Metal Organic Framework Derived Synthesis of Cobalt Indium Catalysts for the Hydrogenation of CO₂ to methanol

Alexey Pustovarenko,† Alla Dikhtiarenko,† Anastasiya Bavykina,† Lieven Gevers,† Adrian Ramírez,† Artem Russkikh,† Selvedin Telalovic,† Antonio Aguilar,§ Jean-Louis Hazemann,§ Samy Oud-Chikh† and Jorge Gascon†,*

† King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955, Saudi Arabia

§ Néel, UPR2940 CNRS, University of Grenoble Alpes, F-38000 Grenoble, France

KEYWORDS: metal-organic framework derived route, direct CO₂ hydrogenation, methanol synthesis, indium oxide, cobalt oxide.
ABSTRACT

Methanol synthesis by means of direct CO₂ hydrogenation has the potential to contribute to climate change mitigation by turning the most important greenhouse gas into a commodity. However, for this process to become industrially relevant, catalytic systems with improved activity, selectivity and stability are required. Here we explore the potential of metal-organic frameworks (MOF) as precursors for synthesis of Co₃O₄-supported In₂O₃ oxide composites for the direct CO₂ hydrogenation to methanol. Stepwise pyrolytic-oxidative decomposition of indium-impregnated ZIF-67(Co) MOF affords the formation of a nanostructured In₂O₃@Co₃O₄ reticulated shell composite material able to reach a maximum methanol production rate of 0.65 gₘeоh·g⁻¹·h⁻¹ with selectivity as high as 87% over 100 h on stream. Textural characteristics of the sacrificial ZIF-67(Co) matrix and In-loading were found to be important variables for optimizing the catalyst performance such as induction time, methanol productivity and selectivity. The structural investigation on the catalytic system reveals that the catalyst undergoes reorganization under reaction conditions, transforming from a Co₃O₄ with amorphous In₂O₃ shell into Co₃InC₀.₇₅ covered by a layer consisting of a mixture of amorphous CoOₓ and In₂O₃ oxides. Structural reorganization is responsible for the observed induction period, while the amorphous mixed cobalt indium oxide shell is responsible for the high methanol yield and selectivity. Additionally, these results demonstrate the tunable performance of MOF-derived In₂O₃@Co₃O₄ catalyst as a function of the reaction conditions which allows to establish a reasonable trade-off between high methanol yield and selectivity in a wide temperature and pressure window.
1. Introduction

Anthropogenic CO2 emissions increase year by year, with very serious consequences for our climate. In order to solve these environmental and energy issues, intensive research is being carried out into technologies that may eventually turn our economy into a low-carbon one. In this scenario of a circular carbon economy, carbon dioxide is viewed as an alternative resource that can be recycled to produce valuable chemicals and fuels, turning, in such a way, waste to wealth. Among the potential products derived from CO2, methanol has attracted particular attention due to its relevance not only as an alternative fuel but also as a convenient chemical feedstock.

Indeed, methanol synthesis through direct hydrogenation of CO2, using pure H2 and CO2 as starting materials, is considered to be a very promising strategy to utilize CO2 when green hydrogen (produced via electrolysis using renewable energy) is available. At the current stage, the Cu-ZnO-Al2O3 catalyst commercially used in the production of methanol from synthesis gas (CO/CO2/H2) is the benchmark. In direct CO2 hydrogenation, this catalyst is able to drive, to some extent, the production of methanol, however exhibiting low selectivity and fast deactivation caused by competitive reverse water gas shift reaction (RWGS). To address these selectivity and stability issues, a number of multi-metallic composite systems have been proposed, i.e. CuO/ZrO2, CuO/ZnO/ZrO2, CuO/ZnO/Ga2O3, Cu/ZnO/ZrO2/Al2O3/SiO2, and their doped variations (i.e., by Ag, Au, Pt, Pd, Rh promoters). These mix-component systems are able to convert CO2 to methanol with high selectivities at low conversions per pass, such as in case of Cu@ZnO core-shell (SMoOH ~ 100%, XCO2 conversion of 2.3%) or Au-doped ZnO-ZrO2 (SMoOH ~ 100%, XCO2 ~ 1.5%). Contrariwise, when higher CO2 conversions are targeted, low methanol selectivities are usually achieved. This is the case, for instance, for Cu-K/Al2O3 (SMoOH = 2% at X = 29) and for Cu/Zn/Al/Y (SMoOH = 52% at X = 27).
Among recent studies on simpler metal oxide systems featuring higher stability, density functional theory (DFT) calculations predict that methanol synthesis via CO$_2$ hydrogenation is favored over In$_2$O$_3$ surfaces. The proposed catalytic mechanism involves cyclic generation of oxygen vacancies on In$_2$O$_3$ by H$_2$ and their replenishment via CO$_2$ activation. Later, Sun et. al. experimentally proved the superior activity of In$_2$O$_3$ for CO$_2$ hydrogenation to methanol. When In$_2$O$_3$ supported is supported on ZrO$_2$, further improvements in catalytic performance have been reported: at low conversion levels, almost 100% selectivity to methanol with space time yield (STY) of 0.32 g$_{MeOH}$·g$_{cat}$-1·h$^{-1}$ and stable performance over 1000 h on stream can be achieved. In light of recent advances made in In-based bimetallic formulations with improved catalytic merits and inspired by the drastic importance of carrier supports in such catalytic systems, Bavykina et. al. prepared a pre-catalyst consisting in In$_2$O$_3$ supported on Co$_3$O$_4$ by means of reverse co-precipitation. The resulting In@Co system catalyzes methanol formation via CO$_2$ hydrogenation with selectivities above 80% and productivity of 0.86 g$_{MeOH}$·g$_{cat}$-1·h$^{-1}$, at conversion levels close to thermodynamic equilibrium.

It is well known that, in heterogeneous catalysis, the preparation method significantly affects catalytic performance. Over the last decade, particular interest has been paid to Metal-Organic Framework (MOF)-supported and MOF mediated synthetic approaches to prepare highly effective catalysts for a variety of catalytic transformations. Being microporous crystalline materials with a tailored arrangement of metal-centers and bridging linkers, MOFs dispose a system of pores that can be loaded with active components offering an optimal distribution of active sites. For instance, an encapsulation of Cu and/or ZnO nanoparticles within UiO-66(Zr) resulted in highly active catalyst showing an 8-fold enhanced yield and 100% selectivity towards methanol (albeit at very low conversions, where the effect of RWGS is minimized) when compared to the
benchmark Cu/ZnO/Al₂O₃. Besides the promising perspectives of MOF-supported catalysts, recent investigations reveal the advantages in preparation of highly efficient heterogeneous catalytic materials from metal-organic framework supports/precursors by means of thermal decomposition.³⁷,⁴¹⁻⁴² MOF-derived nanocomposite materials, i.e. MOF-derived carbons and oxides, feature a range of advantages, such as high specific area, porosity and excellent distribution of the active component within the host matrix, compared to similar materials prepared by co-precipitation or impregnation methods.³⁷,⁴²

In light of these results, here we explore the MOF mediated route for the preparation of a highly efficient Co₃O₄-supported In₂O₃ catalyst in line with our previous findings on this inorganic system.³⁴ The impregnation of ZIF-67(Co) with indium, followed by thermal decomposition, results in the formation of In@Co oxide composite materials with enhanced catalytic behavior in CO₂ hydrogenation to methanol, revealing higher methanol yields, selectivities and significantly shortened induction times (10 h vs. 30 h observed for In@Co prepared by co-precipitation).³⁴ The influence of the crystal size of the parent ZIF-67(Co) and the amount of loaded indium on the catalytic performance has been thoroughly studied. Moreover, the importance of two-step thermal treatment (pyrolysis followed by calcination) for In-impregnated ZIF-67(Co) material in order to obtain highly performing catalysts is also discussed in detail.

