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ABSTRACT
Powerful computer clusters are used nowadays to train com-
plex deep neural networks (DNN) on large datasets. Dis-
tributed training workloads increasingly become commu-
nication bound. For this reason, many lossy compression
techniques have been proposed to reduce the volume of trans-
ferred data. Unfortunately, it is difficult to argue about
the behavior of compression methods, because existing work
relies on inconsistent evaluation testbeds and largely ignores
the performance impact of practical system configurations.
In this paper, we present a comprehensive survey of the

most influential compressed communication methods for
DNN training, together with an intuitive classification (i.e.,
quantization, sparsification, hybrid and low-rank). We also
propose a unified framework and API that allows for consis-
tent and easy implementation of compressed communication
on popular machine learning toolkits. We instantiate our
API on TensorFlow and PyTorch, and implement 16 such
methods. Finally, we present a thorough quantitative evalu-
ation with a variety of DNNs (convolutional and recurrent),
datasets and system configurations. We show that the DNN
architecture affects the relative performance among methods.
Interestingly, depending on the underlying communication li-
brary and computational cost of compression/decompression,
we demonstrate that some methods may be impractical.

1. INTRODUCTION
Deep Neural Networks (DNNs) are becoming more com-

plex. For example, ResNet-152 has 152 layers and 60.2M
parameters [28], VGG-19 has 19 layers and 143M parameters
[75], while BERT-Large has 24 layers, 16 attention heads and
340M parameters [20]. Combined with the large sizes of the
training sets, parallelism during the training phase becomes
a necessity. Consequently, popular deep learning toolkits,
including TensorFlow [1], PyTorch [65] and Caffe [37], sup-
port data parallelism1: The DNN model under training is
replicated in several compute nodes, a.k.a. workers, typically
equipped with powerful GPUs. Each worker independently
processes a partition of the data called mini-batch. Then
local intermediate results (typically, the local gradients) are
exchanged through the network, and the aggregated values
are sent back to the workers; the process is repeated over
many epochs (i.e., full iterations of the training data).

1Model and pipeline parallelism [56], which partition one
replica of the model to multiple compute nodes, is orthogonal
to data parallelism, but outside the scope of this paper.
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Figure 1: Top-1 accuracy for VGG16 on CIFAR-10 with
TensorFlow on 8 workers via 25 Gbps network links. In
(b) Randk converges in 450s, but SketchML needs 1500s.

Since the above-mentioned communication involves large
amounts of data, the network becomes the bottleneck [52, 63,
71]. Luo et al. [52] argue that computation speed improves
faster than network bandwidth; therefore, modern GPUs
(e.g., NVIDIA V100) experience long idle times while waiting
for communication. This causes inefficient utilization of the
computational resources, longer training times and/or higher
financial cost for cloud-based operations.
To alleviate this problem, many works propose lossy com-

pression during communication, to reduce the volume of
transferred data. Typically, the so-called back-propagation
phase of DNN training employs variants of the Stochastic
Gradient Descent (SGD) [68] optimizer. Since training is
stochastic in nature, intuitively, it should manage to converge
despite the small errors introduced by the lossy compression.
We identify four main classes of compressors in the literature:
(i) Quantization [3, 10, 19, 41, 72, 87], which reduces the
number of bits of each element in the gradient tensor (e.g.,
cast float32 to float8); (ii) Sparsification [2, 50, 76, 78, 82,
86], which transmits only a few elements per tensor (e.g.,
only the top-k largest elements); (iii) Hybrid methods [8, 22,
38, 48, 77], which combine quantization with sparsification;
and (iv) Low-rank methods [14, 83, 84, 91], which decompose
the gradient into low-rank matrices.
Despite the abundance of compressed communication meth-

ods, it is unclear which one is more suitable and under what
circumstances, or what the relative trade-offs are. Figure 1
demonstrates the problem on a standard TensorFlow bench-
mark (see §5 for details) running on 8 workers with NVIDIA
V100 GPUs and 25 Gbps network. Two common compression
methods, Random-k [76] and SketchML [38], are compared
against a baseline without compression. Most existing papers
present an accuracy versus training epochs analysis, similar
to Figure 1a, which shows almost equivalent effectiveness for
all methods. Supported by a back-of-the-envelop calculation
of the reduced volume of transferred data, they conclude

1



Table 1: Classification of surveyed gradient compression methods. Note that ‖g̃‖0 and ‖g‖0 are the number of elements
in the compressed and uncompressed gradient, respectively; nature of operator Q is random or deterministic; EF-On
indicates if error feedback is used in our experiments. We implement 15 methods on TensorFlow and PyTorch.

Compression Ref. Similar Methods ‖g̃‖0 Nature of Q EF-On Implementation

Q
ua

nt
iz
at
io
n

8-bit quantization [19] ‖g‖0 Det TFlow
1-bit SGD [72] [10, 22, 77] ‖g‖0 Det TFlow, PyTorch
SignSGD [10] [72, 94] ‖g‖0 Det 5 TFlow, PyTorch
SIGNUM [11] [10, 94] ‖g‖0 Det 5 TFlow, PyTorch
QSGD [3] [32, 84, 87, 88, 92, 93] ‖g‖0 Rand 5 TFlow, PyTorch
LPC-SVRG [92] [3, 32, 93] ‖g‖0 Rand
Natural [32] [3, 92, 93] ‖g‖0 Rand TFlow, PyTorch
TernGrad [87] [3, 84, 92] ‖g‖0 Rand 5 TFlow, PyTorch
EFsignSGD [41] [80, 94] ‖g‖0 –NA– TFlow, PyTorch
INCEPTIONN [47] ‖g‖0 Det 5 TFlow

Sp
ar
si
fic
at
io
n

Random-k [76] k Rand TFlow, PyTorch
Top-k [2] [4, 76] k Det TFlow, PyTorch
Threshold-v [24] [2] Adaptive Det TFlow, PyTorch
Deep Gradient (DGC) [50] [78] Adaptive Det TFlow, PyTorch
Sparse Gradient (SGC) [78] [50] Adaptive Det
Adaptive sparsification [86] [84] Adaptive Rand
Variance-based sparsification [82] Adaptive Det
Sketched-SGD [34] [2, 4, 76] k Det

H
yb

ri
d

Hard threshold SGD [77] [10, 22, 72] Adaptive Det
Adaptive threshold SGD [22] [10, 72, 77] Adaptive Det TFlow
SketchML [38] [22, 77] Adaptive Rand TFlow
3LC [48] [87] Adaptive Det
Qsparse-local-SGD [8] Adaptive Rand

L
ow

R
an

k ATOMO [84] [86] sparsity budget Rand
GradiVeQ [91] [84] (m+ L)r Det
PowerSGD [83] [14] (m+ L)r Det TFlow, PyTorch
GradZip [14] [83] (m+ L)r Det

that both compression methods perform well. However, in
practice, users care about the actual elapsed time of the
training process, shown in Figure 1b. Random-k converges
in roughly 450 s and is obviously preferable than the baseline
that requires 850 s. Interestingly, SketchML converges after
1500 s, rendering it worse than using no compression at all.

