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Abstract— We discuss first-order stationary mean-field games
(MFG) on networks. These models arise in traffic and pedes-
trian flows. First, we address the mathematical formulation of
first-order MFG on networks, including junction conditions for
the Hamilton-Jacobi (HJ) equation and transmission conditions
for the transport equation. Then, using the current method, we
convert the MFG into a system of algebraic equations and
inequalities. For critical congestion models, we show how to
solve this system by linear programming.

I. INTRODUCTION

Mean-field games (MFG) [LL07], [HMC06], [HCM07],
have been the focus of intense research. Their ap-
plications to population dynamics and pedestrian flows
[LW11], [BDFMW14], crowds [BMP11], evacuation scenar-
ios [DTT17], and traffic flows [BZP14] are of great interest.
Several researchers have studied second-order MFG on net-
works, [CCM17], [CM16], [CCM15], [ADLT19], [LS16],
[LS17]. In second-order MFGs, agents follow a controlled
diffusion process and, thus, change direction infinitely often.
This behavior does not occur in applications such as ve-
hicular networks. Therefore, first-order MFGs are a natural
choice for these problems. Unfortunately, prior methods are
not valid for first-order MFG, where a distinct set of phe-
nomena that includes the loss of smoothness for Hamilton-
Jacobi (HJ) equations and lack of continuity for the value
function at the vertices can occur. Because first-order MFG
on networks are coupled systems of first-order MFG, we use
the current method from [GNP17], [GNP16] to construct a
novel approach for stationary MFG on networks.

Flows on networks have been studied intensively, see
[GHP16] and [BD11]. Also, there is now a vast literature
on HJ equations on networks [SC13], [CMS13], [ACCT13],
[CM13], [CCM18]. Stationary first-order HJ equations on
networks were examined in [SS18] and [ISM17] and the
transport of measures on networks in [CDMT17]. Our MFG
model can be seen as a generalization of the Wardrop
equilibrium [WW52], where the routes between a target and
a destination are used in such a way that travel time is
independent on the choice of path. Using MFGs, we can
model different travel costs and have multiple exits and
entrances to the network.
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Explicit solutions to MFG are hard to find and, in higher
dimensions, apart from exceptional cases, MFGs cannot be
solved algebraically. As far as the authors were aware, before
this paper, there was no systematic approach to solving first-
order MFG on networks. This paper contains the following
main contributions. First, we derive a model for deterministic
MFG on networks that comprises incoming current of agents,
edge-switching costs, and exit costs. Second, we generalize
the current method to network problems and, thus, convert
the MFG into a system of algebraic equations. Finally, we
show how to solve the critical congestion case with linear
programming methods.

II. PRELIMINARIES

Here, we introduce the formalism for MFG on networks.
We split our discussion into statics – the network structure
– and kinematics – the study of trajectories.

A. Statics

A network, Γ, is a metric space endowed with a distance
d : Γ × Γ → R+

0 and with the additional structure below.
First, Γ = ∪k∈Kek where the sets ek are the edges and K =
{1, 2, ..., n}. We set E = {ek : k ∈ K}. Edges contain two
distinguished points, the vertices (here we consider loopless
networks; that is, edges with a single vertex are not allowed).
For simplicity, we assume that any two edges intersect at a
single vertex. ek connects two vertices, vi and vl, if vi, vl ∈
ek. The set of vertices is V = {vi, i ∈ I} ⊂ Γ, where I =
{1, 2, ...,m}. Each edge is identified with [0, 1], and each
vertex on that edge corresponds to 0 or 1. More precisely, Γ
has a system of local coordinates; that is, a map π : [0, 1]×
K → Γ, such that:

1) π([0, 1]× {k}) = ek for every k ∈ K.
2) Let ek ∈ E. Then {π(0, k), π(1, k)} = {vi, vl} ⊂ V ,

and π(θ, k) /∈ V for 0 < θ < 1.
3) π : (0, 1)×K → Γ is injective.

The first property implies that π is surjective, since Γ =
∪k∈Kek. Finally, for each vertex, vi, and each edge, ek,
incident in vi, the coordinate function, vi(k), gives the x-
coordinate of vi in ek; that is, π(vi(k), k) = vi.