2. Experimental section

2.1. Materials

All chemicals were purchased from Sigma-Aldrich and used as received. Commercial Cu-ZnO-Al₂O₃ methanol synthesis catalyst was obtained from Alfa Aesar™ (composition: 60-68% CuO, 22-26% ZnO, 8-12% Al₂O₃, 1-3% MgO).
2.2. Synthetic procedures

Synthesis of 300 nm ZIF-67(Co). The synthesis of ZIF-67(Co) with a crystallite size around 300 nm was performed in accordance to the previously reported method. Following the typical synthetic protocol, 2.933 g (10 mmol) of Co(NO$_3$)$_2$·6H$_2$O and 6.489 g (79 mmol) of 2-methylimidazole (MeIm) were separately dissolved in 200 mL of methanol. The MeIm-containing clear solution was rapidly poured into the pink solution of the cobalt salt. The mixture was stirred for 12 min and then kept standing for 24 h to allow precipitation to take place. The bright purple product was collected by centrifugation, washed several times with methanol, and dried at 423 K for 10 h under vacuum.

Synthesis of 22 nm ZIF-67(Co). ZIF-67(Co) with a crystallite size around 22 nm was obtained through modulated synthesis with triethylamine (TEA). In typical procedure, 0.582 g (2 mmol) of Co(NO$_3$)$_2$·6H$_2$O and 4.866 g (60 mmol) of 2-methylimidazole (MeIm) were dissolved in 400 mL methanol. Afterwards, 5 mL of triethylamine was added to the vigorously stirred mixture and stirring continued for 15 min. When precipitation started, the mixture was kept steady for 24 h. The product was collected by centrifugation, washed several times with methanol, and dried at 423 K for 10 h under vacuum.

Synthesis of MOF-derived In@Co catalysts by incipient wetness impregnation method. The catalysts were prepared by incipient wetness impregnation (IWI) in the following manner: 1 g of activated ZIF-67(Co) was impregnated with 3 mL of aqueous indium nitrate solution of different indium concentrations as stated in Table S1 and then dried under vacuum at 100 °C overnight. For thermal treatment, an In-impregnated ZIF-67(Co) precursor sample was transferred into a quartz reactor (L = 1 m and ID = 5 cm), vertically inserted into tubular oven equipped with temperature (Nabertherm) and mass-flow controllers (Bronkhorst® High-Tech), and followed by two thermal
treatment steps in sequential order: first, pyrolysis at 600 °C (1 °C·min⁻¹, 4 h) in nitrogen flow (25 mL·min⁻¹), then calcination at 400 °C (1 °C·min⁻¹, 2 h) in air flow (25 mL·min⁻¹). The obtained In@Co samples are denoted as \(a\text{In} : b\text{Co}(x)\) where \(x\) is the crystal size of the ZIF-67(Co) precursor, \(a\) and \(b\) indicate the desired In:Co molar ratio.

2.3. Characterization methods

Powder X-ray diffraction (PXRD) patterns were acquired on a Bruker D8 Advance operated at 30 kV and 30 mA using monochromatic Cu-K\(\alpha\) (\(\lambda = 1.5418 \text{ Å}\)) radiation, a scan speed of 15 s per step and a step size of 0.05° on 10 – 80° \(2\theta\) range. For phase analysis of reacted catalysts, the X-ray diffraction data were measured under inert atmosphere using an airtight sample holder which was loaded in a glove box under Ar atmosphere. The crystalline phase was identified with the help of the PDF-4+ (2019) crystal database. The profile matching of all PXRDs with expected crystalline phases was confirmed by Pawley fitting \(^{45}\) and quantitative estimation of the phases was obtained by Rietveld refinement using TOPAS V5 (academic version) software.\(^{46}\) The results of refinements are provided in Fig. S28.

Nitrogen adsorption experiments were carried out at 77 K using a Micromeritics ASAP 2040 instrument. Before the measurements, the ZIF-67(Co) samples were degassed at 150 °C for 10 hours and the calcined products were degassed at 100 °C for 10 hours.

Thermogravimetric data (TG) were collected in nitrogen and air atmospheres using a Mettler Toledo thermal analyzer at a heating rate of 5 °C·min⁻¹ in the 25 – 950 °C temperature range and at a dynamic gas flow rate of 20 mL·min⁻¹.

Scanning electron microscopy (SEM) imaging was performed with secondary electrons on a FEI TENEON VS microscope using 5 kV acceleration voltage and 5 mm working distance. The crystal
size distribution for each sample was obtained analyzing several images recorded at different magnifications using ImageJ software.47

The annular Dark-Field scanning transmission electron microscopy (ADF-STEM) in conjunction with Electron Energy Loss Spectroscopy (EELS) study was carried out with a Cs-Probe Corrected Titan microscope (Thermo-Fisher Scientific) which was also equipped with a GIF Quantum of model 966 from Gatan Inc. (Pleasanton, CA). STEM-EELS analysis was performed by operating the microscope at the accelerating voltage of 300 kV, using a convergence angle α of 17 mrad and a collection angle β of 38 mrad. Spectrum-imaging dataset includes the simultaneous acquisition of zero-loss and core-loss spectra (DualEELS) using a dispersion of 0.5 eV/channel and were recorded using a beam current of 0.2 nA and a dwell time of 20 ms/pixel. The Co L$_{2,3}$-edge, In M$_{4,5}$-edge, and O K-edge were selected to build the chemical maps. Carbon K-edge was acquired by continuously scanning a Co$_3$InC$_{0.75}$ nanoparticle while simultaneously acquiring 10 Dual-EELS spectra (frame time = 10 s) using a dispersion of 0.1 eV/channel. The energy scale of all high loss EELS spectra was referenced to the zero-loss peak. Carbon K-edge spectra were normalized using ATHENA software.48 Typically, the specimens were prepared by dispersing the catalyst in methanol under ultrasound irradiation during 30 min and placing several drops of the resulting dispersion on the copper grids having a carbon layer. For the particular study of carbon K-edge, a nickel grid with a lacey-carbon layer was used to record EELS spectra without the interference of the supporting carbon. The QSTEM software49 was used to simulate high-resolution lattice images of the Co$_3$InC$_{0.75}$ nanoparticle along the $<101>$ zone axis using a slab thickness of 4.8 nm. For the microscope parameters, we used an accelerating voltage of 300 kV, a spherical aberration coefficient (C_s) of 1.0 mm, a defocus (df) of -1.7 nm, a chromatic aberration coefficient (C_c) of 1 mm, an energy spread (dE) of 1.0 eV, a convergence angle $\alpha = 17$ mrad, and
a detector collection angle of [63, 200] mrad. *Ab-initio* simulations of the carbon K-edge were performed using the FDMNES package. The FDMNES code features mono-electronic calculations, which are carried out in real space with Hedin-Lundqvist exchange-correlation potential and using clusters built around each non-equivalent absorbing atom. The finite-difference method (FDM) implemented in the FDMNES code was used since the latter is a full potential method that introduces no approximation on the shape of the potential. To take into account the core-hole lifetime and other multielectronic phenomena occurring in the absorption process, a convolution procedure was applied to the calculated spectra. At the Fermi level, the Lorentzian (FWHM) width was set to 0.16 eV. The instrumental energy resolution was taken into account by further convoluting the calculated spectra with a Gaussian broadening of 1.5 eV width.