In general, the majority of the existing work exhibits one or
more of the following shortcomings: (i) Theoretical analysis
is based on unrealistic assumptions, such as convexity; (ii)
Implementation is stand-alone and does not reflect real-world
scenarios that utilize one of the popular deep learning toolkits;
(iii) Experimental evaluation ignores the computational cost
of compression/decompression, which, in some cases, is larger
than the savings by the reduced communication; (iv) Only
convergence versus the number of epochs is reported, whereas
actual execution time is ignored; (v) Experimental evaluation
is performed on non-standard benchmarks; or, for a restricted
set of models (e.g., only convolutional neural networks); or,
even without considering DNNs at all.
Motivated by these shortcomings, in this paper, we follow

a systematic approach to survey, categorize and evaluate
quantitatively the existing work on compressed communica-
tion for Deep Learning under an extensive range of real-world
models, datasets, and system configurations. Our work can
benefit researchers, who can easily implement novel methods
using our API and evaluate them on a standard testbed,
as well as practitioners who can investigate the trade-offs
and select the method that suits the characteristics of their
particular model and dataset. Our contributions are:
Survey. In §3, we present a comprehensive survey of the
most influential works in compressed gradient communica-
tion, including quantization, sparsification, hybrid and low-

rank methods, biased and unbiased, with or without memory.
Refer to Table 1 for a summary.
Framework and API. In §4, we propose a unified frame-
work and programming API that exposes the necessary func-
tions (e.g., compress, decompress, and memory_compensate)
for implementing a variety of compressed communication
methods. We embed our API in TensorFlow and PyTorch.
Implementation. With our API, we implement on Tensor-
Flow and PyTorch 16 popular methods (see Table 1) that
represent most of the spectrum. We release our code, execu-
tion scripts, evaluation metrics, and raw data; and provide
the models and datasets.2 Essentially, we develop a self-
contained testbed that can be the standard of evaluating
future compressed communication methods.
Quantitative evaluation. In §5, we use a variety of models
that include convolutional (CNN) as well as recurrent neural
networks (RNN); and datasets from diverse domains that
include image classification and segmentation, recommenda-
tion systems, and language modeling. We vary the number of
workers as well as the network bandwidth; and report a rich
set of metrics including throughput, data volume, accuracy,
and compute overhead.
Our results reveal that the speed and accuracy of each

compression method depend on the particular DNN under
training. Performance is also influenced by the underlying
network communication libraries (e.g., OpenMPI [61] or
NCCL [57]) and network bandwidth. Interestingly, many
methods fail to match the no-compression baseline in terms
of accuracy, as well as in terms of execution time, due to the

2Public release at https://github.com/sands-lab/grace.
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computational overhead of compression/decompression; this
issue is more pronounced for faster networks.

2. BACKGROUND
We focus on data-parallel distributed training [3, 10, 45,

79, 88], where each worker possesses a local copy of the
entire model; computes local updates; and communicates
regularly with all other workers to synchronize with the
aggregated global state. Global aggregation is commonly
implemented through a collective communication library
(e.g., Horovod [73]) in a peer-to-peer topology.3

Distributed data-parallel learning. A distributed opti-
mization problem minimizes a function f

minx∈Rd f(x)
def
= 1

n

∑n
i=1 fi(x), (1)

where n is the number of workers. Each worker has a local
copy of the model and has access to a partition of the training
data. The workers jointly update the model parameters
x ∈ Rd, where d corresponds to the number of parameters.
Typically, fi is an expectation function defined on a random
variable that samples the data.

Consider a deep neural network (DNN), and let x def
= {W, b}

be the space that contains the model parameters (also known
as weightsW and biases b). Given a set of input data D with
their corresponding true labels, the training phase learns x
for each layer of the network. Let

f(x)
def
= 1

n

∑n
i=1

[
m∑
j=1

Lj (ŷj (x, x̂i,j) , yj)

]
︸ ︷︷ ︸

:=fi(x)

+R(x) (2)

be the loss function such that, at each worker i, x̂i,j is the
input from its data partition Di, yj is the true label, Lj is
the loss function (e.g., squared loss, cross-entropy loss, etc.)
that calculates the discrepancy between the true label yj and
the predicted value ŷj , and R is a regularizer. Calculating
the loss function for each training sample is called forward
pass. During training, the parameter space x is updated
by minimizing Equation (2) via a stochastic optimization
algorithm that calculates the gradients of the loss function
with respect to each layer of the DNN; a process known
as back-propagation. In practice, each data partition Di is
further split intomini-batches, each withm data points. Each
worker i performs the forward pass for all input data in a
mini-batch; then performs back-propagation to calculate the
stochastic gradients over the entire mini-batch; communicates
with all other workers to aggregate all local gradients; finally,
uses the aggregated global state to update its parameters x.
Stochastic gradient descent (SGD). SGD [12, 68] is a
first-order iterative optimization algorithm. At iteration
k + 1, SGD updates the model parameters as:

xk+1 = xk − ηkgk (3)

where ηk > 0 is the learning rate and gk is the stochastic
gradient at iteration k (i.e., an unbiased estimator of the
gradient of f).
To converge faster, SGD is often equipped with a short-

term memory z, called momentum. At each iteration, Polyak
[64] updates the momentum as: zk+1 = γzk − ηkgk, where
3Our work is also applicable to master-worker architectures,
where aggregation is performed in a central parameter server.
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Figure 2: (a) DNN architecture at node i. (b) Gradient
compression mechanism for the Lth layer of a DNN.

0 ≤ γ ≤ 1. Nesterov [58] proposes an alternative momentum
update rule, where the gradient g is computed at a look-
ahead point xk + γzk as: zk+1 = γzk − ηkg(xk + γzk). Both
momentum approaches are used to modify Equation (3) of
SGD to: xk+1 = xk + zk+1. In addition to SGD, several
accelerated versions, such as ADAM [42], or ADAGrad [23],
are used for DNN training.

3. GRADIENT COMPRESSION
This paper focuses on gradient compression.4 Let gi,Lk be

the local gradient5 in worker i at layer L of the DNN during
training iteration k. Instead of transmitting gi,Lk , the worker
sends Q(gi,Lk ), where Q is a compression operator (see Fig-
ure 2). The receiver has a decompression operator Q−1 that
reconstructs the gradient. Typically, this process is lossy; for
this reason, several methods incorporate a memory (or error
feedback) mechanism to compensate for errors accumulated
due to the lossy compression.
We classify gradient compression techniques into four cate-

gories, shown in Table 1: quantization, sparsification, hybrid
and low-rank. The rest of this section presents the details.

3.1 Quantization
There are two broad classes of quantization compressors:

(i) limited-bit, where each gradient element is mapped to
fewer bits (e.g., truncation); and (ii) codebook-based, where Q
projects the gradient coordinates into predefined code-words.
8-bit quantization. This is a limited-bit technique, pro-
posed by Dettmers [19]. It maps each float32 element of
the gradient to 8 bits: 1 sign, 3 exponent and 4 mantissa
bits. To minimize precision loss, the work also proposed a
dynamic scheme, where exponent bits range from 0 to 6.
1-bit SGD. Seide et al. [72] proposed this extreme form of
limited-bit quantization: all gradient elements that are less
than a user-defined threshold τ (0 by default) are quantized to
‘0’; all other elements are quantized to ‘1’. Q−1 decodes ‘0’s
and ‘1’ to the mean of the negative and non-negative values
of the local gradient, respectively. This work also introduced
a memory mechanism mk to compensate for the accumulated
error. Let g̃k be the compressed gradient at iteration k. Then
g̃k = Q(gk +mk), where mk = gk −Q−1(g̃k).
SignSGD, SIGNUM and EFsignSGD. SignSGD [10] is
also a limited-bit method that transmits the sign of gra-
dient elements by quantizing the negative components to

