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Massive Multiple-Input Multiple-Output (Massive MIMO) systems are seen by many researchers as a paramount
technology toward next generation networks. This technology consists of hundreds of antennas that are capable of sending
and receiving simultaneously a huge amount of data. One of the main challenges when using this technology is the necessity
of an efficient decoding framework. The latter must guarantee both a real-time response complexity and a good Bit Error
Rate (BER) performance. The Sphere Decoder (SD) algorithm represents one of the promising Maximum Likelihood (ML)
decoding algorithms in terms of BER. However, it is inefficient for dealing with large MIMO systems due to its prohibitive
complexity. To overcome this drawback, we propose to revisit the sequential SD algorithm and implement several variants
that aim at finding appropriate trade-offs between complexity and performance. We conduct experiments to assess the critical
impact of the SD components, i.e., the exploration strategies and the evaluation process, and to accelerate the search for the
optimal combination of the transmitted vector. Then, we propose an efficient high-level parallel SD scheme based on the
master/worker paradigm, which permits multiple SD instances to simultaneously explore the search tree, while mitigating
the overheads from load imbalance. The results of our parallel SD implementation outperform the state-of-the-art by more
than 5× using similar MIMO configuration systems, and show a super-linear speedup on multicore platforms. Moreover,
this paper presents a new hybrid implementation, which enables to simulate MIMO configurations at an even larger scale.
It combines the strengths of SD and K-best algorithms, i.e., by maintaining the low BER of SD, while further reducing the
complexity using the K-best way of pruning search space. The hybrid approach extends our parallel SD implementation:
the master contains the SD search tree and the workers use the K-best algorithm to accelerate its exploration. The resulting
hybrid approach enhances the diversification gain, and therefore, lowers the overall complexity of our parallel SD algorithm.
Our synergistic hybrid SD-K-best approach permits to scale up large MIMO configurations up to 100×100 using modulations
with dense constellations, without sacrificing the BER and complexity. To our knowledge, this is the first time near-optimal
results are reported on such a MIMO dimension in the literature.

Index Terms—Massive MIMO Systems, Sphere Decoder Algorithm, K-Best Algorithm, Parallel Multicore CPU Implemen-
tations.

I. Introduction

Multiple-Input Multiple-Output (MIMO) technology
represents a generalization of Single-Input Single-
Output (SISO) technology that increases the capacity
of a radio link by sending multiple data streams at
the same time [1]–[4]. Due to their obvious advantages,
MIMO systems have already been incorporated into
many wireless communication network protocols [5],
[6] such as IEEE 802.11n (Wi-Fi), IEEE 802.11ac (Wi-
Fi), etc. Massive MIMO is a new emerging technology
that aims to amplify all the benefits of a traditional
MIMO by further scaling the number of antennas up to
several hundreds. In 5G era and beyond (6G), and the

advent of the Internet of Things (IoT) 1, massive MIMO
systems are viewed by many researchers and industrials
as one of the key technologies to sustain a high spec-
tral efficiency in communication networks [7], [8]. The
challenge in these networks resides in the huge number
of connected devices, exchanging enormous quantities
of data (voice, video, etc.) under a real-time response
constraint. In addition to this challenge, increasing the
number of antennas raises several problems, especially
in terms of energy efficiency and complexity caused

1a technology by which various devices, domestic, and industrial
appliances are equipped with an IP address and incorporated into a
wireless network of ”things”.
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by the signal decoding procedure. Indeed, when scal-
ing up the number of antennas, decoding a message
becomes one of the most time-consuming operations.
In order to maintain a real-time response, researchers
generally use linear decoders, which are characterized
by low complexity with a real-time response, but poor
performance in terms of Bit Error Rate (BER). In order
to achieve near-optimal signal decoding, researchers rely
on the Maximum Likelihood (ML) and Sphere Decoder
(SD) algorithms [9]–[11]. The ML decoder performs a
brute force exploration of all possible combinations in
the search space of the transmitted vector. Its complexity
increases exponentially with the number of antennas
making it impossible, in practice, to deploy for mas-
sive MIMO systems. The SD algorithm is another near-
optimal decoder derived from the ML that reduces the
size of its search space, thus, lowering its complexity.
Indeed, the SD algorithm compares only the received
vector with those solutions inside a sphere of a given
radius. The radius of the sphere impacts the complexity
and the BER of the overall MIMO system: the smaller
the radius, the lower the search space (i.e., the complex-
ity), but at the cost of possibly missing the actual sent
vector if the radius is too small. Tuning the radius is
paramount not only to identify the actual sent vector,
but also to execute the corresponding procedure under
real-time constraints. Nevertheless, it turns out that for
massive MIMO systems, the resulting search space may
still be too large to operate on and may engender high
complexity.