The XAS experiments were performed at CRG-FAME beamline (BM30B) at the European Synchrotron Radiation Facility (ESRF). The ring is operated at 6 GeV with a nominal current of 200 mA in 7/8+1 mode. The beamline is equipped with a liquid-nitrogen-cooled doubled crystal Si(220) monochromator surrounded by two Rh-coated mirrors for harmonic rejection. The beam size on the sample is 240×110 μm (H×V, FWHM). Cobalt K-edge spectra were collected in fluorescence mode using a CANBERRA 30-elements Ge solid state detector. Indium K-edge spectra were collected in transmission mode using silicon diodes to measure the incident and transmitted beam intensities. The monochromator was energy calibrated measuring the cobalt and indium K absorption edges using a metallic cobalt and indium foil respectively. First maximum of the 1st derivative of the absorption cobalt K-edge was set at 7709 eV and 27940 eV for indium K-edge. The data acquisitions of reacted catalysts were performed *ex-situ* either in fluorescence or transmission mode with the samples retrieved inside a glove box and loaded into a XAS cell dedicated for air-sensitive compounds. Non-air sensitive fresh catalyst and reference compounds
were handled outside of glove box and measured in fluorescence mode using conventional sample holder. All samples were diluted with boron nitride and pressed into pellets to optimize the effective XAFS edge-step. On average four scans were acquired for each sample to improve the signal to noise level of the data. All XAS data were analyzed using the HORAE package, a graphical interface to the AUTOBK and IFEFFIT code. The EXAFS spectra were obtained after performing standard procedures for pre-edge subtraction, normalization, polynomial removal, and wavevector conversion. The amplitude factors \(S_0^2 \) were fitted to the EXAFS spectra recorded for a Co metallic foil and an In\(_2\)O\(_3\) powder (Table S3 and Figure S18). \(S_0^2 \) were determined to be 0.73 ± 0.04 and 0.99 ± 0.03 for Co and In, respectively.

CHN elemental analyses on selected samples were performed using a Thermo Flash 2000 Organic Elemental Analyzer with the detection limits of 0.2 % (w/w) for carbon, 0.1% for nitrogen and 0.08% for hydrogen. For the analysis of the used catalysts, the corresponding samples were transferred unopened from the reactor to the glovebox and were kept under Ar atmosphere. To avoid undesired reaction of the used catalysts with air, all samples were sealed in tin sample crucibles in a glove box under Ar atmosphere. For each sample three individual measurements were performed and the mean was calculated as a final result.

X-ray fluorescence measurements (XRF) were performed on a HORIBA XGT-700 XRF analyzer. For every measurement, three different spots were analyzed for each sample with a total acquisition time of 1500 s per sample.

2.4. Catalytic testing in CO\(_2\) hydrogenation to methanol

Catalytic tests were performed using a parallel reactor system Flowrence® from Avantium consisting of 16 tubular fix-bed reactors installed in a furnace and operated at one mixed feed gas flow which is distributed over 16 channels with a relative standard deviation of 2%. 50 mg of the
catalyst with particle fraction between 150 µm and 250 µm was loaded onto the stainless-steel tube reactor (30 cm long with 2 mm of internal diameter) preliminary filled with 9.5 cm bed of coarse SiC (particle grit 40, 300 µL) in order to ensure the isothermal zone for the catalytic bed. Before the catalytic test, the catalysts were pretreated in-situ under N2 at 300 °C for 1 hour. Then, the reactors were pressurized with a mixed feed containing 20 vol.% of CO2 and 80 vol.% of H2 to 50 bar using a membrane-based pressure controller. In addition, 0.5 mL/min of He was mixed with the feed and used as internal standard. The products were analyzed with an Agilent 7890B chromatograph equipped with two loops, where one was connected to the Column 5 HaysepQ6 Ft G3591-80013 and TCD and the second Gaspro 30M, 0.32 mm OD column followed by FID.

Conversion (X, %), space time yield (STY, g·gcat⁻¹·h⁻¹), and selectivity (S, %) are defined as follows:

\[
X_{CO_2} = \left(1 - \frac{C_{He,blk}}{C_{He,R}} \cdot \frac{C_{CO_2,R}}{C_{CO_2,blk}}\right) \cdot 100
\]

\[
S_i = \frac{\left(\frac{C_i,R}{C_{He,R}}\right)}{\left(\frac{C_{CO_2,blk}}{C_{He,blk}} - \frac{C_{CO_2,R}}{C_{He,R}}\right)} \cdot 100
\]

\[
STY_i = \frac{X_{CO_2} \cdot S_i \cdot M_i \cdot \text{GHSV}}{22.4}
\]

where \(C_{He,blk}, C_{He,R}, C_{CO_2,blk}, C_{CO_2,R}\) are the concentrations determined by GC analysis of He in the blank, He in the reactor effluent, CO2 in the blank, and CO2 in the reactor effluent, respectively,
C_{i,R} is the concentration of the product determined by GC, M_i is the molecular weight of product i and GHSV is CO_2 gas hourly space velocity in L·g_{cat}^{-1}·h^{-1}.

Carbon balance in all experiments accounted for more than 97.8% of the total carbon input whereas a small amount of carbon trapped in form of mixed metal carbide was comparatively modest. Reproducibility of the catalytic experiment was carried out for representative sample and was found to be deviating within 1.7% relative experimental error.

3. Results and Discussion

In our study we explored ZIF-67(Co) framework as a precursor material for the preparation of indium loaded MOF-derived cobalt oxide supported catalysts (In@Co). ZIF-67(Co) is a zeolitic imidazolate framework formed by cobalt and 2-methylimidazole (MeIm) featuring a porous architecture with sodalite (sod) topology (Fig. 1A-B), and has been chosen as a sacrificial material due to its high cobalt content (26 wt.% Co). We synthesized two types of ZIF-67(Co) samples with different crystal sizes in order to evaluate the effect they may induce on the performance of the derived In@Co catalysts. Thus, applying a modulated synthesis protocol, ZIF-67(Co) with average crystal sizes of 20 nm and 300 nm were obtained. These samples are referred as ZIF-67(Co)-20 and ZIF-67(Co)-300, respectively. As it can be observed from Figures 1D-E (insets) and S1, both samples possess narrow size distribution profiles. To confirm matching of ZIF-67(Co)-20 and -300 with the ZIF-67 structure, powder X-ray diffraction analyses have been performed and compared in Figure 1C. Both materials reveal the typical reflections attributed to the cubic ZIF-67 structure. However, the notable broadening of the peaks in case of ZIF-67(Co)-20 indicates that the sample has a smaller crystal size compared to the ZIF-67(Co)-300.
Figure 1 (double column). (A) Cage structure of ZIF-67(Co) and (B) its topological view revealing sod fragment. (C) Powder X-ray diffraction patterns compared to theoretically expected ZIF-67(Co) (cubic I-43m);53 (D-E) SEM micrographs along with size distribution histograms (insets) and (F) N\textsubscript{2} adsorption isotherms acquired at 77 K for ZIF-67(Co) precursor samples of 300 ± 85nm (blue symbols) and 20 ± 5 nm (violet symbols) crystal sizes, respectively. On the isotherm graph the filled markers correspond to the adsorption curve and the hollow ones to desorption branch.

