in G(V,E) it is sufficient to investigate percola-

tion condition in Lds.
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Percolation in Lds: From the relation between dual and primal square lattices

we can notice that Kd(0) is finite if there is closed path in Ls. So, first, we will

study the probability of path Pn := {ei}ni=1 in Lds being closed around 0. Let B(e) be

the smallest square containing circles
{
C(ei,

√
5s+ 2r)

}4

i=1
3. The region B(e) was

defined such that edges ei and ej are independent if (B(vi) ∩B(vj)) = ∅.

Let C(e) be the region which covers all edges dependent from edge e and N denote

the number of edges in C(e). Let SI ⊂ Pn denote a subset which includes all indepen-

dent edges in Pn. Then the SI will have cardinality at https://www.overleaf.com/project/5e5e89d005cd45000154d9cdleast

n/N . The way to construct C(e) and compute N is given in Appendix 5.

According to [1] a circuit of length n around the origin can be created in 4n3n−2

different ways. Therefore, a probability that a closed path exists about the origin Pc

can be found as

Pc =
∞∑
n=1

4n3n−2P (Pn is closed) ≤
∞∑
n=1

4n3n−2p
n
N

(b)
=

4p
1
N

3(1− 3p
1
N )2

,

(4.8)

where p := P (e is closed) and (b) is obtained by treating a given sum as a deriva-

tive of geometric series with respect to p1/N . So, to make Pc to not exceed 1, the

following must be satisfied

p < (
11− 2

√
10

27
)N . (4.9)

Based on the Definition 11 explicit expression for p can be found as follows

p = 1− P (|Φ ∩ S1(e)| ≥ 1∧

|Φ ∩ S2(e)| ≥ 1 ∧ |A(e) ∩Ψ| = 0)

= 1− (1− e−λrs2)2e−λaNAs
2

,

(4.10)

3C(O, R) is the circle with radius R and center at O
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where NA is the number of squares covered by A(e), hence. From fig. 4.5 Na =

(2d
√

5ra
rr
e+ 2)× (2d

√
5ra
rr
e+ 1).

Substituting (4.10) into (4.9) and after basic algebraic manipulation we can finally

get the result in (4.7).

Figure 4.5: Closed face

From Proposition 4 we can conclude that for some given λr > 0 and rr > 0

there exists a threshold λL < ∞ such that the probability of percolation θ(λa) > 0,

∀λa < λL. On the other hand, according to Proposition 7 there is a threshold λU

such that θ(λa) = 0 ∀λ < θ2. Thus, to verify that there exists λL ≤ λca ≤ λU such

that Theorem 3 is true we need to show that θ(λa) is a continuous non-increasing

function of λa.

4.4.3 Continuity of Percolation probability

Proposition 9. For fixed λr, rr, ra θ(λa) is a continuous non-increasing function of

λa.

Proof. Consider random geometric graphs G(λa1) and G(λa2) where 0 < λa1 < λa2

and parameters λr,rr and ra are the same for both processes. As underlying processes
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of G(·) is PPP G(λa1) can be obtained by thinning G(λa2) with probability
λa1
λa2

. As

thinning implies random removal of nodes G(λa1) should have less number of anti-

malware agents compared to G(λa2). Correspondingly, more susceptible nodes are

supposed to stay non-neutralized in the first case compared to the second one. So, it

is valid to state that KG(λa1 )(0) ≥ KG(λa2 ). As a consequence, the following is true

θ(λa1) ≥ θ(λa2),

for 0 < λa1 < λa2 which literally implies that θλa is non-increasing function of λa.

Despite being useful for the proof of phase transition, bounds in (4.3) and (4.7)

are not tight enough and of no practical value. So, in the following section, we will

compute a tight upper bound for the critical value of the density of curing agents λca.

4.5 An upper bound for λc
a

Theorem 10. An upper bound for the critical density of anti-malware agents is

λcf ≤
λc(1)

4r2
a − r2

r

, (4.11)

where λc(1) is a critical density of nodes for continuum percolation in Gilbert disk

model with radius 1/2. Based on simulations [79], λc(1) ≈ 1.44. We also know that

0.768 < λc(1) < 3.37 [80, 81]. To keep the analysis rigorous, we will use the upper

bound for λc(1).

Proof. Proof of Theorem 3 relies on the fact that the existence of an infinite connected

component in the network of regular nodes implies the existence of an infinite vacant

component in the network of anti-malware agents. Let us consider the worst-case

arrangement shown in Fig. 4.6. Two regular nodes are placed at a distance of rr, and
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they will remain to be susceptible if all anti-malware agents are forced to be at least

ra away from them. So, the position of anti-malware in Fig.4.6 is of special interest.

In this arrangement region, V depicts the vacant space that must be provided by the

network of anti-malware agents such that two regular nodes are able to communicate,

and rO is the minimum distance from the anti-malware agent to V . Therefore, the

minimum requirement for the existence of an infinite path in the network of regular

nodes is having an infinite vacant component in the Poisson Boolean model with

density λa and radius ro :=
√
r2
a −

r2r
4
− ε2

2
. Critical density for homogeneous Boolean

model with radius r [28] is

λc(1)

(2r)2
.

So, there is an infinite vacant component a.s. in the network of anti-malware agents

if

λca <
λc(1)

(2
√
r2
a −

r2r
4
− ε2)2

.

Leting ε2 −→ 0 we will finally get the uppperbound in (4.11).

Figure 4.6: Worst case scenario for existence of infinite path
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4.6 Results and Discussion

In this section, we will first verify the existence of phase transition for the model

described in Sec. 4. Then, we validate the upperbound for critical density of anti-

malware agents is rigorously derived in Sec.4.