Second, we address the metric, d, in Γ. Given z1, z2 ∈ Γ,
1) For z1, z2 ∈ ek, we have z1 = π(x1, k) and z2 =

π(x2, k), for x1, x2 ∈ [0, 1]. Then, we set d(z1, z2) =
|x1 − x2|.

2) If z1, z2 do not belong to a common edge, then

d(z1, z2) = inf

[
d(z1, vi0) +

N−1∑
l=0

d(vil , vil+1) + d(vN , z2)

]
where (z1, vi0), (vil , vil+1

), and (vN , z2) are adjacent.
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For two points in the same edge, the distance is the distance
between their coordinates; for two points on different edges,
the distance is determined by the shortest path connecting
the points, where each edge has length 1.

The interior of an edge ek connecting vi with vl, is

int(ek) = ek\{vi, vl} = π((0, 1)× {k}).

int(ek) is the topological interior of ek. The interior of Γ is
int(Γ) :=

⋃
ek∈E int(ek); note that, this does not correspond

to the topological interior of Γ. The outward boundary, ∂oΓ,
is the set of vertices where agents can exit Γ, the inward
boundary, ∂iΓ, comprises the vertices where agents enter Γ.
We assume that ∂oΓ ∩ ∂iΓ = ∅. A function, f : Γ → R, is
differentiable at z = π(x, k) ∈ int(Γ), where x ∈ (0, 1) and
k ∈ K, if x 7→ f(π(x, k)) is differentiable at x.

B. Kinematics

Now, we examine trajectories on networks and their
mathematical description. A trajectory or path on Γ, is a
continuous map γ : [a, b] → Γ, where [a, b] ⊆ R. γ is a
regular trajectory if γ = π(x(t),k(t)) and

1) k : [a, b]→ K is piecewise constant and induces a finite
partition of [a, b], a = t0 < t1 < ... < tN+1 = b such
that k is constant in [ti, ti+1).

2) x : [a, b] → [0, 1] is continuous at all t 6= ti. γ is
Lipschitz or C1 if x is Lipschitz or C1 (outside ti).

The first property above excludes infinitely many transitions
between edges. Also, we observe that the coordinate x(t)
may be discontinuous at ti because of incompatible param-
eterizations at a vertex with different incident edges.

For a path, γ, the first exit time from Γ is T∂Γ := inf{t ∈
[a, b]; γ(t) ∈ ∂oΓ}. If γ never reaches ∂oΓ, T∂Γ = +∞.

III. FIRST-ORDER MEAN-FIELD GAMES ON NETWORKS

Now, we provide an overview of deterministic control
on networks, HJ equations, and discuss the corresponding
transport equations. Next, we present the MFG model and the
corresponding stationary problem. Here, we consider MFG
with or without congestion. In the following section, we dis-
cuss the critical congestion case, for which the corresponding
MFG can be solved by linear programming.

A. Calculus of variations and deterministic control

We fix a network, Γ, where agents can move along the
edges and, at the vertices, can switch to a new edge. Agents
exit the network once they reach the outward boundary.
We consider a running cost given by a Lagrangian L :
int(Γ) × R × [0, T ] → R, L(z, ẋ, t) or L(x, k, ẋ, t) in
local coordinates. The running cost is the cost of moving
along an edge. We consider Lagrangians that depend on
time; later, this dependence is given through the density
of agents. Hence, the stationary problem is well defined.
We assume that L is smooth (in x, ẋ, and t), uniformly
convex in ẋ, and bounded from below. At each vertex,
vi, agents can switch from an incident edge ek to another
incident edge el incurring in a switching cost ψ(i, k, l),
ψ : V ×K×K → R+

0 . If ek and el are not incident at vi, we

set ψ(i, k, l) = +∞. Moreover, we are given a terminal cost
φ : (∂oΓ× [0, T ]) ∪ (Γ× {T})→ R; agents pay a terminal
cost at the outward boundary at time t ∈ [0, T ] or at the
terminal time T , if they do not leave the network.