In order to evaluate the textural properties of the ZIF-67(Co)-20 and -300 materials with different crystal sizes, nitrogen adsorption experiments have been carried out. Figure 1F shows corresponding nitrogen sorption isotherms for both 20 nm and 300 nm ZIF-67(Co) precursors. The BET analyses reveal very close microporous surface areas of 1579 and 1566 m2\cdot g-1 for ZIF-67(Co)-300 and -20, respectively (Table S2). Notably, the N\textsubscript{2} adsorption isotherm for ZIF-67(Co)-300
exhibits a typical type I shape, corroborating the fully microporous nature of the material, whereas ZIF-67(Co)-20 features IV-type with a hysteresis loop at high relative pressures, most likely derived from interparticle condensation of N₂.⁵⁴⁻⁵⁵

Considering that in our study the catalysts are prepared by thermal decomposition of ZIF-67(Co), thermogravimetric analysis is a necessary tool to determine optimal conditions for the treatment. ZIF-67(Co) decomposes in nitrogen atmosphere at temperatures above 550 °C (Fig. S2) yielding Co nanoparticles of ~ 4.7 nm size highly dispersed within a carbon matrix, which mainly consists of graphite nanotubes (Fig. S3). The PXRD data for the Co@C material derived from pristine ZIF-67(Co) show (Fig. S4) broad peaks originated from graphite (hcp C allotrope) and metallic Co (fcc form, α-Co allotrope) phases. Notably, the pyrolysis of ZIF-67(Co) at 600 °C results in the formation of α-Co phase,⁵⁶ allotrope which is expected to be thermodynamically favored at temperatures above 417 °C and exists as a metastable phase at room temperature.⁵⁶ In contrast, the decomposition of ZIF-67(Co) in air flow proceeds in two steps (Fig. S2): i) oxidative destruction of the framework with a weight loss of ca. 63 wt.% yielding Co₃O₄ as main decomposition product at 400 °C; and ii) transformation of Co₃O₄ to CoO ⁵⁷ occurring at 900 °C with additional 2.7 wt.% mass loss. In a similar way, Co@C decomposes during the calcination step (Fig. S5), losing 43 wt.% due to carbon oxidation resulting in Co₃O₄ at 400 °C. The product obtained by two-step decomposition comprises uniform nanoparticles of 5.8 nm average size (Fig. S6) with the spinel Co₃O₄ structure (Fig. S7).

Typically, we prepared In@Co catalysts in three steps: i) incipient wetness impregnation of ZIF-67(Co) with an aqueous In(NO₃)₃ solution; ii) pyrolysis of In@ZIF-67(Co) at 600 °C in nitrogen; iii) calcination of the obtained product at 400 °C in flow of synthetic air. Upon IWI step, ZIF-67(Co) crystals undergo agglomeration with visible sealing at the edges of the particles (Fig. S8).
Thereafter, during the pyrolysis step, In@ZIF-67(Co) transforms into a mixture of freestanding spherical particles of about 12 nm size, which tend to sinter under the electron beam, and agglomerations of smaller ones with a mean size of about 10 nm (Fig. S9). Qualitative analysis performed on the XRD pattern indicates a mixture of nanosized α-Co and mixed-metal carbide, Co$_3$InC$_{0.75}$ phases, where the carbide phase is dominant (Fig. S10). This observation supports the effectiveness of IWI method and suggests high dispersion of the loaded In component. At the last step of catalyst preparation, the pyrolyzed product has been calcined in a stream of air at the temperature suitable for conversion to oxide form ($i.e.$ 400 °C).

The resulting catalyst, having an In:Co molar ratio of 3:8 and referred to as 3In@8Co(300), consists of 5-10 nm sized oxide nanoparticles (Fig. S11) developing a considerable high surface area of 107 m2·g$^{-1}$. Notably, the XRD pattern reveals broad diffraction lines attributed only to the Co$_3$O$_4$ phase. This is also in accordance with the EXAFS spectroscopy applied at Co K-edge, which reveals the characteristic fingerprint of the Co$_3$O$_4$ crystal structure and is further supported by subsequent fitting of the EXAFS data (details in supplementary information, Table S3, Figs. 18A-B). An interesting observation is the absence of any In-derived compounds in the PXRD pattern, although the sample was calcined at 400 °C (Fig. S12). The state of indium in the 3In@8Co(300) pre-catalyst was thus refined by EXAFS spectroscopy applied at the indium K-edge. The spectrum of 3In@8Co(300) pre-catalyst is shown on Figs. 2(A)-(B) together with the spectrum of a crystalline In$_2$O$_3$.

Figure 2 (double column). (A) Magnitude of the Fourier transform for the EXAFS $k^2\chi(k)$ functions acquired at In K-edge for In$_2$O$_3$, Co$_3$InC$_{0.75}$, 3In@8Co(300) catalyst before and after CO$_2$ hydrogenation reaction and, (B) their related back Fourier transforms (real part) applied within their respective R-range for EXAFS fitting. Solid line represents experimental data whereas dotted line corresponds to fit results conducted with [1.1–2.5] Å and [1.2–3.6] Å R-range together with a [2.9–12.8] Å$^{-1}$ and [3.8–10.4] Å$^{-1}$ k-range, respectively for 3In@8Co(300) catalyst before and after reaction. (C) ADF-STEM image and elemental mappings for 3In@8Co(300): (D) Co, (E) O, (F) In maps and superimposed (G) Co/In maps and (H) Co/In/O maps.
Qualitative assessment of the FT-EXAFS spectra for the In₂O₃ reference (without phase correction), indicate a main peak at 1.7 Å attributed to In-O scattering and several peaks between 2.5 and 4.3 Å assigned mainly to In-In path with some minor contributions from In-O scattering and some multiple scattering processes. In contrast, the FT-EXAFS of the 3In@8Co(300) pre-catalyst show only one prominent peak centered around 1.6 Å which is similar to the low-R peak of the In₂O₃ FT-EXAFS spectrum. The lack of contribution from more distant coordination shells (e.g. In-In scattering path, Table S3) is associated with deficiency of the long-range order and proves the amorphous nature of the indium component in the 3In@8Co(300) pre-catalyst. Quantitative EXAFS fitting of the first shell with a single In-O scattering path provides a coordination number of 6.3 ± 0.7 at a bonding distance of 2.14 ± 0.01Å, consistent with an octahedral coordination (Table S3). The distribution of the indium oxide within the sample is further highlighted by ADF-STEM imaging and EELS elemental mapping (Figs. 2(C)-(H): the amorphous indium oxide covers homogeneously the 5 nm Co₃O₄ nanoparticles as a thin layer.

The catalytic performance of ZIF-67(Co)-derived indium containing catalysts in CO₂ hydrogenation has been evaluated at 300 °C and 50 bar with a constant 20%CO₂/80%H₂ feed flow. The kinetic profile of the reaction on 3In@8Co(300) catalyst (Fig. 3A) shows an induction period of 20 h until it reaches 0.4 gₘₑₒ₉₉g⁻¹cat⁻¹h⁻¹ methanol productivity. As the reaction proceeds, the methanol selectivity stabilizes at 63% with CO and CH₄ by-product selectivities of 27% and 9%, respectively (Fig. 3B, Fig. S29). Overall, the CO₂ conversion is stable over 100 h on steady state performance, yielding an STY of 0.5 gₘₑₒ₉₉g⁻¹cat⁻¹h⁻¹ for methanol.
Figure 3. (double column). (A) Kinetic profile of evolution MeOH space time yield with time and (B) MeOH, CO and CH₄ selectivities at time-on-stream (TOS) of 100 h over 3In@8Co(300) (orange line), 3In@8Co(20) (navy line) and 3In@8Co(300)-dc (turquoise line) catalysts at XCO₂ of 18%, 19% and 13%, respectively. (B) MeOH, CO and CH₄ selectivities on stable plateau of the kinetic profile (100 h) on studied catalysts. Reaction conditions: 80%H₂-20%CO₂ feed; T = 300 °C, P = 50 bar, m_{cat} = 50 mg, GHSV = 15600 h⁻¹. (C) ADF-STEM imaging and elemental mapping for 3In@8Co(300) after the reaction: (from left to right) ADF-STEM image, Co, O, In maps and superimposed Co/In maps and Co/In/O maps. (D) XRD patterns for fresh (top) and spent (bottom) 3In@8Co(300) (orange) and 3In@8Co(20) (navy) catalysts compared to identified phases: Co₃O₄ (■), Co₃InC₀.₇₅ (•), α-Co (fcc, ◦), c-In₂O₃ (cubic, ●) and rh-In₂O₃ (rhombohedral, ▽).