4For the orthogonal topic of parameter compression, see §6.
5For simplicity, we will omit i, L from gi,Lk when possible.
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−1 and the others to 1. SIGNUM [11] is a momentum
version (see §2) of SignSGD. Each worker i updates the
momentum term zik via: zik = (1 − δ)gik + δzik and trans-
mits sign(zik). All n workers receive the aggregated vectors:
sign

(∑n
i=1 sign(z

i
k)
)
and update the model parameter via:

xk − η
(
sign

(∑n
i=1 sign(z

i
k) + λxk

))
, where λ ≥ 0 is a weight

decay factor. If δ = λ = 0, then SIGNUM becomes SignSGD.
In some cases, SignSGD does not converge during DNN

training. Karimreddy et al. [41] proposed EFsignSGD, that
incorporates a memory mechanism; their method alleviates
the convergence issues. Zheng et al. [94] extended the error
feedback approach to a bidirectional [80] blockwise scheme
with Nesterov momentum.
Quantized SGD. QSGD is a codebook-based stochastic
compression scheme by Alistarh et al. [3]. Wu et al. [88]
combined QSGD with error feedback. QSGD quantizes each
component of the stochastic gradient via randomized round-
ing to a discrete set of values (i.e., code-words) that preserve
the statistical properties of the original stochastic gradient.
Formally, a gradient component g[i] is quantized to:

g̃[i] =

{
‖g‖2sign(g[i]).( ls ) with probability pi =

s|g[i]|
‖g‖2

− l
‖g‖2sign(g[i]).( l+1

s
) with probability 1− pi

where ‖ · ‖2 is the Euclidean norm, s ≥ 1 and l ∈ N are
user-defined parameters, such that 0 ≤ l < s and |g[i]|‖g‖2

∈
[l/s, (l + 1)/s]. An example is shown in Figure 3; there are
5 code-words, therefore, each element g[i] of the original
stochastic gradient is quantized to 3 bits.
LPC-SVRG and Natural Compression. LPC-SVRG
[92] is a quantized version of the classic SVRG [40] algorithm.
LPC-SVRG is a codebook-based approach that combines
gradient clipping with quantization. For bit-width w and
scaling factor δ > 0, gradient component g[i] ∈ [ε, ε+ δ] is
quantized to either end-point of the interval:

g̃[i] =

{
ε with probability pi =

ε+δ−g[i]
δ

ε+ δ otherwise
(4)

where ε ∈
{
−2w−1δ, . . . ,−δ, 0, δ, . . . , (2w−1 − 1)δ

}
. The same

authors proposed an accelerated version with Katyusha mo-
mentum [5]. Quantized-SVRG [3] is a related method with a
variance reduction mechanism. Horváth et al. [32] proposed
a similar scheme, called natural compression, that rounds
the input to one of the two closest integer powers of 2.
INCEPTIONN. INCEPTIONN [47] is an adaptive quanti-
zation technique that leverages the characteristics of floating-
point gradient values as well as the benefits of in-network
acceleration. Based on the range of gradient values, each
32-bit floating-point gradient value is quantized into four

Original Gradient 
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Figure 4: Example Top-k compression: 20% of the gra-
dient components and corresponding indices are sent.

different levels (32bit, 16bit, 8bit, 0bit) with an extra 2-bit
tag indicating the compression level. Notably, this work
is implemented in FPGA-based Network Interface Cards
(NICs) to reduce the compressor’s computational overheads.
Ternary gradient. TernGrad [87] uses three numerical
values {−1, 0, 1} scaled by the infinite norm of the stochastic
gradient to obtain the quantized stochastic gradient. First,
given a stochastic gradient g, the elements of the bit-mask b
is selected with probability: P (bi = 1|g[i]) = g[i]/‖g‖∞. By
using this bit-mask, the stochastic gradient g is quantized to
g̃ = ‖g‖∞sign(g)� b (� is element-wise product).

Remark 1. The quantization schemes in [3, 32, 87, 93] are spe-
cial cases of Equation (4). In particular, for s = ‖g‖2/‖g‖∞
TernGrad is equivalent to QSGD. TernGrad tends to achieve
better convergence rate if ‖g‖2/‖g‖∞ →

√
d, that is, the

gradient components are evenly distributed [39].

3.2 Sparsification
Sparcification methods select only a subset of the elements

of the original stochastic gradient g, resulting in a sparse
vector. The selection process can be formalized as follows:
Let b be a bitmask vector with the same number of elements
as g. An ‘1’ bit in b[i] indicates that the corresponding
gradient element g[i] is selected. The element-wise product
g � b generates a sparse vector of the original stochastic
gradient. The sparse vector can be represented as two vectors:
one contains the values of the selected elements of g, whereas
the other contains the indices of the corresponding ‘1’ in b.
We classify sparsification compressors into: (i) fixed di-

mension, where the number of selected elements is fixed (e.g.,
20% of the original gradient); and (ii) variable dimension,
where the number of components is adapted during runtime.
Random-k. This is a fixed-dimension sparsification method
[76]. Let d be the size of the bitmap b. A set of k indices
are randomly selected out of d possible ones, and the k
corresponding bits of b are set to ‘1’. By design, Random-k
is biased, but can be made unbiased by multiplying g with a
factor d

k
. There is also a version with error feedback.

Top-k, Threshold-v and Sketched-SGD. Top-k [2, 4]
is a fixed-dimension sparsification method. Using the above-
mentioned formalization, bit mask b is selected such that
b[i] = 1 if |g[i]| belongs to the k largest values of g (in absolute
value); otherwise, b[i] = 0. Figure 4 shows an example. Stich
et al. [76] also proposed a similar scheme with memory.
Unlike selecting the k largest values in Top-k, Threshold-v
selects the elements whose absolute values are larger than a
fixed threshold value [24]. However, an appropriate threshold
value is hard to determine as it depends on the model. Ivkin
et al. [34] proposed Sketched-SGD, which uses count-sketch
to select the “heavy hitters”, which approximate the Top-k
components of the gradient vectors. They also proposed a
version of sketched-SGD with memory.
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Deep gradient compression (DGC) and sparse gradi-
ent compression (SGC). In DGC [50] each worker i calcu-
lates the local gradient gik and updates it as: uik = βuik−1 + gik.
One can think of the above step as momentum added to
the local gradient. Then, the gradient is accumulated via:
vik = vik−1 + uik. Only gradient elements g[i] < −τ and
g[i] > τ are transmitted, where τ is a user-defined thresh-
old. In the same spirit, in SGC [78], the local gradient
gik at each worker i is combined with the momentum via:
uik = uik−1 + εgik, Then, the gradient is accumulated via:
vik = αuik−1 + uik, and sparsified similarly to DGC.
Adaptive and variance-based sparsification. Wangni
et al. [86] observed that the variance of the gradient affects
the convergence rate, and proposed an unbiased sparse coding
to maximize sparsity and control the variance. They assign a
probability pi and a mask Zi ∈ {0, 1} to each component g[i]
of the gradient to obtain the compressed gradient element
g̃[i] = Zi

g[i]
pi

, where P{Zi = 1} = pi. Tsuzuku et al. [82] also
use the gradient element variance to sparsify. A stochastic
gradient element is transmitted if the measurement of its
variance is less than a predefined threshold.