Consider an agent who at time t is at z = π(x, k) ∈ Γ.
This agent seeks to minimize its cost by choosing a Lipschitz
regular trajectory that minimizes

J(γ) =

T̄∫
t

L(x(s),k(s), ẋ(s), s) ds

+

N∑
i=1

ψ(i(t−i ),k(t−i ), l(t+i )) + φ(x(T̄ ),k(T̄ )),

where {ti} is the partition associated to γ = π(x,k), i(t−i )
is the vertex index at ti, T̄ = T∂Γ∧T . The first term in J(γ)
is the edge travel cost, the second term the cost incurred for
switching edges, and the last term the exit cost (if T∂Γ <
+∞) or the cost at the terminal time if not leaving Γ.

Agents seek to minimize J . The infimum of J over all
Lipschitz regular trajectories with γ(0) = π(x, k) is the value
function u : Γ× [0, T ]→ R:

u(x, k, t) = inf
γ
J(γ). (III.1)

B. Hamilton-Jacobi equations
The Hamiltonian, H , is H(x, k, p, t) := sup

ẋ∈R
[−pẋ −

L(x, k, ẋ, t)]. If u is regular, it solves the HJ equation

− ut(x, k, t) +H(x, k, ux(x, k, t), t) = 0, (III.2)

on each edge, with boundary conditions,

u(vi(k), k, t) = min
l∈K

{
u(vi(l), l, t) + ψ(i, k, l)

}
. (III.3)

Theorem III.1 (Verification Theorem). Assume that û :
Γ× [t, T̄ ]→ R is a classical solution of (III.2) in the edges
of Γ, with terminal condition

û(x, k, T̄ ) = φ(x, k) (III.4)

and that (III.3) holds. Then, û is the value function in (III.1).

Proof. Let γ(s) = π(x(s),k(s)) with γ(t) = π(x, k). Let
t = t0 < t1 < ... < tN < tN+1 = T̄ be the partition
associated with k, such that k(s) = ki for ti 6 s < ti+1. By
the fundamental theorem of calculus, for each 0 6 i 6 N ,
ti+1∫
ti

d

ds
û(x(s),k(s), s) ds = û(x(t−i+1), ki, t

−
i+1)−û(x(t+i ), ki, t

+
i ).

Because d
ds û(x, ki, ·) = ûx(x, ki, ·) · ẋ + ûs(x, ki, ·), using

the definition of H and that û solves (III.2), we have
ti+1∫
ti

L(x, ki, ẋ, s) ds =

ti+1∫
ti

L+ ûxẋ + ûs ds

+ û(x(t+i ), ki, t
+
i )− û(x(t−i+1), ki, t

−
i+1)

≥
ti+1∫
ti

−H(x, ki, ûx, s) + ûs ds

+ û(x(t+i ), ki, t
+
i )− û(x(t−i+1), ki, t

−
i+1)

= û(x(t+i ), ki, t
+
i )− û(x(t−i+1), ki, t

−
i+1).
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Note that (III.3) implies, in particular, that

û(x(t+i ), ki, t
+
i ) + ψ(ki−1, ki)− û(x(t−i ), ki−1, t

−
i ) ≥ 0.

These last two inequalities together with (III.4) yield

J(γ) =

N∑
i=0

ti+1∫
ti

L(x(s), ki, ẋ(s), s) ds+ φ(x(T̄ ),k(T̄ ))

+

N∑
i=1

ψ(ki−1, ki)

≥
N∑
i=0

[
û(x(t+i ), ki, t

+
i )− û(x(t−i+1), ki, t

−
i+1)

]
+ φ(x(T̄ ),k(T̄ )) +

N∑
i=1

ψ(ki−1, ki)

= û(x, k, t)− û(x(T̄ ),k(T̄ ), T̄ ) + φ(x(T̄ ),k(T̄ ))

+

N∑
i=1

[
û(x(t+i ), ki, t

+
i ) + ψ(ki−1, ki)

− û(x(t−i ), ki−1, t
−
i )
]
≥ û(x, k, t).

Taking the infimum, we obtain u(x, k, t) > û(x, k, t).
Conversely, since K is finite and (III.3) holds, we construct

γ̃ = π(x,k), where in the edges, x solves

ẋ(t) = −DpH(x(t),k(t), ûx(x(t),k(t), t), t).

and k : [t, T̄ ]→ K is piecewise constant and

û(x(t−i ), ki−1, t
−
i ) = û(x(t+i ), ki, t

+
i ) + ψ(ki−1, ki).