As previously reported by our group 34 and characterized below (vide infra), the induction period is associated with the formation of the active phase by a solid reaction between the indium oxide layer with its supporting cobaltite phase. Having a higher external surface area in the starting
sacrificial ZIF-67(Co) is expected to enhance the contact between indium and cobalt oxides and to increase substantially the formation rate of the active phase. To this end, another ZIF-67(Co) support with smaller crystal size - ZIF-67(Co)-20nm – was used to improve the dispersion of the In-component. The impregnation at the same In:Co molar ratio (3:8) followed by a two steps thermal decomposition resulted in a material possessing 119 m²·g⁻¹ of total surface area, 3In@8Co(20) (Table S4). The kinetic profile of reaction expressed in STY₆₇ on 3In@8Co(20) catalyst is shown on Figure 3A and compared to 3In@8Co(300) behavior at the same reaction conditions. As anticipated, 3In@8Co(20) catalyst obtained from MOF with smaller particle size shows considerably reduced induction period of 10 h versus 19 h (STY₆₇ of 0.38 g₆₇·g⁻¹·h⁻¹) observed in case of 3In@8Co(300). However, both catalysts demonstrate similar selectivities towards MeOH (~63%) and by-products (CO, ~27% and CH₄, ~9-11%) reaching stable STY values of 0.52 g₆₇·g⁻¹·h⁻¹ for methanol production.

To gain some insights on the structural composition of 3In@8Co after the catalytic run, PXRD analyses were performed for reacted catalysts which were expressly protected under inert atmosphere in order to exclude any possible phase transformation caused by exposure to air. Comparison of the diffraction patterns for fresh and spent catalysts along with the d-spacing positions for identified crystalline phases is shown in Figure 3D. Evidently, both catalysts undergo a phase transformation – from crystalline spinel with amorphous In₂O₃ to a complex mixture consisting of mixed-metal carbide Co₃InC₀.₇₅, α-Co (fcc form), cubic allotrope of In₂O₃ (c-In₂O₃), traces of rhombohedral In₂O₃ phase (r-In₂O₃) and both CoO polymorphs (Fig. S13). Besides the evidences gained from PXRD, these structural transformations were confirmed by In and Co K-edge EXAFS analyses performed ex-situ for the catalyst before and after catalytic process (Figs. 2(A)-(B), S17(A)-(B), Table S3). Interestingly, the hexagonally packed r-In₂O₃ is a metastable
polymorphic form of indium oxide which irreversibly transforms, under elevated temperatures and pressures of 0.1 MPa-3GPa, to the more stable cubic form.59-60 Additionally, it is known that in strongly reductive atmospheres, such as CO and H\textsubscript{2}, the allotrope transformation proceeds following the same pathway - rh-In\textsubscript{2}O\textsubscript{3} \rightarrow c-In\textsubscript{2}O\textsubscript{3} meanwhile the reverse transformation happens only at high energy input.61 Extrapolating the observation, one of the processes occurred during the catalytic run is recrystallization of amorphous In\textsubscript{2}O\textsubscript{3}: firstly, to rh-In\textsubscript{2}O\textsubscript{3} and then to more stable c-In\textsubscript{2}O\textsubscript{3}. However, a minor part of rh-In\textsubscript{2}O\textsubscript{3} is still present after catalysis. Simultaneously with the formation of crystalline In\textsubscript{2}O\textsubscript{3}, the Co\textsubscript{3}O\textsubscript{4} phase undergoes reductive transformation following the sequence Co\textsubscript{3}O\textsubscript{4} \rightarrow CoO \rightarrow Co which results in nanoparticles of α-Co (fcc) polymorph and traces of CoO (hcp/fcc) phases (Fig. 3D, Fig. S13B). Finally, the third and more peculiar component found to be formed is a mixed metal carbide, Co\textsubscript{3}InC\textsubscript{0.75} (Fig. 3D). Since the reductive atmosphere of reaction should drive the transformation of oxides to their corresponding metallic phases, the occurrence of this carbide is attributed to the reductive transformation under carbon-rich atmospheres better described as carburization process.

Imaging operated by ADF-STEM microscopy and performed on the 3In@8Co(300) material after the catalytic run shows also that the catalyst undergoes textural changes along with phase reorganization. The vast majority of the sample is a composite formed from aggregated nanoparticles, all displaying a core-shell morphology. The average diameter of the core-shell nanoparticle is about 10 nm with a shell thickness of 2 nm (Fig 3.C). Additional EELS elemental mapping reveals that elemental composition of the shell includes cobalt, indium and oxygen atoms which agrees with the formation of cobalt-indium oxides.34 No lattice fringes could be observed in the shell which means that the latter cobalt-indium oxides are also amorphous. On the other hand, the core is clearly polycrystalline as evidenced from the various orientation of lattice fringes.
imaged by high-resolution HAADF-STEM (Fig. 4A-C). The high-resolution image of the lattice (Fig. 4C-D) is reproduced by a multi-slice STEM image simulation of a Co$_3$InC$_{0.75}$ slab viewed along the $<110>$ zone axis (Fig. 4F); the alternance of bright atom columns containing indium and cobalt atoms with fainter atom columns containing only cobalt atoms is especially well reflected.

![Figure 4](image)

Figure 4. (double column). (A) High-resolution HAADF-STEM image of 3In@8Co(300) after reaction. (B) Fourier transform ($d^* = 2.6$ nm$^{-1}$, $d = 3.83$ Å) of (C) zoomed region (blue dots) of interest in (A) representing the atomic arrangement of the Co$_3$InC$_{0.75}$ phase, viewed along $<110>$ zone axis. (D) Zoomed region in (C, yellow dots) processed with a Wiener and Gaussian band-pass filters (E), and (F) corresponding multi-slice STEM image simulation of a Co$_3$InC$_{0.75}$ slab. (G) Comparison of experiment and theory (FDMNES calculations) for the carbon K-edge spectrum of Co$_3$InC$_{0.75}$ recorded by EELS spectroscopy.
With high-angle annular dark field (HAADF) detection, electrons arising from Rutherford scattering are collected, meanwhile electrons deviated by coherent elastic scattering are mostly excluded (removing the phase contrast). The intensity I in the resulting images is then, in a first approximation, given by $I \propto t \cdot Z^\alpha \ (\alpha = 1.5 - 2)$ with a thickness t and an average atomic number Z. As a direct consequence, the difference between indium and cobalt atoms is indeed observable but the carbon atoms located in-between the columns of cobalt atoms are not visualized easily. To definitely support the formation of a mixed carbide phase in the particle core, the carbon K-edge was recorded by EELS spectroscopy (Fig. 4G). The C K-edge originates principally from dipolar transitions from the 1s state to the unoccupied 2p state. Unlike X-ray Raman scattering spectroscopy, EELS spectroscopy is highly forward scattered: with a microscope tension of 300 kV, 90% of the intensity is collected within ≈ 2.6 mrad scattering angle corresponding to a small momentum transfer q equal to 0.9 Å$^{-1}$. With those experimental conditions, the monopole transitions ($s \rightarrow s$) are thus neglected. Self-consistent field simulations for Co$_3$InC$_{0.75}$ clusters with radii of up to 10 Å were performed to ensure the convergence of the calculation. Using the full-potential FDM approach, the three main dipolar transitions observed in the experimental spectra are relatively well reproduced. The agreement is not perfect, especially for the energy position of the third transition, but nevertheless the main features are there.