3.3 Hybird compressors
Hybrid methods combine quantization with sparsification.

Qsparse local SGD. Basu et al. [8] combine quantization
with Top-k or Random-k sparsification. They implement
synchronous and asynchronous versions with error feedback.
Hard threshold SGD. Strom et al. [77] employ a user-
defined threshold τ . Gradient elements g[i] ∈ [−τ, τ ] are
omitted; therefore, the gradient is sparsified. For the remain-
ing gradient elements, if g[i] < −τ , it is quantized to ‘0’; else,
if g[i] > τ , it is quantized to ‘1’. Those elements are then
packed into 32-bit words with one bit for the quantized value
(‘0’ or ‘1’) and 31 bits for the element index. During decom-
pression, ‘0’s and ‘1’s are decoded to −τ and τ , respectively.
Note that the appropriate value of τ is model-specific and
hard to determine in practice.
Adaptive threshold SGD (Adaptive). Instead of a fixed
τ , Adaptive [22] uses a ratio α < 1 of the proportion of
negative and non-negative gradient elements that will be
sent. The algorithm samples the gradient to determine
dynamically for each mini-batch two thresholds τ− and τ+

that satisfy the α-ratio. The rest of the process is similar to
[72]. Adaptive employs error feedback similar to [72, 77].
SketchML. Jiang et al. [38] proposed a sketch-based com-
pression of the stochastic gradients. The algorithm selects
only the non-zero elements of the gradient (i.e., sparsifica-
tion) and builds a non-uniform quantile sketch [26]. Gradient
values of each bucket are encoded with the bucket’s index
(i.e., quantization). The algorithm further compresses the
bucket indices through hashing.
3LC. For a gradient vector g, 3LC [48] first calculatesM =
s‖g‖∞, the highest magnitude gradient element scaled by a
sparsity-multiplier parameter s ∈ [1, 2). Then the quantized
gradient is obtained by rounding the scaled gradient (1/M)g.
Larger s generates a sparser output which can be further
compressed by an aggressive lossless encoding. Additionally,
it uses memory compensation.

3.4 Low-rank decomposition
DNNs are over-parameterized and exhibit low-rank struc-

ture [7, 46]. Based on this observation [36, 60], low-rank

M ≈ P

R

m

L

m

Lr
r

Rank 𝑟
factorization, 
where  𝑟 ≪
min 𝑚, 𝐿

Figure 5: Low-rank compression: Matrix M is decom-
posed into two low-rank matrices P,R each of rank r.

methods represent the gradient as a matrix M ∈ Rm×L
and factorize it into two low-rank matrices P ∈ Rm×r and
R ∈ Rr×L that are smaller than M (see Figure 5). Typically,
the factorization is approximate.
ATOMO and GradiVeQ. ATOMO [84] minimizes the
variance of the quantized stochastic gradient. Let g̃ be an
unbiased estimator of stochastic gradient g that has atomic
decomposition g =

∑
i λiai, where A = {ai} ⊂ V are atoms

in an inner product space V with ‖ai‖ = 1. If for each
i and 0 ≤ pi ≤ 1, ti ∼ Bernoulli(pi), then ATOMO uses
the estimator g̃ =

∑
i
λiti
pi
ai and by using a sparsity budget

‖p‖1 = s solves a meta-optimization problem. This controls
the gradient variance and represents g with a set of fewer
basis elements that yield a low-rank approximation of g. The
same authors proposed spectral-ATOMO, based on the sin-
gular value decomposition (SVD) of the gradient. GradiVeQ
(gradient vector quantizer) [91] is also based on SVD.

Remark 2. With respect to the standard basis (atom), set
q = 2 and ∞, respectively, in s = ‖g‖1/‖g‖q and probability
pi = |g[i]|/‖g‖q. Then one can recover QSGD and TernGrad,
respectively, from ATOMO.

PowerSGD and GradZIP. PowerSGD [83] uses power
iteration to decompose the original gradient matrix M into
two r-rank matrices P and R. The scheme is biased and the
authors proposed to use a post-compression momentum. A
similar method, GradZIP [14], employs an extra regularizer
‖P‖2F + ‖R‖2F and uses an alternating direction method to
obtain factors P and R.

3.5 General comment on convergence
For a non-convex function f (as it is the case with DNNs),

it is typical to show that quantity min
k∈[K]

E(‖∇fk‖2) → 0 as

K →∞. While some compressed distributed SGD methods
were analyzed in the non-convex setup, some papers only
provide the convergence guarantee when f is convex, under
standard assumptions (e.g., see [24]). With compressed and
distributed SGD, the majority of the aforementioned work
showed the classical convergence rate O(1/

√
K) for non-

convex functions. See [24] for a general convergence analysis
of distributed SGD.

4. A UNIFIED FRAMEWORK
We now describe a unified framework for compressed com-

munication for distributed SGD and the programming in-
terface it offers. We then instantiate the framework within
the two most popular ML toolkits, TensorFlow and PyTorch,
and highlight implementation details. The main merit of our
framework is that it encompasses a wide range of compres-
sion methods (capturing all the methods discussed in §3) and
yet it exposes a simple programming interface with which
we can implement compression methods succinctly. As such,
our framework enables a reference for a fair comparative
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Algorithm 1 Distributed Training Loop
Input: Number of nodes n, learning rate ηk, compression
Q and decompression Q−1 operators, memory compensation
function φ(·), and memory update function ψ(·).
Output: Trained model x.

1: On each node i:
2: Initialize: mi

0 = 0 {vector of zeros}
3: for k = 0, 1, . . . , do
4: Calculate stochastic gradient gik
5: g̃ik = Q(φ(mi

k, g
i
k))

6: mi
k+1 = ψ(mi

k, g
i
k, g̃

i
k)

7: if compressor uses Allreduce then
8: g̃k = Allreduce(g̃ik)
9: gk = Q−1(g̃k) / n
10: else if compressor uses Broadcast|Allgather then
11: [g̃1k, g̃

2
k, · · · , g̃nk ] = Broadcast(g̃ik) | Allgather(g̃ik)

12: [g1k, g
2
k, · · · , gnk ] = Q−1([g̃1k, g̃

2
k, · · · , g̃nk ])

13: gk = Agg([g1k, g
2
k, · · · , gnk ])

14: end if
15: xik+1 = xik − ηkgk
16: end for
17: return x {each node has the same view of the model}

evaluation across diverse methods and serves as a platform
for rapid prototyping of new ones.

4.1 Distributed training loop
Our framework builds upon the distributed training loop

with compressed communication depicted as pseudo-code in
Algorithm 1. Each node executes the training loop in parallel
and synchronizes with other nodes during communication
phases. To ease presentation, we only give a high-level de-
scription of the process through simple notation. Additional
technical details will follow in subsequent sections.
Customizable components. Algorithm 1 references the
following components that are customized for different com-
pression methods:

• Q(·) and Q−1(·): denote the compression and decom-
pression operators, respectively.
• φ(·): is the memory compensation function, which
compensates at each iteration the node-local gradient
with the previous iteration’s error feedback.
• ψ(·): is the memory update function that combines at

each iteration the memory with the node-local gradient
and error feedback.
• communication strategy: two types of collective commu-
nication strategies are explicitly supported, with sup-
port for custom gradient aggregation functions (Agg).

Training loop process. Each node locally computes a
stochastic gradient gik based on a mini-batch of training sam-
ples (Line 4). Then, the node combines gik with its memory
mi
k via φ(·).6 Next, the node applies the compression opera-

tor Q on φ(gik,m
i
k) to produce g̃ik (Line 5). The memory mi

k

is updated using ψ(·) (Line 6). Now, each node communi-
cates its g̃ik using a collective communication primitive (Lines
8 and 11). Subsequently, every node obtains an aggregate
of decompressed gradient gk, typically gk = 1

n

∑
iQ
−1(g̃ik).