By the convexity of L, the preceding equation gives equality
in the Legendre transform. Thus, all the inequalities in the
proof with γ̃ in place of γ are equalities. Therefore,

û(x, k, t) = J(γ̃).

Consequently, û(x, k, t) ≥ u(x, k, t) as required.

The construction in the prior proof provides a minimizer
for J and, thus, an optimal strategy. The above theorem holds
under weaker conditions: (III.3) can be replaced by

u(vi(k), k, t) 6 min
l∈K

{
u(vi(l), l, t) + ψ(i, k, l)

}
, (III.5)

provided that equality holds at the vextex vi from edge ek
if the flow in that edge points towards the vertex.

C. Transport equation

Now, we derive the equation for the evolution of the
population density in Γ. Let b : Γ×[0, T ]→ Γ be a Lipschitz
vector field that gives the dynamics in the edges; that is,{

ẋ(t) = b(x(t),k(t), t), t > 0

x(0) = x.
(III.6)

In each edge ek, we define the current as j(x, k, t) :=
b(x, k, t)m(x, k, t). Thus, the transport equation becomes
mt(x, t) + (j(x, k, t))x = 0; see, for instance, [GPV16]. We
write j = j+ − j− , where j+ · j− = 0 and j+, j− > 0.
At each vertex, vi, the current from ek is j(i, k, t) =
(−1)vi(k)+1j(vi(k), k, t). The term (−1)vi(k)+1 takes into

account the parameterization of the edge; a positive current
is directed towards the vertex with x = 1 and away from the
vertex with x = 0.

Fix a vertex, vi, and consider an edge ek incident to vi.
Suppose that the flow in ek transports agents towards vi. Let
jikl = j(i, k, l, t) denote the transition current from edge ek
to edge el at the vertex vi. If the flow takes agents in ek
away from vi or if two edges, ek and el, are not incident in
vi, jikl = 0. The transition currents satisfy the following

jikl · jilk = 0, jikl, j
i
lk > 0, k 6= l.

When reaching vi, the agent switches from ek to el, where
el is such that jikl 6= 0. This transition is not deterministic
as different edges can have equal preference. Thus,

(i) In each edge, ek,

mt(x, k, t) + (b(x, k, t)m(x, k, t))x = 0. (III.7)

(ii) For each vertex, vi, and every edge, el, incident in vi,
we have the balance conditions∑

k

jikl = jσ(i, l, t), σ = {+,−}. (III.8)

Adding the equations in (III.8) at vi over the edges, el,
incident in vi, we obtain the Kirchoff law∑

k

j(i, k, t) = 0. (III.9)

When agents enter Γ at ∂iΓ, (III.8) becomes∑
k

jikl 6 jσ(i, l), σ = {+,−}. (III.10)

together with ∑
k

j(i, k) = −ιi, (III.11)

where ιi is the current of agents entering Γ at vi. These
agents then leave through ∂oΓ, where we do not impose
constraints on the current since we cannot specify simulta-
neously the rate of agents entering the network and leaving
the network. At ∂oΓ, we require∑

k

jikl > jσ(i, l), σ = {+,−}. (III.12)

and ∑
k

j(i, k) > 0. (III.13)

At an inward boundary vertex vi, that has more than one
incident edge the incoming current ι satisfies,∑

l

ιil = ιi

and we have,∑
k

jikl = jσ(i, l, t) + ιil, σ = {+,−}.
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D. Mean-field games
As usual in MFG theory, the running cost of the agents

depends on the distribution of the other agents and their
actions are determined by the corresponding control problem.
Accordingly, the Lagrangian, and, hence, the Hamiltonian,
depends on m. In our model, agents seek to minimize the
control problem in (III.1). The minimal cost is the value
function u(x, k, t). Since our agents are rational, they use
the corresponding optimal strategy. Therefore, a solution of
our MFG entails three quantities, the value function, u, for a
typical agent, a distribution of agents, m, and the transition
currents, jikl, at the vertices vi. In each edge ek, we have{
−ut(x, k, t) +H(x, k, ux(x, k, t),m) = 0

mt(x, k, t)− (m(x, k, t)DpH(x, k, ux(x, k, t),m))x = 0.