To summarize, the phase composition of the spent catalyst is dependent of several processes taking place during CO$_2$ hydrogenation: i) the principal process is the formation of Co$_3$InC$_{0.75}$ constituting the core of catalytically active nanoparticles surrounded by a Co-In oxides shell, ii) crystallization of In$_2$O$_3$ from amorphous phase as separated nanoparticles, iii) reduction of Co$_3$O$_4$ to metallic Co.
In order to address the question concerning the relevance of two-step thermal treatment, i.e. sequential pyrolysis-calcination process, the catalytic behavior of \(\text{3In@8Co(300)-dc}\) sample prepared through direct calcination of In-impregnated ZIF-67(Co)-300 at 400 °C without the intermediate pyrolytic step has been evaluated. Kinetic profile of \(\text{3In@8Co(300)-dc}\) performance in \(\text{CO}_2\) hydrogenation towards methanol (Fig. 3A) reveals considerably slower induction period that takes approx. 55 h to reach a plateau of 0.28 g\(_{\text{MeOH}}\cdot\text{g}_{\text{cat}}^{-1}\cdot\text{h}^{-1}\) STY for the methanol product. Additionally, the catalyst prepared by direct calcination route concedes \(\text{3In@8Co(300)}\) material in methanol productivity (0.28 g\(_{\text{MeOH}}\cdot\text{g}_{\text{cat}}^{-1}\cdot\text{h}^{-1}\) vs 0.52 g\(_{\text{MeOH}}\cdot\text{g}_{\text{cat}}^{-1}\cdot\text{h}^{-1}\)) albeit with similar \(\text{S}_{\text{MeOH}}\) and higher \(\text{S}_{\text{Co}}\) (Fig. 3A-B). Given the poorer catalytic performance of \(\text{3In@8Co(300)-dc}\), one may assume the significance of intermediate pyrolysis step for stabilization of indium and cobalt domains in close vicinity to each other, evidently in form of cobalt indium carbide phase, \(\text{Co}_3\text{InC}_{0.75}\). We presume that such mixed metal carbide redounds the homogeneity of In@Co system after calcination rendering more effective distribution of \(\text{Co}_3\text{O}_4\) and \(\text{In}_2\text{O}_3\) oxides within the composite catalyst which, consequently, diminishes the induction period for hydrogenation process.

Taking into account the above-mentioned findings and considering the higher performance of catalyst derived from ZIF-67(Co) sacrificial support with 20 nm crystal size, a set of experiments was carried out in order to study the effect of indium loading. Thereby, ZIF-67(Co)-20 nm has been impregnated with different amounts of \(\text{In(NO}_3)_3\) in accordance with Table S1 following the same IWI procedure as before and for simplicity denoted as \(x\text{In@yCo(20)}\) representing the nominal In:Co molar ratios (x:y) in each sample. As it can be observed from nitrogen absorption measurements (Fig. S22), the shape of isotherms of \(\text{In@ZIF-67(Co)-20 nm}\) materials changes from type IV- to II- and show the total (BET) surface area descending as the indium content increases.
(Table S2, S4). Although indium concentrations were increased gradually, the micropore area deviates from a linear trend; this indicates that the indium species settle not only on external surfaces of ZIF-67(Co) but also occupy the micropore area of the framework.

Afterwards, In@ZIF-67(Co)-20 nm materials with different amounts of loaded indium underwent the sequential pyrolysis-calcination treatment in order to render In@Co composite catalysts. The resulting oxide-containing materials exhibit total surface area ranging from 119 to 87 m²·g⁻¹ (Table S4) and show II-type adsorption isotherms typical for macroporous adsorbents (Fig. S23). Notably, the total surface area decreases as the indium content increases; that successfully agrees with the findings, above discussed, concerning the embedment of Co₃O₄ nanoparticles possessing the large interparticle surface which is occupied by amorphous In₂O₃ phase. The content of loaded indium in MOF-derived catalysts was confirmed by XRF measurements and calculated from TG curves considering the temperature region of 870-930 °C, in which Co₃O₄ → CoO transition is taking place (Figs. S24, S25), in order to compare to the nominal In:Co molar ratios (Table S4). The results summarized in Table S4 show a fair agreement with the expected In:Co ratios aimed to be attained in the xIn@yCo(20) catalysts.

A series of MOF-derived catalysts aIn@bCo(20) with variable In:Co molar ratios was tested in direct CO₂ hydrogenation to methanol under standard conditions (80%H₂-20%CO₂ feed; P = 50 bar and GHSV = 15600 h⁻¹, Fig. S30). Figure 5A shows kinetic profiles of STY evolution for MeOH product on the catalysts with variable In:Co molar ratios. As can be observed, the aIn@bCo(20) catalysts with lower In content, i.e. 1In@23Co(20) and 1In@12Co(20), exhibit the largest induction periods of 40 and 90 h and a low MeOH productivity of 0.01 and 0.04 gMeOH·g⁻¹·h⁻¹, respectively. Further increase of indium content up to 1In:6Co value reduces the induction
period down to 30 h yet reaching maximum STY_{MeOH} of 0.21 g$_{\text{MeOH}}$g$^{-1}$cat.h$^{-1}$ over a short period of time (5 h) after which the catalyst slowly deactivates.

Figure 5. (double column). (A) Kinetic profile of evolution MeOH space time yield vs time and (B) selectivities to MeOH product, CO and CH$_4$ by-products at time-on-stream (TOS) of 100 h over catalysts with different In loadings: 3In@4Co(20) ($X_{\text{CO}_2} = 20.5\%$, red), 3In@8Co(20) ($X_{\text{CO}_2} = 19.2\%$, orange), 1In@6Co(20) ($X_{\text{CO}_2} = 13.9\%$, blue), 1In@12Co(20) ($X_{\text{CO}_2} = 11.1\%$, purple) and 1In@23Co(20) ($X_{\text{CO}_2} = 10.1\%$, green). Reaction conditions: 80%H$_2$-20%CO$_2$ feed; $T = 300$ °C, $P = 50$ bar, $m_{\text{cat}} = 50$ mg, GHSV = 15600 h$^{-1}$. XRD patterns for (C) fresh and (D) spent catalysts and comparison with the identified phases: Co$_3$O$_4$ (■), CoO (▏), ε-Co (hcp, ★), Co$_3$InC$_{0.75}$ (*), α-Co (fcc, ◆), c-In$_2$O$_3$ (cubic, ●) and rh-In$_2$O$_3$ (rhombohedral, ▽). ADF-STEM imaging (E) and
elemental mappings for $3\text{In@4Co}(20)$ after reaction: Co map (F) and O map (H); superimposed Co/In maps (G) and Co/In/O maps (I).