At this point, we distinguish the case of Allreduce and
Broadcast | Allgather because the former results in the

6The case with no memory compensation (hence, no memory)
is a special case, where φ(gik,m

i
k) = gik and ψ(m

i
k, g

i
k, g̃

i
k) = 0.

aggregate of the compressed gradients, whereas the latter
involves a one-to-all or all-to-all communication, followed
by a local aggregation step (the Agg function), which is
customized for different methods. Finally, with gk, each
node updates its model parameters (x) by using Equation (3)
(Line 15). The loop repeats until convergence.
Layer-wise gradient as tensors. We denote the stochas-
tic gradient gik of a model as a single vector (at node i). This
is merely for ease of presentation. Our framework equally
applies to modern ML toolkits, where it is common during
back-propagation to compute gik incrementally for each DNN
layer as some sequence ĝi,jk for decreasing j.
Different optimizers. Although we cast our training loop
as a distributed SGD process, we note that the customizable
components (Q, Q−1, φ, ψ) are optimizer independent. In-
stead of SGD, any stochastic algorithm, such as AdaGrad
[23], ADAM [42], can be used as optimizer in Algorithm 1.
Our experiments use different optimizers, including SGD,
RMSProp and SGD with momentum.
Memory compensation functions. We use the following
form of the functions φ(·) and ψ(·) in this paper:

φ(mi
k, g

i
k) = βmi

k + γgik

ψ(mi
k, g

i
k, g̃

i
k) = φ(mi

k, g
i
k)− g̃ik (5)

where β > 0 is the memory decay factor and γ > 0 weighs the
relevance of the latest stochastic gradient. We use β = γ = 1
unless otherwise noted; we consider a sensitivity analysis out
of the scope.
Communication with parameter server. Our frame-
work is compatible with parameter server-based communica-
tion. Conceptually, a parameter server provides a gradient
aggregation function equivalent to Allreduce. However, the
Horovod toolkit we base our implementation on, exclusively
supports collective communication libraries. We attempted
to integrate with BytePS [13], which is meant to work as a
drop-in replacement for Horovod; However, its API did not
allow for easy customization of the aggregate function at the
parameter server. We leave this extension to future work.

4.2 Programming interface
We provide an API for compress Q, decompress Q−1,

memory_compensate φ, memory_update ψ and aggregateAgg
functions that are mentioned in the pseudo-code. The frame-
work considers context (ctx) as an opaque object that can
carry any necessary metadata to allow for decompression,
which should return a tensor with same data type and shape
as the original tensor. For instance, in sparsification meth-
ods, the context might carry the shape or size of the original
tensor. Below is an example function definition that takes
a tensor with unique name and returns a list of compressed
objects with the context needed to decompress them:
compress : tensor, name → [comp], ctx
Our framework provides defaults for memory_compensate,

memory_update (Equation 5), and aggregate (the average
function). The user needs to implement compress and
decompress for a specific compression method, and indicate
to the framework which communication strategy to use.
Compression typically produces tensors of different dimen-

sions or data types (e.g., int8, float16) than the original
ones. For instance, sparsification results in smaller tensors
while quantization results in either different data types or
bit-packed elements with the original data types. As these
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Table 2: API utility functions.

API Description

quantize Quantizes tensor values and returns values in lower bits
dequantize Dequantizes a tensor and restores original bits
sparsify Sparsifies a tensor in a certain selection algorithm
desparsify De-sparsifies and restores original shape by filling zeros
pack Encodes several lower-bit values into one higher-bit value
unpack Unpacks and restores the original decoded form

manipulations are common across several methods, our API
implements the primitive functions of Table 2.
We aim to support both TensorFlow and PyTorch, which

unfortunately have different APIs. Following Horovod’s strat-
egy, we create two similar yet distinct implementations.
Tensor manipulation operations. Both TensorFlow and
PyTorch provide high-level tensor-manipulation APIs in
Python as well as a C++ library to define custom tensor
operations. For simplicity, we adopt Python API; however,
this does not prevent the user from integrating a custom
C++ operation. We note that the Python API is what is
typically used by model creators and is backed by efficient
low-level kernels for GPUs or other HW accelerators.
Communication operations. We leverage the Horovod
API [31] for communication that exposes three collective com-
munication primitives: Allreduce, Allgather, and Broadcast.
On the backend, these are implemented by several alternate
libraries: OpenMPI, NVIDIA NCCL and Facebook Gloo [25].
Communication strategies. We support two types of
communication strategies. In general, Allreduce is a more
efficient operation than Allgather | Broadcast. However,
it is not readily suitable for several scenarios. The main
limitations in the underlying implementation are that it does
not support sparse tensors and requires that input tensors
be of the same data type and dimension. Moreover, it can
only aggregate tensors by summing. In contrast, Allgather
and Broadcast do not perform any aggregation and support
input tensors of different forms.7 This is well suited for
quantization when aggregation needs to be performed on
dequantized values as well as for sparsification when different
nodes select gradient elements at non-overlapping indices.

4.3 Implemented compressors
Starting from the compression methods surveyed in §3, we

now identify a subset for implementation within our frame-
work. We focus on compressors that are representative of
particular classes. We implement and evaluate 16 compres-
sors (see list in Table 1).
We implement the compressors by faithfully following the

algorithm descriptions presented in their corresponding pa-
pers. Where available we draw from publicly available im-
plementations of these methods; however, in many cases
these are not released, although we reached out to the origi-
nal authors to acquire them. As such, we remark that our
implementation is a best-effort approach that reflects the
intention of the respective methods, although it might not
be as efficient as the original ones. We avoid creating cus-
tom C++ tensor operations for efficiency because we find
that the Python API is functionally sufficient and because
it would have required an excessive effort given the large
number of methods we implement. Despite there might be
some differences in implementation techniques, we are careful

7NCCL Allgather requires same type and dimension, which
precludes us from using NCCL at times.

to reproduce the original accuracy results in their respective
papers in order to validate our implementation. Below, we
highlight noteworthy implementation details.
Implementing quantization. Consider a quantization
method implemented through our API. quantize converts
the original 32-bit floating-point values into a lower-bit rep-
resentation. The context stores additional information (such
as mean and different norms) needed to dequantize. In some
scenarios, pack can further compress the representation by
encoding several values originally stored in 32-bit into a sin-
gle 32-bit value. For instance, a 1-bit quantization can pack
32 values into a single 32-bit integer. dequantize transforms
quantized values to an approximation of the original values.
When multiple values are tightly packed, unpack first decodes
them into their original representation.
Implementing sparsification. Consider a sparsification
method implemented through our API. To ease implemen-
tation, sparsify flattens the original tensor into a rank-1
tensor and indexes elements using this representation. The
context stores the original tensor dimension. sparsify se-
lects partial elements (m out of d) of the gradient, and creates
two rank-1 tensors (1 ×m) to represent the values and in-
dices of selected elements, respectively. desparsify stores
the sparsified values into a rank-1 tensor of size d according
to their indices, fills missing values with zeros, and reshapes
the tensor as per the original shape (obtained by ctx).
Implementing Adaptive [22]. Adaptive splits the gra-
dient into a positive- and a negative-value part.We apply
quantize to encode values in a ternary format and we sep-
arate the +1 and -1 values. We use sparsify based on a
dynamically determined threshold to select elements accord-
ing to a sparsification ratio k. As values are all ones, we omit
communicating them and send mean and selected indices of
each part. Then, for decompression, we use desparsify to
restore the dequantized values scaled by the mean for each
part. Finally, we aggregate the gradient tensor as the sum
of the positive and negative parts.
Implementing DGC [50]. The momentum correction used
in DGC is similar to memory compensation. We implement it
using custom memory functions. memory_compensate adjusts
the values by both memory and momentum. memory_update
uses the minimum absolute value in the compressed gradient
as the threshold to get the mask and to update the memory.