In this paper, we address the massive MIMO scaling
challenge by adapting the SD algorithm to achieve both
decent BER performance and acceptable time complexity.
To this aim, our contributions are centered around the
following three levels.

The first level of our contributions focuses on revisit-
ing the SD sequential algorithm and optimizing the time
complexity of its main components. The SD algorithm
operates on a search tree, where leaf nodes represent all
possible combinations of the transmitted vector. Its goal
is to find the combination (leaf node) with the minimum
distance from the received signal. Two essential aspects
of this algorithm must be taken into consideration: (1)
how to efficiently explore the search tree, i.e., which node
to select first, and (2) how to optimize the evaluation pro-
cess, i.e., the process of computing the distance of each
search tree node from the received signal. We assess the
critical impact of different exploration strategies on the
complexity of the SD algorithm, namely: Breadth-First
Strategy (BFS), Depth-First Strategy (DFS), and Best-First
Strategy (Best-FS). We further reduce the complexity of
the SD algorithm by reformulating the evaluation pro-
cess in terms of matrix algebra to increase the arithmetic
intensity. We additionally introduce an incremental eval-
uation in order to avoid redundant computations. The
idea here is to compute the evaluation of a current node
by reusing the evaluations of its previous parent node.
By choosing Best-FS as the optimal exploration strategy

and performing these two aforementioned optimization
techniques, we significantly reduce the complexity of the
sequential SD algorithm, while maintaining an optimal
error rate performance.

The second level of our contributions focuses on ac-
celerating the sequential SD algorithm by using parallel
multicore CPU architectures. Our proposed parallel im-
plementation relies on the master/worker paradigm. It
exploits the fact that each path in the SD search tree
can be explored in an embarrassingly parallel fashion.
Indeed, the search tree may be recursively divided into
several smaller search trees where each one is explored
by an instance of SD. Several instances of the SD al-
gorithm may simultaneously explore the search tree,
i.e., one instance of the SD algorithm operating as a
master process and the others as workers. This parallel
version aims to diversify the search process, which may
rapidly reduce the radius and thus, the complexity. This
method, called diversification gain, allows to avoid the
exploration of a huge number of branches explored
in the serial version. However, due to the irregular
workload on each path, the parallel implementation may
run into a load balancing problem, which may affect
its parallel scalability. To overcome this drawback, we
propose an efficient dynamic load balancing strategy,
which adjusts the workload per thread at runtime. Our
proposed parallel approach using our load balancing
strategy reports more than 5× speedup compared to a
recent work from Nikitopoulos et al. [12] on a similar
10 × 10 16-QAM MIMO configuration. It also achieves
up to 60× speedup compared to our serial SD version
using a 16-QAM modulation on a two-socket 10-core
Intel Ivy Bridge shared-memory platform (i.e., 20 cores
total). This represents a super-linear speedup, which has
been possible thanks to the diversification gain. It turns
out that even when using parallelism, the complexity of
our SD algorithm may still be very high to deal with
larger MIMO systems and constellation sizes.