In contrast, $3\text{In@8Co}(20)$ and $3\text{In@4Co}(20)$ catalysts with higher In$_2$O$_3$ loading show considerably reduced induction time (19 h and 7 h vs 30 h) and outstanding stable performance over 100 h of reaction with methanol productivity of ca. 0.5 and 0.65 g$_{\text{MeOH}}$ g$^{-1}_{\text{cat}}$h$^{-1}$, respectively. Therefore, the activity towards methanol product on MOF-derived mixed oxide catalysts is enhancing in order $3\text{In@4Co} > 3\text{In@8Co} > 1\text{In@6Co} > 1\text{In@12Co} > 1\text{In@23Co}$. Regarding the MeOH selectivity data compared at 100 h of time-on-stream (TOS) shown on Figure 5B, the methanol selectivity develops following the same trend as STY$_{\text{MeOH}}$ whereas the selectivities toward by-products (CO and CH$_4$) evolve in opposite manner. However, a higher MeOH selectivity (62%) is reached by $3\text{In@8Co}(20)$ and $3\text{In@4Co}(20)$ materials along with reduced selectivities toward CO (27-28%) and CH$_4$ (9-11%) by-products. In order to understand the differences in reactivity, structural analysis was carried out on the experimental XRD data for fresh and reacted catalysts with different In loadings (Fig. 5C, D). Although the $a\text{In@bCo}(20)$ catalysts before reaction showed identical XRD pattern with diffraction lines associated solely to the Co$_3$O$_4$ phase (Fig. 5C), the composition of reacted solids enriches by diversity of phases, depending on the indium content (Fig. 5C, Table S5). Consequently, the difference in reactivities of the MOF-derived catalysts also relies on the compositional characteristics of the spent phases manifested during the reaction. As shown in Figure 5D, the spent $1\text{In@23Co}(20)$ catalyst mainly contains fcc-Co phase and traces of CoO and could be associated with low MeOH selectivity (12 %) and productivity (0.02 g$_{\text{MeOH}}$ g$^{-1}_{\text{cat}}$h$^{-1}$) in contrast to high CO selectivity (70 %). The appearance of Co$_3$InC$_{0.75}$ phase in mixture with fcc-Co in $1\text{In@12Co}(20)$ improves the selectivity towards MeOH twofold ($S_{\text{MeOH}} = 23\%$, $S_{\text{CO}} = 59\%$, $S_{\text{CH}_4} = 18\%$), whereas the dominance of the mixed-metal carbide
over α-Co in 1In@6Co(20) leads to maximum S_{MeOH} of 40% ($S_{\text{CO}} = 41\%$, $S_{\text{CH}_4} = 19\%$), after which the activity starts to decline. Finally, the mixture of Co$_3$InC$_{0.75}$ and In$_2$O$_3$ (both rh- and c-polymorphs) more likely reflects the true composition responsible for selective MeOH synthesis inasmuch as both actively performing 3In@4Co(20) and 3In@8Co(20) catalysts possess similar composition based on these two components ($S_{\text{MeOH}} = 62\%$, $S_{\text{CO}} = 27\text{--}28\%$, $S_{\text{CH}_4} = 9\text{--}11\%$ and $\text{STY}_{\text{MeOH}} = 0.5\text{--}0.65 \, \text{gMeOH} \cdot \text{gcat}^{-1} \cdot \text{h}^{-1}$). To visualize relations between the phase contents found by PXRD studies, a correlation matrix has been added (Fig. S31). The correlation coefficients between individual phase contents and selectivities towards the catalytic products were scaled from yellow (strong positive) to navy (strong negative correlation). It demonstrates strong correlation between the carbide and indium oxides content and methanol selectivity whereas cobalt and cobalt oxide presence negatively correlated with it. Although carbide content has the strongest correlation with methanol production, its catalytic activity was excluded by performing an individual catalytic study (Table S7) and appeared to be a side product of catalysts workout and carburization (Figs. S35-S38). To support the above-mentioned results, CHN elemental analyses on the fresh and spent catalysts were carried out and compared in Table S6. As expected, the carbon content in reacted catalysts increases compared to the fresh ones and can be associated with the formation of Co$_3$InC$_{0.75}$ phase; that agrees well with PXRD quantification data (Table S5). Notably, spent 3In@4Co(20) and 3In@8Co(20) catalysts differ by relative amount of crystalline In$_2$O$_3$ and Co$_3$InC$_{0.75}$ phases (Table S5) that might have influence on the induction period considering previous finding that both components are formed along the sequentially-conjugated process. Similarly to 3In@8Co(300), the spent version of the best performing 3In@4Co(20) catalyst shows also core-shell morphological features as suggested by EELS elemental maps (Figs. 5E-I, Figs. S26-S27). In conclusion to all above mentioned, the optimal catalyst composition is
determined by relative molar ratio of $3\text{In}:8\text{Co}$ and $3\text{In}:4\text{Co}$ possessing enough indium to be quantitatively converted to $\text{Co}_3\text{InC}_{0.75}$ phase.

The most active catalysts, $3\text{In} @ 4\text{Co}(20)$ and $3\text{In} @ 8\text{Co}(20)$, were chosen to study the effect of the reaction temperature with the aim of finding optimal conditions for CO_2 to methanol hydrogenation process. The kinetic profiles for MeOH productivity on $3\text{In} @ 4\text{Co}(20)$ and $3\text{In} @ 8\text{Co}(20)$ catalysts at three temperatures – 270 °C, 285 °C and 300 °C, are shown in Figure 6A. As can be observed, the induction period for both catalysts increases from 7-19 h to 60-70 h while the reaction temperature decreases from 300 °C to 270°C. This observation can be rationalized by the fact that both $\text{Co}_3\text{InC}_{0.75}$ and In_2O_3 phases formed through conjugated red-ox process become kinetically unfavorable at lower temperatures. Despite the discrepancy of initial reaction rates for both catalysts, the MeOH productivity is deviating in a range of 0.5–0.65 $\text{g}_{\text{MeOH}}/\text{g}_{\text{cat}} \cdot \text{h}^{-1}$ regardless the applied temperature. However, the alternate comparison of selectivities for MeOH product and CO/CH$_4$ by-products in the steady-state region (Fig. 6B, Fig. S32) of the catalytic process shows that lower temperature induces high methanol selectivities ($S_{\text{MeOH}} \sim 79-80\%$ at 270 °C vs 62 % at 300 °C) yet suppresses side processes ($S_{\text{CO}} \sim 15 \%$ and $S_{\text{CH}_4} \sim 5 \%$ at 270 °C vs $S_{\text{CO}} \sim 27-28 \%$ and $S_{\text{CH}_4} \sim 9-11 \%$ at 300 °C), i.e. methanation and reverse water-gas shift (RWGS) reactions.
Figure 6. (single column). (A) Kinetic profile of evolution MeOH space time yield vs time and (B) selectivities to MeOH product, CO and CH₄ by-products at time-on-stream (TOS) of 100 h over catalysts 3In@4Co(20) (red) and 3In@8Co(20) (orange) at different temperatures: 270 ºC (XCO₂ = 14.2% and 11.6%, □), 285 ºC (XCO₂ = 17.3% and 15.5%, ○) and 300 ºC (XCO₂ = 20.5% and 19.2%, ▽). Reaction conditions: 80%H₂-20%CO₂ feed; P = 50 bar, mcat = 50 mg, GHSV = 15600 h⁻¹.

Thus, an optimal temperature needs to be considered in order to inhibit undesired side reactions and favor higher methanol selectivity and productivity yield.
Additionally, in order to tune the reaction performance, we carried out a series of experiments with variable gas flows, given the fact that RWGS and methanation processes may be suppressed to some extent this way. Figure 7A shows the $\text{In}@\text{Co}(20)$ catalyst performance on stream at 270°C under different gas flow velocities (GHSV, h$^{-1}$).

![Graph A](image)

Figure 7. *(single column)*. (A) Evolution selectivities for MeOH product (turquoise column), CO (orange) and CH$_4$ (pumpkin) by-products, CO$_2$ conversion (wine values) and MeOH space time yield (black spheres) vs time on catalyst $\text{In}@\text{Co}(20)$ at variable GHSV (top, grey values) and 270 °C. Catalyst was previously pretreated at 300 °C and GHSV of 15200 h$^{-1}$ for 20 h in the
reaction mixture. (B) Comparison of methanol productivity (spheres) and MeOH, CO and CH₄ selectivities (columns) for 3In@4Co(20) (red markers and clear columns) and commercial Cu-ZnO-Al₂O₃ catalyst (blue markers and striped columns) at 250 °C, 270 °C, 285 °C, 300 °C and constant GHSV of 17200 h⁻¹, X_{CO2} levels are represented on the line above. Reaction conditions: 80%H₂-20%CO₂ feed; P = 50 bar, m_{cat} = 50 mg.