5. EXPERIMENTAL EVALUATION
In this evaluation of 16 compressors, we focus on measur-

ing and analyzing the performance gains across a range of
representative benchmarks. Although it is not possible to
generalize our conclusions to arbitrary conditions, our results
cover 5 benchmarks, 7 model architectures and 4 ML tasks
(image classification, segmentation, recommendation, and
language modeling). We believe these are sufficient to offer
insights and draw lessons that are broadly applicable.
We break down the efficiency gains of compression along

two metrics: (i) the data volume that each worker gener-
ates, and (ii) the training throughput (in terms of training
samples/s). Measuring data volumes characterizes the intrin-
sic communication-level algorithmic efficiency of a method;
whereas throughput offers the extrinsic measure of perfor-
mance gains while other practical system artifacts are at play
(e.g., computational overheads of compression, the extent to
which the model architecture is communication bound).
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Table 3: Summary of the benchmarks used in this work.

Task Model Dataset Training
parameters

Gradient
vectors Epochs Quality

metric
Baseline
quality

Image
Classification

ResNet-20 [28] CIFAR-10 [44] 269,467 51 328

Top-1 Accuracy

90.86%
DenseNet40-K12 [33] CIFAR-10 [44] 357,491 158 328 92.07%
Custom ResNet-9 [62] CIFAR-10 [44] 6,573,120 25 24 91.67%
VGG16 [75] CIFAR-10 [44] 14,982,987 30 328 86.32%
ResNet-50 [28] ImageNet [18] 25,559,081 161 90 75.37%
VGG19 [75] ImageNet [18] 143,671,337 38 90 68.90%

Recommendation NCF [29] Movielens-20M [55] 31,832,577 10 30 Best Hit Rate 95.98%

Language
Modeling LSTM [30] PTB [54] 19,775,200 7 25 Test Perplexity 100.168

Image
Segmentation U-Net [69] DAGM2007 [16] 1,850,305 46 2,500 Intersection

over Union (IoU) 96.4%

For the above metrics, our evaluation explores their trade-
off with model quality (e.g., accuracy). In particular, we
address the following questions:
• Is there a definite trade-off between model quality and
data volume or throughput?
• Does a larger data volume (intuitively, more information)
result in higher model quality?
• To what extent do computational overheads of compression
influence performance gains?
• How do number of workers, network link capacity, or
the hosting ML framework (TensorFlow or PyTorch) affect
performance gains?
• Does error feedback (EF) work throughout?
• Are there distinctly better or worse compression methods?
• What is the effect of using a different optimizer (e.g., SGD
or SGD with momentum)?
Our main observations are as follows:
• There is no evidence that any particular compression
method outperforms every other methods across all experi-
mental scenarios.
• The computational overheads of compression are not negli-
gible. In several cases, at relatively high communication link
rates (10 Gbps or more), not doing any compression results
in faster training times. This observation agrees with the
results reported in [47, 53], which also show that computa-
tional overheads can make compression inefficient in practice.
• EF is widely applicable to sparsification and improves the
accuracy by 4.38% on average, and up to 72.98%. However,
it can lower accuracy in certain cases or even prevent model
convergence. Further, EF comes with memory overheads,
which can prevent using the default mini-batch sizes in some
cases, thus lowering overall efficiency.
• A higher data volume does not imply higher accuracy;
however, we observe that when compression is heavy, a low
data volume tends to decrease accuracy.
• The hosting ML framework influences performance only
to a minor extent; the major performance variations are due
to the underlying collective communication libraries (NCCL
vs. OpenMPI).
We now describe our experimental setup and present the

results. We then discuss them and draw our conclusions.

5.1 Experimental setup and methodology
Environment. We run most of the experiments on 8 ded-
icated server-grade machines while offloading a subset of
accuracy experiments to a shared cluster. We only report

time-insensitive metrics (e.g., accuracy, data volume) from
the experiments on the shared cluster. The dedicated ma-
chines run Ubuntu 18.04.2 LTS and Kernel v.4.15.0-74, are
equipped with 16-Core Intel Xeon Silver 4112 running at
2.6 GHz, 512 GB of RAM, one NVIDIA Tesla V100 GPU
card with 16 GB of on-board memory, and 10 and 25 Gbps
network interface cards. The shared cluster has a heteroge-
neous group of nodes and we use those equipped with at least
one NVIDIA Tesla V100 GPU card. We deploy CUDA 10.1,
PyTorch 1.3, TensorFlow 1.14, Horovod 0.18.2, OpenMPI
4.0, NCCL 2.4.8.
Benchmarks. We use publicly available, industry-standard
benchmarks from TensorFlow [51, 81] and NVIDIA [59].
Table 3 gives an overview of the models we train, including
their size and dataset dimensions. These benchmarks span
4 common ML tasks from different domains and involve a
mix of convolutional and recurrent neural networks, and
ones with large embedding layers. The trainable parameters
span 3 orders of magnitude. The number of communicated
gradient vectors range from 7 to 161. The quality of the
model is reported under diverse nomenclatures according to
benchmark-specific metrics as shown in Table 3.
Methodology. We run each experiment for a fixed number
of training epochs (complete iterations over the training set)
according to every benchmark’s specification to reach con-
vergence. The reported quality of the model (e.g., accuracy)
– which is based on a held-out test set – is the best one
witnessed throughout training.
We use no compression as the baseline for comparison.

By default, as the optimizer, “Baseline” uses SGD with mo-
mentum for image classification, RMSProp for segmentation,
ADAM for recommendation, SGD for language modeling.
In each benchmark, compressors use the same optimizer as
the baseline, except for image classification whereby Pow-
erSGD, Random-k, DGC, SignSGD, SIGNUM use vanilla
SGD (compare to “Baseline(sgd)”) as it gets better quality.
When reporting relative results, they are normalized to the

relevant metrics measured for the baseline case. We ensure
our baselines converge to state-of-the-art results (Table 3).
We report results from one representative experiment with

each method. We took care to make repetitions to vali-
date statistically the model quality, except when it is too
time-consuming to do so (as in training with ImageNet for
instance). However, we observe that the model quality only
has small variations once training converges. Due to space
limit, we focus mainly on TensorFlow results. We illustrate
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an example with PyTorch and comment on the differences
where relevant.

For each compressor, we generally report only results with
EF on or off according to which one worked best in our
exhaustive analysis on the image classification task. Table 1
indicates where EF is used.
Unless otherwise noted, we use the default configuration

with each benchmark. But the performance of compressors
is sensitive to a range of factors such as the optimizer (e.g.,
SGD or SGD with momentum), standard hyperparameters
(e.g, mini-batch size, learning rate) and compressor-specific
parameters. For instance, several compressors allow for a
varying degree of compression. Where practical, we experi-
ment with multiple values of these factors and report on their
effects (e.g., Random-k(0.1) means k = 10%). However, a
complete sensitivity analysis to these factors is out of scope.
We report throughput as the average measured at steady

state by considering the last 100 iterations during training
as this metric is fairly stable due to performance predictabil-
ity of GPUs (per-worker mini-batch size is kept constant).
We measure data volume in bytes for each invocation of a
collective communication primitive based on the input size
and a standard representation of data types (e.g., 4 bytes for
float32, or 1 byte for 256-level quantized data).
We keep all hyperparameters the same as with the baseline

except for the cases where specific hyperparameter settings
are stated in a compressor’s original paper. Specifically, for
EFsignSGD, we set β = 1 and γ equal to the initial learning
rate.
Finally, we remark that the results shown below refer to

experiments with 10 Gbps network links and using OpenMPI
over TCP as collective library.8 We also run experiments
with 25 Gbps network links and we observe mild improve-
ments in throughput (on average, 1.3%) whereas the relative
improvement compared to the baseline in the two scenarios
is minimal. Thus, 10 Gbps links are our default setting and
we analyze later the effects of this configuration.