To further reduce the complexity, the third level of our
work involves a trade-off between the complexity and
the performance, via a new hybrid implementation com-
bining the strengths of our parallel SD and the K-best
algorithms. The main idea of this new implementation,
code-named SD-K-best, is to accelerate the exploration
of the SD search tree stored on the master process by
using several workers with the low-complexity K-best
algorithm. This approximate method permits to explore
rapidly and partially the subtree sent by the master,
which reduces effectively the complexity. The selected
nodes (i.e., branches/paths) are chosen according to their
partial distance from the received signal. Thus, they
are more likely to contain good solutions and may
eventually ensure a satisfactory BER. Our synergistic
SD-K-best implementation integrates all benefits of the
parallel SD algorithm (i.e., diversification gain, Best-
FS, and sphere radius) to increase the chances of en-
countering good combinations of the transmitted sig-
nal, while reducing effectively the complexity using the
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parallel SD implementation associated with the K-best
algorithmic strengths. The obtained results of our SD-
K-best implementation show an overall low complexity
and good performance in terms of BER, as compared
to the reference K-best algorithm. Indeed, for a 16 × 16
MIMO system using 64-QAM modulation, our SD-K-
best approach reaches acceptable error rate at a 20 dB
Signal-to-Noise Ratio (SNR) and real-time requirement
(i.e., 10 ms) starting from 28 dB. Last but not least, our
SD-K-best approach shows a strong scalability potential
by reporting acceptable complexity and good error rate
performance for a 100×100 MIMO system using 64-QAM
modulation. To our knowledge, such a record has never
been achieved previously in the literature.

The remainder of the paper is organized as follows.
Section II summarizes literature on solving massive
MIMO systems. Section III describes the system model,
recalls the components of the conventional SD algorithm,
and details its exploration strategies. Section IV presents
our proposed SD algorithm with a new exploration strat-
egy and introduces new optimization techniques. Details
of our serial and parallel multicore implementations
are shown in Section V. Section VI highlights our new
hybrid SD-K-best implementation, which is necessary to
tackle massive MIMO systems. Results and discussions
about the trade-off between complexity and performance
are given in Section VII. Finally, Section VIII concludes
this paper and summarizes our future perspectives.

II. RelatedWork
In recent years, there has been a significant body

of work dealing with massive MIMO systems due to
their important role in next generation networks. Indeed,
many surveys have been proposed in the literature
highlighting open challenges and recent advances in this
area [13]–[16]. With the recent proposed graphene-based
plasmonic nano-antenna arrays that can accommodate
hundreds of antenna elements in a few millimeters;
Massive MIMO will continue to play an important role in
6G communication networks using Terahertz-Band [7],
[17], [18].

Signal decoding in massive MIMO represents the most
challenging and critical task since the performance of the
whole system, in terms of Bit Error Rate (BER), depends
on it. Signal decoding consists in estimating the trans-
mitted vector by taking into account the received vector,
which is subject to noise. Two kinds of decoders exist
in the literature: linear and non-linear (near-optimal)
decoders. Due to the complexity of non-linear decoders,
there are only few works in the literature that actually
deal with massive MIMO systems. Most of these works
explore partially the Maximum Likelihood (ML) search
tree using the Sphere Decoder (SD) algorithm and/or
leverage high performance computing architectures (e.g.,
GPUs) to accelerate the search process and to increase
the throughput.

In [19], Roger et al. propose a parallel fixed complex-
ity SD for MIMO systems with bit-interleaved coded

modulation. Their parallel approach exploits multicore
processors to compute the preprocessing phase of the
algorithm, and the massively GPU hardware resources
to process simultaneously the detection phase for all N
sub-carriers in the system.

In [20], Jozsa et al. propose a GPU-based SD algorithm
for multichannel (i.e., sub-carriers) MIMO systems. Their
approach performs multiple detections simultaneously
on the GPU, which increases the throughput. Moreover,
a second level of parallelism introduced within each
detection relies on the GPU thread block to accelerate
the exploration process of the SD algorithm.

In [21], Wu et al. propose an improved version of their
initial parallel decoder [22] to increase the throughput of
a flexible N-way MIMO detector using GPU-based com-
putations. This problem consists in dividing the available
bandwidth into multiple sub-carriers. Each sub-carrier
corresponds to an independent MIMO detection prob-
lem. Therefore, the receiver needs to perform multiple
MIMO detection procedures. The authors’ idea is to use
multiple GPU blocks to execute multiple MIMO detec-
tion algorithms simultaneously. To support multiple de-
tections on the GPU, the authors use a soft-output MIMO
detection, which engenders a low memory footprint.
The results show a good throughput, outperforming the
results presented in [19].