At the vertices, vi, we require the currents and the
transition currents conditions to hold. We also require
the optimality condition (III.5) to hold, with equal-
ity if −DpH(vi(k), k, ux)(−1)vi(k)+1 > 0. Finally, we
impose the following current transition conditions. For
that, we fix a vertex, vi, and an incident edge ek. If
−DpH(vi(k), k, ux)(−1)vi(k)+1 < 0, we set jikl = 0, as in
this situation, agents are departing from that edge. Otherwise,
we look for jikl which satisfies jikl · jilk = 0, jikl > 0 with
jikl = 0, if the inequality in (III.5) is strict. Given this, we
impose (III.8). At vi, we have the complementary conditions{

jikl · (u(vi(l), l, t)− u(vi(k), k, t)) = 0

jilk · (u(vi(k), k, t)− u(vi(l), l, t)) = 0
(III.14)

Given ū(vi) at vi ∈ ∂oΓ, with incident edge ek, we have
j−(x, k, t) = 0

u(vi(k), k, t) 6 ū(vi)

j+(x, k, t) · (u(vi(k), k, t)− ū(vi)) = 0.

(III.15)

Agents may avoid an exit. Thus, we impose inequality for the
value function, with equality if the exit current is positive.
Then, we consider boundary conditions for u at t = T .

In the stationary case, we consider the MFG{
H(x, k, ux(x, k),m) = 0

−(m(x, k)DpH(x, k, ux(x, k),m)x = 0.
(III.16)

together with (III.5), (III.14) and (III.15), and the conditions
for currents and transition currents from the prior subsection.

IV. CURRENT METHOD

The current method was introduced in [GNP17] to trans-
form one-dimensional stationary MFG with uniformly con-
vex Hamiltonians into algebraic systems. Here, we extend
this method to MFGs on networks. The key observation
is that the current, j, is constant on edges. With this new
variable, the HJ equation becomes algebraic. For simplic-
ity, we work with quadratic Hamiltonians in the moment
variable, p, but our methods are applicable to uniformly
convex Hamiltonians. We set H(x, k, p,m) = |p|2

2mα +V (x)−
g(m). Here, V is a smooth function defined on [0, 1], g
an increasing function and 0 6 α 6 1 is the congestion
strength. α > 0 corresponds to congestion and agents face
an increased cost of moving in high-density regions; that is,
L = mα v2

2 − V (x) + g(m).

(a) Example 1 - single exit. (b) Example 2 - two exits.

Fig. 1: Four-vertex networks with different boundaries.

A. Current variables
Here, we consider non-degenerate edges; that is, j 6= 0. In

principle, we can have j = 0, but those edges are irrelevant
since no agents are crossing them. We examine the MFG{

|ux|2
2mα

+ V (x) = g(m)

−(m1−αux)x = 0.
(IV.1)

Thus, j = m1−αux is constant.
If j 6= 0, then m 6= 0, ux = j/m1−α, and (IV.1) becomes

j2

2m2−α − g(m) = −V (x)

m > 0∫ 1

0
j

m1−α dx = u(1)− u(0),

(IV.2)

If g is increasing, this system has a unique solution.

B. Critical congestion model
When α = 1, (IV.1) becomes,{

|ux|2
2m

+ V (x) = g(m)

(ux)x = 0.
(IV.3)

In each edge, we have j = ux. Then (IV.3) becomes{
j2

2m
− g(m) = −V (x)

j = u(1)− u(0),
(IV.4)

Thus, u is linear in j and the density, m, plays no role.

V. FEASIBILITY CONDITIONS

Now, we examine the connection between linear program-
ming and stationary MFG. Fix a network, Γ, with outward
boundary, ∂oΓ and exit costs, ū(vi), and inward boundary,
∂iΓ with incoming currents, ιi. The Kirchoff law (III.9) at
the vertices and the constraints at ∂iΓ and ∂oΓ, (III.11), and
(III.13), are a linear feasibility problem for the current{

Aj = a

Bj 6 b

for suitable matrices A, B, and vectors a, b. According to
(IV.2), for each feasible j, we recover the increment of u at
edges. Thus, we obtain a system of linear constraints.{

Ãu = ã

B̃u 6 b̃.