5.2 Model quality vs. training throughput
We first observe the effects of compression on model quality

as a function of throughput achieved. Intuitively, we expect
that more aggressive compressors would tend to make a
larger trade-off with quality. Figure 6 quantifies this relation
across different benchmarks and for each compressor. Note
that VGG results are not shown in for brevity. Compressors
that achieve poor quality (below the y-axis cut-off) or do
not converge are not shown. Throughput is normalized to
the baseline case (highlighted with a vertical line in red).
In general, we observe that training converges to solutions

with quality metrics comparable to the respective baselines
in most cases. In some cases, and perhaps surprisingly, the
model quality is slightly higher than the baseline. We believe
this can be attributed to the stochastic nature of the process
and that compression can in some cases cancel out bad
gradient directions. For example, DGC [50] also reported
0.37% better accuracy than baseline.
With respect to throughput, in many cases, most compres-

sors achieve a throughput that is lower than the baseline.
This happens for any benchmark where the trained model
is primarily computation-bound (e.g., ResNet, DenseNet,
8NCCL is faster than OpenMPI but, as mentioned in §4.2,
NCCL constrains input sizes and this prevents a fair com-
parison as NCCL is applicable for a subset of compressors.

U-Net). In contrast, for communication-bound models (e.g.,
NCF, VGG), there are several combinations of compressors
that mark a significant throughput improvement.
The recommendation benchmark (Figure 6d) is partic-

ularly interesting. First, this is a previously unexplored
benchmark in the literature on compressed communication
(which primarily has focused on convolutional NNs). Second,
it highlights that there exists, in this particular case, a defi-
nite trade-off between model quality and throughput: while
many compressors achieve 1.5× to 4.5× speedup, quality
lowers by up to 10%. Third, it illustrates that for both
variable-dimension and fixed-dimension compressors with a
tunable degree of compression, quality lowers as compression
is more aggressive. Interestingly, these observations are not
common in other benchmarks. For instance, QSGD and Top-
k in CIFAR-10 experiments score a ballpark model quality
across varying degree of compression. We elaborate more on
the trade-off with data volume below.
Takeaways. No method consistently performs well across
all benchmarks and there is no strong correlation between
throughput and model quality. Hence, the quality-throughput
trade-off is not straightforward to infer; implying that com-
pression should be chosen carefully for a given benchmark so
as to employ a compressor that achieves a desired trade-off.

5.3 Model quality vs. data volume
We now consider the model quality vs. data volume trade-

off. This reflects the communication complexity of each
compressor from a fundamental perspective – that is, we com-
pare compressors in terms of communication cost9 regardless
of the associated computational overheads of compression.
Figure 7 shows for each compressor its best model quality
and the average communicated data volume per iteration to
achieve that quality.
In general, we observe that a compressor that sends more

data leads to higher model quality. This is true in most
cases especially in the language modeling task as shown in
Figure 7d. However, we observe that for some compressors,
a higher data volume results in lower model quality. For in-
stance, this is the case with Adaptive across all benchmarks;
Sketch-ML and DGC for the CIFAR-10 image classification
task (Figures 7a and 7b); Threshold-v for the image segmen-
tation task (Figure 7f).
Takeaways. There are several cases where for a varying
degree of compression in a given compressor, the model
quality increases as more compression is performed. This
suggests that the quality vs. data volume trade-off is non
trivial and, as mentioned before, compression should be tuned
carefully to deliver the best benefits for a given scenario.

5.4 Model quality vs. error feedback
Table 1 indicates with a where EF is applied; this is be-

cause we find that EF improves accuracy in general for those
compressors (in particular with sparsification). However, our
results empirically establish that EF harms the convergence
of several quantization methods (SignSGD, SIGNUM, QSGD
and Terngrad).
In the case of SignSGD and SIGNUM, this issue is known

and was fixed by design in EFsignSGD. That said, we ob-
serve that without EF, SignSGD and SIGNUM achieve poor
9Because we do not implement packing, the data volumes
are inflated for quantization methods. However, in a relative
sense our results still hold.
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Figure 6: Performance of compressors in terms of model quality vs training throughput.

quality solutions in many (when not every) benchmark. One
reason for this is that these compressors seem to require a
non-standard learning rate. For instance, we use 0.001 for
CIFAR-10 as per the original paper. However, we did not
customize it for other benchmarks and the results did not
converge. EFsignSGD does not have this issue.
Interestingly, and exclusively for the recommendation task

results, we see that applying EF with Top-k, 8-bit, and
Natural Compression leads to worsened model quality. We
highlight the difference for Top-k in Figure 6d as it is the
most severe case.
Takeaways. We show that EF is not a turn-key solution to
improving convergence and we establish the need for further
studying the impact of EF on compressors as its performance
can vary across types of compressors and benchmarks.

5.5 Scaling efficiency
We measure the impact of compression on scaling effi-

ciency. Figure 8 shows how throughput varies as we scale
the workers from 2 to 8. The shaded gray bars are discussed
in the next section. The horizontal dashed lines depict the
baseline scalability, which exhibits less than ideal (linear)
scaling behavior. We observe that all compressors scale with
increasing workers for these benchmarks.
The results indicate that the scaling rate for most compres-

sors is lower than the baseline, except for the communication-
intensive VGG19 benchmark (Figure 8d). However, a few
compressors exhibit scaling behavior close to the baseline:
Random-k and PowerSGD with CIFAR-10 (Figures 8a and 8b);
Random-k, Threshold-v and PowerSGD with ImageNet (Fig-
ure 8c) and image segmentation (Figure 8f).

Moreover, in the recommendation task, most compressors
achieve better scaling rate than the baseline while PowerSGD
and Threshold-v scale close to linear behavior (Figure 8e).
Similarly, in language modeling tasks, many compressors
achieve better scaling rate than the baseline while PowerSGD,
DGC, Adaptive, and Threshold-v scale close to linear behav-
ior (Figure 10).
Finally, as mentioned, most compressors scale through-

put better than the baseline for VGG19, recommendation,
and language modeling benchmarks. Moreover, PowerSGD,
DGC, and Adaptive not only significantly improve the train-
ing throughput but also have better scaling rate than the
baseline.
Takeaways. These results support our previous observations
that no method consistently performs well on all tasks.