4.6.1 Methodology

The described network scenario was implemented in Matlab. Two types of points

were scattered over the finite square region of size 100 × 100. We set parameters ra

and rr much smaller than 100 and λr and λa sufficiently small so that connectivity

over this finite region reasonably approximates large scale percolation. Percolation is

assumed to happen if there is a connected component crossing the simulation region

from left to right (or vice versa) or from bottom to top (or vice versa). Percolation

probability is estimated with Monte Carlo simulations with 200 realizations.

4.7 Simulation results

For the network parameters ra = rr = 2, λr = 0.8 we verified a phase transitional

behavior described in Theorem 3 (See Fig.4.7). Following the definition of critical

density, λca appears at the point when percolation probability drops to 0 for the

first time. Therefore, we can notice that with the increase of rr λ
c
a gets smaller.

Next, for the same network setup by tuning λr corresponding critical density of anti-

malware agents were obtained. Region falling below and above the blue curve in Fig.

4.8 depict connectivity (percolation) and disconnectivity (no percolation) conditions

respectively. So, from Fig.4.8 we can conclude that the upper bound, computed

according to (4.11) and shown with orange line in Fig.4.8, is tight and assures no

percolation of regular users ∀λr.
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Figure 4.7: Phase transition

Figure 4.8: Upperbound for critical intensity of anti-malware agents



58

4.8 Conclusion

In this chapter, we discussed the results obtained with Matlab Simulations. Namely,

the effect of the communication range of anti-malware agents on the phase transition

threshold was investigated. The anti-malware density condition for the blockage of

large scale epidemics was verified.
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Chapter 5

Conclusion and Future work

Motivated by the evolving size of IoT and, hence, the need for cybersecurity over long

distances, this thesis arose the topic of large scale network epidemics. We proposed

the solution for the problem based on the spatial deployment of firewalls. The idea

was to make the number of added firewalls sufficient to have epidemics confined

over the finite region and, at the same time, reasonable considering the finiteness of

resources. To meet both these requirements, a powerful math tool, percolation theory,

was employed. To sum up, this thesis includes two major contributions. First, we

made a detailed survey on the topic of percolation theory in wireless communication

networks. Secondly, we provided a solution for network epidemics problems and

related analyses based on the percolation theory. We have proved the existence of

critical value for the density of curing agents above which malware outbreaks are

prevented. Furthermore, a tight upper bound for the critical density was computed

and validated.

A possible extension of the work is to make planned spatial deployment of anti-

malware agents. By planned deployment, we imply placing anti-malware agents such

that a larger number of regular nodes are under coverage region of anti-malware. For

example, we can try to set anti-malware near the node with a maximum number

of neighbors. This arrangement should increase the chance that anti-malware will

appear at locations with the largest accumulation of regular nodes.
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APPENDICES

A.1 Maximum number of dependent edges

Here, we will try to find the maximum number of edges that are dependent of some

arbitrary edge e0. Let us assume that all edges in the lattice have dependency region

X(e) of general size a×b squares. According to the definition of dependency region two

edges ei, ej are considered independent iff (X(ei)∩X(ej)) = ∅. Therefore, let {en}8
n=1

be 8 the closest edges which dependency regions {X(ei)}8
i=1 do not overlap with X(e).

Next, we should construct maximal rectangle around e0 such that created region X0

does not include {ei}8
i=1 (example shown in fig.A.1). Hence, we can be sure that X0

covers maximal number of edges that are dependent of e0. By construction the size of

X0 is (2a−2)×(2b−1). So, the number of edges in X0, correspondingly the maximum

number of edges dependent from e0, is [(2a−1)(2b−1)+(2a−2)2b] = 8ab−2a−6b+1.
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Figure A.1: An edge dependence region
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[78] B. BollobÃ¡s and O. Riordan, Percolation. Cambridge University Press, 2006.

[79] J. Quintanilla, S. Torquato, and R. M. Ziff, “Efficient measurement of the perco-

lation threshold for fully penetrable discs,” Journal of Physics A: Mathematical

and General, vol. 33, no. 42, pp. L399–L407, oct 2000.

[80] R. Meester and R. Roy, Continuum Percolation. New York: Cambridge Univ.

Press, 1996.

[81] Z. Kong and E. M. Yeh, “Characterization of the critical density for percola-

tion in random geometric graphs,” in 2007 IEEE International Symposium on

Information Theory, June 2007, pp. 151–155.

https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20064
https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20064

	Examination Committee Page
	Abstract
	Acknowledgements
	List of Abbreviations
	List of Symbols
	List of Figures
	Introduction
	Context and Motivation
	Thesis Organization

	Percolation Theory and Random Graphs
	Introduction
	Percolation Theory
	Percolation Basics
	Useful properties of some percolation models

	Classification of Random Graphs
	Introduction to Random Graphs
	Random Geometric Graphs
	Abstract Random Graphs

	Conclusion

	Survey about Percolation Theory in Wireless Communication Network
	Introduction
	Percolation and Connectivity
	Gilbert disk model
	SNR graphs
	Interference-limited models
	Heterogeneous network (Cognitive Radio)

	Percolation and Secrecy
	Conclusion

	Percolation Theory in Network Epidemics
	Introduction
	System Model
	Problem formulation
	Phase transition
	Subcritical regime:
	Super-critical regime:
	Continuity of Percolation probability

	An upper bound for ac
	Results and Discussion
	Methodology

	Simulation results
	Conclusion

	Conclusion and Future work
	Appendices
	Maximum number of dependent edges


	References