As we illustrate next, for critical congestion, MFG can be
solved by linear programming.
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VI. EXAMPLES

Now, we study the critical case for the networks in Fig.
1.

1) Example 1: Consider the critical congestion MFG
for the network in Fig. 1a. The arrows point in the
direction of positive current. We set the transition cost,
ψ = 0. Given incoming currents ι1 > 0 at v1, ι2 > 0
at v3, and the exit cost ū(v4) at v4, we want to find
u(0+, 1), u(1−, 1), u(0+, 2), u(1−, 2), u(0+, 3), u(1−, 3), j1,
j2, j3, and transition currents jkl at v2. We have

u(1−, 1)− u(0+, 1) = j1 = j+
1 − j

−
1

u(1−, 2)− u(0+, 2) = j2 = j+
2 − j

−
2

u(1−, 3)− u(0+, 3) = j3 = j+
3 − j

−
3 .

(VI.1)

where j+
i , j

−
i > 0, j+

i .j
−
i = 0. At ∂iΓ = {vi=1,2},

ji = ιi > 0. (VI.2)

At ∂oΓ = {v4}, we have
j−3 = 0

u(1−, 3) 6 ū(v4)

j+
3 .(u(1−, 3)− ū(v4)) = 0.

(VI.3)

At v2, we have the optimality conditions

u(1−, 1) 6 u(0+, 3)

u(1−, 2) 6 u(0+, 3)

u(1−, 1) 6 u(1−, 2)

u(1−, 2) 6 u(1−, 1)

u(0+, 3) 6 u(1−, 1)

u(0+, 3) 6 u(1−, 2).

(VI.4)

At v2, we also have the complementary conditions

j13.(u(0+, 3)− u(1−, 1)) = 0

j31.(u(1−, 1)− u(0+, 3)) = 0

j23.(u(0+, 3)− u(1−, 2)) = 0

j32.(u(1−, 2)− u(0+, 3)) = 0

j12.(u(1−, 2)− u(1−, 1)) = 0

j21.(u(1−, 1)− u(1−, 2)) = 0.

And, finally, the balance conditions

j+
3 = j13 + j23 (VI.5a)

j−1 = j31 + j21 (VI.5b)

j−2 = j32 + j12 (VI.5c)

j−3 = j31 + j32 (VI.5d)

j+
1 = j12 + j13 (VI.5e)

j+
2 = j21 + j23 (VI.5f)

SOLUTION. (VI.4) implies continuity of u at v2. Thus,
u(1−, 1) = u(1−, 2) = u(0+, 3). By (VI.2), j−i = 0, j+

i > 0
for i = 1, 2. Therefore, by (VI.5b) and (VI.5c), j21 = j31 =
j12 = j32 = 0. Hence, by (VI.5e) and (VI.5f), j13 = j+

1 > 0
and j23 = j+

2 > 0. Thus, by (VI.5a), j+
3 > 0. So, by (VI.3),

u(1−, 3) = ū(v4). Thus, using the continuity in (VI.1),
u(0+, 3)− u(0+, 1) = j+

1

u(0+, 3)− u(0+, 2) = j+
2

u(1−, 3)− u(0+, 3) = j+
1 + j+

2 ,

which can be solved by standard methods.

2) Example 2: Consider the critical congestion
MFG for the network in Fig. 1b. As before, we
set ψ = 0. Given ū(v3) at v3, ū(v4) at v4 and
ι1 > 0 at v1, we need to find u(0+, 1), u(1−, 1),
u(0+, 2), u(1−, 2), u(0+, 3), u(1−, 3), j1, j2, j3 and the
transition currents jkl at v2. In the edges, we have

u(1−, 1)− u(0+, 1) = j1 = j+
1 − j

−
1

u(1−, 2)− u(0+, 2) = j2 = j+
2 − j

−
2

u(1−, 3)− u(0+, 3) = j3 = j+
3 − j

−
3 .