As can be observed in Figure 7A, after catalyst pretreatment at 300 °C for 20 h, the increase of the contact time leads to growth in the productivity and methanol selectivity reaching of MeOH productivity (0.45 g_{MeOH}/g_{cat}·h⁻¹) and selectivity (83%) at 17200 h⁻¹. This behavior is in line with the previously observed for In-based catalyst by Pérez-Ramírez et al. Expectedly, this outcome runs in parallel with inhibition of side reactions showing decrease of CO and CH₄ selectivities down to 2% and 15%, respectively. Although the subsequent stepwise reduction of GHSV from 17200 h⁻¹ to 8400 h⁻¹ diminishes MeOH productivity drastically (from 0.45 g_{MeOH}/g_{cat}·h⁻¹ to 0.27 g_{MeOH}/g_{cat}·h⁻¹), the selectivities toward methanol lessen slowly from 83% to 79%. It is worth to note that when GHSV is restored to 14400 h⁻¹, 3In@4Co(20) catalyst could recover its activity reaching the same MeOH productivity (0.40 g_{MeOH}/g_{cat}·h⁻¹) and selectivities (S_{MeOH} = 81% vs 82%). This observation highlights the stability of MOF-derived In@Co composite catalyst over the course of the reaction and instant response to the changes in the reaction conditions.

To have an accurate comparison of catalytic activity for our MOF-derived composite catalyst, 3In@4Co(20) with the commercial Cu-ZnO-Al₂O₃, we performed an extensive examination of both solids in CO₂ hydrogenation under different reaction conditions (Fig. S33-S34). Since it was determined that the GHSV directly influences the methanol yield and selectivity, further comparison has been done at fixed gas velocity (17 200 h⁻¹) at which both catalysts performed best. Accordingly, the general trends observed in both catalytic systems are summarized in Figure 7B.
The results show two distinct regimes – above and below \(ca. 280 \, ^\circ C \). In low temperature regime (\(< 280 \, ^\circ C\)), the commercial Cu-ZnO-Al\(_2\)O\(_3\) catalyst shows considerably high MeOH yield (0.65-0.67 g\(_{\text{MeOH}}\) g\(_{\text{cat}}\)^{-1} h\(^{-1}\)) with moderate product selectivities (\(S_{\text{MeOH}} = 49-52\% \) and \(S_{\text{CO}} = 48-51\% \)) whereas MOF-derived \(3\text{In}@4\text{Co}(20) \) composite exhibits lower MeOH productivity (0.32-0.45 g\(_{\text{MeOH}}\) g\(_{\text{cat}}\)^{-1} h\(^{-1}\)) with remarkably higher selectivity (83-87\%) towards the desired product. In contrast, the high temperature regime (\(> 280 \, ^\circ C \)) turns the overall catalytic performance in opposite direction where \(3\text{In}@4\text{Co}(20) \) catalyst reaches the maximum of \(\text{STY}_{\text{MeOH}} \) (0.60-0.63 g\(_{\text{MeOH}}\) g\(_{\text{cat}}\)^{-1} h\(^{-1}\)) with slightly lower methanol selectivity (70-79\%), yet much higher than that of the Cu-ZnO-Al\(_2\)O\(_3\).

4. Conclusions

In this work we have applied the MOF-mediated approach to prepare In\(_2\)O\(_3\)-Co\(_3\)O\(_4\) mixed-oxide catalysts for the effective and selective synthesis of methanol \textit{via} \(\text{CO}_2 \) hydrogenation. The activity of the resulting In@Co catalysts reaches a maximum MeOH space time yield of 0.65 g\(_{\text{MeOH}}\) g\(_{\text{cat}}\)^{-1} h\(^{-1}\) with methanol selectivities as high as 87\% over 100 h on stream under industrially relevant conditions. Owing to the relatively slow kinetics of active phase formation in co-precipitated In@Co catalytic system previously reported, the induction period for the hydrogenation process on the catalysts prepared by MOF-mediated approach could be tuned by changes of the textural properties of parent sacrificial ZIF-67(Co) support providing better In dopant distribution all over the metal-organic matrix involving both micropore and interparticle surface areas, improving in this way In utilization. Additionally, we found the relevance of the sequential pyrolysis-calcination steps in the catalysts’ preparation procedure to be determinant for faster induction period due to appearance of mixed-metal carbide, \(\text{Co}_3\text{InC}_{0.75} \), which stabilizes high dopant distribution and prevents formation of large individual oxide domains in the final mixed oxide composite. As
expected, the indium loading implies the quantitative limitation on formation of the active phase, which presumably consists of nanoparticles featuring core-shell morphologies (Co-In oxides shell over Co$_3$In$_{0.75}$ core) hereby establishing optimal composition of 3ln:8Co or 3ln:4Co molar ratios for more effective catalyst performance.

The screening for the optimal operational conditions shows that lower reaction temperature assists to suppress side reactions (methanation and RWGS) and improve MeOH selectivity ($S_{\text{MeOH}} \sim 79-80\%$ at $270 \, ^\circ\text{C}$ vs $62 \, %$ at $300 \, ^\circ\text{C}$) while slightly lowering the productivity ($0.55 \, g_{\text{MeOH}} g_{\text{cat}}^{-1} h^{-1}$ at $270 \, ^\circ\text{C}$ vs $0.65 \, g_{\text{MeOH}} g_{\text{cat}}^{-1} h^{-1}$ at $300 \, ^\circ\text{C}$). Additionally, further annihilation of undesired side processes (methanation and RWGS) could be reached by adjusting the reaction conditions, i.e., reactant gas flow, lowering S_{CO} and S_{CH_4} down to 11 and 2%, respectively.

The present study demonstrates the tunability of MOF-mediated approach of preparation of In$_2$O$_3$-Co$_3$O$_4$ catalytic system which is able to drive effectively direct CO$_2$ hydrogenation to methanol. Our results suggest that In@Co binary oxide system is able to reach superior performance compared to commercial Cu-ZnO-Al$_2$O$_3$ catalyst for this reaction.

AUTHOR INFORMATION

Corresponding Author

* jorge.gascon@kaust.edu.sa

Present Addresses

† King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955, Saudi Arabia

§ Néel, UPR2940 CNRS, University of Grenoble Alpes, F-38000 Grenoble, France
Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding Sources

Funding for this work was provided by King Abdullah University of Science and Technology (KAUST).

ASSOCIATED CONTENT

Supporting Information.

The following file are available free of charge.

Transmission electron microscopy images, EELS elemental mappings, thermogravimetric analyses, BET results, catalytic data, catalyst characterization by the means of XRD, CHN, XRF, XAS techniques (PDF).

ACKNOWLEDGMENT

The authors gratefully acknowledge the European Synchrotron Radiation Facility (Grenoble, France) for provision of beamtime (CH-5572) for XAS experiments carried out on the FAME beamline (BM30B) and support of their staff.

REFERENCES

(31) Sun, K.; Fan, Z.; Ye, J.; Yan, J.; Ge, Q.; Li, Y.; He, W.; Yang, W.; Liu, C.-J., Hydrogenation of CO₂ to Methanol over In₃O₃ Catalyst, *J. CO₂ Util.* 2015, 12, 1-6.

TABLE OF CONTENT (TOC)

![CO₂ hydrogenation reaction diagram](image)

- CO₂ hydrogenation
- In impregnation
- Calcination
- Pyrolysis

Contents

- [Page 39](#) of 39