5.6 Computational overheads of compression
Figure 8 shows gray bars that correspond to a through-

put upper bound of each compressor. This is measured by
skipping the compress and decompress calls while faithfully
sending the data volume equivalent to what the compressor
would produce. The difference between gray and correspond-
ing colored bar captures overheads. We also contrast the
results with a micro-benchmark experiment that measures
the combined latency of compress and decompress in iso-
lation; Figure 9 shows the results as a violin plot for 30
repetitions while placing operations both on GPU and on
CPU.
Results show that compressors induce non-negligible over-

heads. Through profiling, we determine that sparsification
compressors such as Random-k and Top-k predominantly im-
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Figure 7: Performance of compressors in terms of model quality vs data volume.

pose high overhead due to operations only available on CPU
and (slow) sorting operations, respectively. Skech-ML im-
poses high overhead due to sketch operations. Natural Com-
pression performs expensive bit-level operations. Other quan-
tization methods (Terngrad, QSGD, 1-bit SGD, SignSGD)
have mild overheads, but they are not the fastest during real
training. This is in part because their data volume is inflated
in our setting. Then, we observe that DGC and Adaptive
have mild overheads but there is a large gap from their up-
per bound measures. We observe that Random-k generally
performs well in terms of throughput in image classification
(Figures 8a, 8b, and 8c) and segmentation (Figure 8f) tasks.
However, it does poorly in recommendation (Figure 8e) and
communication-intensive VGG19 (Figure 8d).
We investigate these cases using the timeline of low-level

operations executing on GPU and find that: 1) Both Adap-
tive and DGC involve a loop (max 20 iterations) to adjust the
threshold to best match the target ratio. This loop turns out
to be very expensive; their throughput improved by ≈ 2×
by executing only one iteration. 2) As shown in Figure 9,
Random-k shows high overhead as the tf.random.shuffle
operation executes on the CPU due to lack of GPU ker-
nel. However, during real training, Tensorflow can sched-
ule device-host data transfer so that it overlaps with GPU
computation and its overhead is at times mitigated. 3) In
Random-k, tf.random.shuffle takes excessively long time
on CPU for both the large embedding and fully-connected
layers in recommendation and language modeling. The ex-
ecution time far exceeds the execution of the forward pass
and hence communication phase stalls by waiting for this

operation. 4) 8-bit invokes a find_bins operation for each
quantized value which, due to lack of a GPU implementa-
tion, is executed on the CPU. 5) We also observe that some
methods rely on an expensive operations (i.e., tf.where).
These are sparsification methods that rely on a threshold
(e.g., Threshold-v, DGC) and quantization methods that
choose target elements meeting a criteria (e.g., 1-bit SGD,
Terngrad, 8-bit, Natural Compression).
Takeaways. Implementing compressors requires careful en-
gineering to account for their intrinsic computational over-
heads, which cannot be discounted. In several cases, custom
GPU code or well-optimized CPU code might be necessary
to achieve high performance.

5.7 ML toolkit, transport and links
Figure 11 shows the throughput of different compressors

in CIFAR-10 image classifcation task using PyTorch with
different communication protocols (TCP and RDMA). We
report that the training throughput is mostly consistent
yet higher than what we observe for most compressors in
the TensorFlow image classification tasks. For instance,
throughput-wise, Random-k and PowerSGD are among the
highest performing methods. When using RDMA instead of
TCP as transport protocol, although the absolute throughput
has decent gains for most compressors, we observe that the
performance of Random-k relative to the baseline worsens.
In contrast, Figure 12 shows the relative throughput for

the same experiment setup as Figure 6c, except it uses 1
Gbps network links. As this setup emphasizes the network
bottleneck, there is now a large number of compressors that
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Figure 8: Performance of compressors in terms of scaling efficiency and throughput upper bound (gray bars).

obtain a throughput speedup over the baseline.
Takeaways. Not all compression methods perform consis-
tently when implemented in different frameworks and differ-
ent transport protocols (i.e., throughput gains are impacted).

5.8 Summary and new research directions
We posit that gradient compression should only be used

after extensive evaluation in a profiling environment before
committing to it for production workloads.
We conclude that this area of research would benefit from

increased attention into the following directions:
• Optimizing the scheduling of gradient compression by max-
imizing the overlap between the compression computations
and forward pass of training iterations.
• Employing compression in network-constrained scenarios
such as geo-distributed or federated learning settings.
• Offloading the compression overhead to a hardware accel-
erator (e.g., FPGA NICs [47]).
• Revisiting the underlying communication libraries to work
efficiently with compressed data (e.g., NCCL Allreduce for
sparse vectors).

6. RELATED WORK
Yang [89] was one of the first to study the trade-off between

computation and communication for distributed stochastic
optimization. Since then, numerous related approaches have
been proposed. We refer to the survey by Ben-Nun and
Hoefler [9] for an in-depth understanding. Below we cite
those that are more relevant to our work.
Compression for ad-hoc P2P overlays. Unlike our work,
which assumes all-to-all aggregation semantics (e.g., AllRe-
duce), others [39, 43, 79, 90] consider an ad-hoc peer-to-peer
network overlay, where nodes communicate only with neigh-
bours. These methods differ from the one we directly support
primarily because they redifine the aggregation semantics to

involve only a subset of workers at a time. Nevertheless, some
use similar compression techniques, like sparsification and
quantization. We leave it as future work to integrate in our
framework’s communication primitives that accommodate
the P2P overlay setting.
Fewer communication rounds. Some methods reduce
the volume of transmitted data by communicating less often.
CoCoA [35] is dual coordinate ascent algorithm that performs
several local steps before communicating with other workers.
Shamir et al. [74] do not compute or communicate explic-
itly second-order information for Newton-type optimization
algorithm. Wang and Joshi [85] propose periodic averaging
SGD, to update the local model at each worker node and
then use periodic average to update the final parameters.
For a non-asymptotic analysis for local-SGD with large step
sizes we refer the readers to [21].
Asynchronous communication. Hogwild! [66] proposed
an asynchronous parallel SGD where the computing nodes
have access to shared memory and can modify the parame-
ters at any time without locking. De Sa et al. [17] proposed a
low-precision asynchronous SGD method. They develop var-
ious techniques to increase the throughput and improve the
speed of low-precision SGD. They also implemented the low-
precision SGD on an FPGA. Asynchronous communication
is outside the scope of our paper.
Communication primitives. Popular communication li-
braries (OpenMPI, NCCL, etc.) do not support natively
sparse data structures that are necessary for many com-
pression methods. Renggli et al. propose a comprehensive
framework, known as SparcML [67] that implements a stream
structure to support sparse tensors. There also exists work
that focus on lower-level communication primitives: Sapio
et al. [71] proposed SwitchML, which uses a programmable
network switch to implement in-network aggregation while
packets are transmitted through the network. Without using
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Figure 9: Latency of compress and decompress (combined) for different compressors with a range of input sizes.
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Figure 12: Performance of compres-
sors for ResNet-50 on ImageNet via
1 Gbps network. Legend in Figure 6.

compression, SwitchML reduces the transmitted data because
of the computation on the network switch. A similar idea is
explored in DAIET [70], for general-purpose aggregation.
Model compression. Instead of compressing the communi-
cated gradient, many papers (e.g., [6, 15, 49, 93]) propose to
compress the model parameters. ZIPML [93], in particular,
applies compression similar to that of QSGD to the model,
data, and gradient. Model compression is orthogonal to our
work and out of scope; we refer to a survey by Guo [27].

7. CONCLUSION
We present a survey and systematic classification of the

most influential methods on gradient compression for dis-
tributed, data-parallel DNN training. We propose a unified
programming framework with the corresponding TensorFlow
and PyTorch API, and implement 16 representative com-
pression methods. We use both convolutional and recurrent
DNNs, as well as a variety of datasets and system configu-
rations, to perform thorough experimental evaluation and
report metrics that include accuracy, throughput, scalability,
communication volume and wall-time. We observe that the
effectiveness of each method depends on the architecture of
the trained DNN. Moreover, the computational overhead of
compression/decompression is non-trivial and may render
several methods inapplicable in practice. We release our
API, code and experimental results, as well as the DNN mod-
els and datasets at https://github.com/sands-lab/grace.
We envision that our work will benefit: (i) researchers, who
will use it as the basis for consistent implementation and

evaluation of new methods; and (ii) practitioners, who need
an appropriate compression method for their training setup.
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