(VI.6)

At ∂iΓ = {v1}, j1 = ι1 > 0, and at ∂oΓ = {vi=3,4},
j−i−1 = 0

u(1−, i− 1) 6 ū(vi)

j+
i−1.(u(1−, i− 1)− ū(vi)) = 0.

(VI.7)

At v2, we have the optimality conditions

u(1−, 1) 6 u(0+, 3)

u(1−, 1) 6 u(0+, 2)

u(0+, 2) 6 u(0+, 3)

u(0+, 2) 6 u(1−, 1)

u(0+, 3) 6 u(1−, 1)

u(0+, 3) 6 u(0+, 2).

(VI.8)

At v2, we also have the complementary conditions

j12.(u(0+, 2)− u(1−, 1)) = 0

j21.(u(1−, 1)− u(0+, 2)) = 0

j13.(u(0+, 3)− u(1−, 1)) = 0

j31.(u(1−, 1)− u(0+, 3)) = 0

j23.(u(0+, 3)− u(0+, 2)) = 0

j32.(u(0+, 2)− u(0+, 3)) = 0,

and, the balance conditions

j+
1 = j12 + j13 (VI.9a)

j−2 = j21 + j23 (VI.9b)

j−3 = j31 + j32 (VI.9c)

j−1 = j21 + j31 (VI.9d)

j+
2 = j12 + j32 (VI.9e)

j+
3 = j13 + j23. (VI.9f)

The prior conditions give the Kirchhoff law, j1 = j2 + j3.
SOLUTION. u is continuous at v2 by (VI.8). Because j1 >

0, j−1 = 0, j+
1 > 0. Thus, by (VI.9d), j21 = j31 = 0. Using

(VI.9b) and (VI.9c) and using (VI.7), we get j23 = j−2 =
j32 = j−3 = 0. Substituting in (VI.9e) and (VI.9f), we get
j12 = j+

2 > 0, j13 = j+
3 > 0. We have four cases,{

j+
2 = 0

j+
3 = 0

{
j+
2 > 0

j+
3 > 0

{
j+
2 > 0

j+
3 = 0

{
j+
2 = 0

j+
3 > 0.

0 < j1 = j+
2 +j+

3 rules out the first case. In the second case,{
u(1−, 2) = ū(v3)

u(1−, 3) = ū(v4),
(VI.10)
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by (VI.7). This and the continuity in (VI.6) give
u(1−, 1)− u(0+, 1) = j+

1

u(1−, 2)− u(1−, 1) = j+
2

u(1−, 3)− u(1−, 1) = j+
1 − j

+
2 .

(VI.11)

The last two equations, (VI.10), and Kirchhoff law give
|ū(v3)− ū(v4)| 6 ι1 – for large ι1, agents use both exits.

The last two cases are similar; so, we study only the
third case. Accordingly, j13 = j+

3 = 0 and all agents
switch to e2. By (VI.7), u(1−, 2) = ū(v3) and u(1−, 3) 6
ū(v4). Using this result and the continuity, in (VI.6), we
get u(1−, 1) − u(0+, 1) = j+

1 , u(1−, 2) − u(1−, 1) =
j+
1 , u(1−, 3) − u(1−, 1) = 0. Because j2 > 0, we have
u(1−, 2) = ū(v3) and u(0+, 2) = ū(v3) + j2. Furthermore,
u(0+, 3) = u(1−, 3) 6 ū(v4). Because, we must have
u(0+, 2) 6 u(0+, 3), we obtain the compatibility condition
for this case ū(v3) − ū(v4) 6 −ι1. In the remaining case,
the compatibility condition becomes ū(v3)− ū(v4) > ι1. In
this case, one of the currents vanishes. This is natural as if
one of the exit costs is too large, agents will avoid it.

VII. FINAL REMARKS

Here, we develop the formulation of first-order MFG on
networks. Using the current method, we obtain a purely
algebraic system. For the critical congestion case, we can
eliminate the variable m in the MFG. In this case, the
problem can be solved by linear programming methods.
Further work is needed to understand the uniqueness of MFG
on networks, improve the solvability conditions, and develop
effective algorithms. Moreover, in the non-critical congestion
case, we can write non-linear feasibility conditions. These are
more involved but perhaps accessible to elementary tools.
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