The main problems with the above approaches are
twofold. The scalability is a serious bottleneck for large
numbers of antennas due the limited amount of GPU
memory in presence of multi-carriers. Moreover, the high
latency increases the complexity due to the slow PCIe
interconnect, when performing data movement between
CPU host and GPU device.

In [23], Chen and Leib propose a GPU-based Fixed
Complexity Sphere Decoder (FCSD) for large-scale
MIMO uplink systems. The authors reported a speedup
around 7× for large MIMO systems and constellation
sizes compared to their CPU implementation. However,
the time complexity of their approach is significant even
for small numbers of antennas.

In [24], Arfaoui et al. propose a GPU-based SD al-
gorithm in which a Breadth-First exploration Strategy
(BFS) is used to increase the GPU resource occupancy.
However, increasing the GPU hardware utilization using
BFS increases the complexity due to the limited impact of
pruning process, especially in low Signal-to-Noise Ratio
(SNR). Our optimized sequential SD implementation
herein achieves up to 255-fold speedup on a similar
25 × 25 MIMO system with BPSK constellations.

In [25], Christopher et al. propose a parallel flexible
decoder for large MIMO systems using GPU and FPGA
architectures. Their algorithm contains two phases. A
first preprocessing phase chooses parts of the SD search
tree to explore, and a second phase maps each of the
chosen parts of the SD tree to a single processing element
(GPU or FPGA). The results are presented for a 12 × 12
MIMO system using a 64-QAM modulation.
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In [12], the authors propose the design and imple-
mentation of a parallel multi-search SD approach for
large MIMO search tree using multicore CPU and Very-
Large-Scale Integration (VLSI) architectures. After the
preprocessing phase in which they obtain a processing
order of the tree branches, the authors split the search
tree into several sub-trees. Each sub-tree is then mapped
on a processing element and explored using a depth-
first strategy. However, the authors do not take into
consideration the load balancing problem, which may
arise in modulations with dense constellations. They also
do not update the sphere radius at runtime, which may
negatively affect the time complexity of their parallel
implementation. The authors report optimal results for
a 10× 10 MIMO system using 16-QAM modulation and
approximate results for a 16 × 16 MIMO system using
64-QAM modulation.

Most of the existing works report experimental results
for rather small MIMO configuration systems and do
not report or satisfy the real-time response constraint.
In addition, they rely on GPUs to accelerate the partial
or complete exploration of SD search-trees. While GPUs
are throughput-oriented devices, the resulting size of the
SD search space still remains prohibitive to maintain a
decent time complexity.

We decide herein to revisit the fundamentals of the
popular serial SD algorithm, which stands as a proxy
for all non-linear decoders. We reduce its time com-
plexity by relying on a new Best-First Strategy (Best-FS)
for efficient exploration, a matrix algebra reformulation
for increasing arithmetic intensity, and an incremental
evaluation process for cutting down the number of op-
erations. These optimizations are performed for all SNR
regions allowing to reduce the time compexity, while
maintaining optimal BER performance. We then extend
the sequential implementation by exploiting the inherent
parallelism of the SD algorithm. We take advantage of
the diversification gain to avoid the exploration of a
huge number of branches explored in the serial version.
We employ a dynamic load balancing scheduler that
minimizes idleness, communications, and synchroniza-
tion overhead. Finally, in order to break the symbolic
barrier of hundreds of antennas for the first time, we
deploy a new hybrid approximate approach that blends
the aforementioned strengths of our SD implementation
with the ones from the K-best algorithm. This new SD-K-
best CPU-based implementation achieves performance
and complexity metrics at unprecedented levels from the
literature, even with GPU hardware accelerators.

III. SystemModel and Conventional SD Algorithm

A. System Model

In this paper, we consider a baseband MIMO system
consisting of M transmit antennas and N receive anten-
nas, as depicted in Figure 1. The transmitter sends M
data streams simultaneously to a receiver using multi-
ple antennas via a flat-fading channel. This system is
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Streams

Channel
Matrix  

H 

y0
y1

yN-1

s0
s1

sM-1

Transmitted 
Vector s 

Received  
Signal y 

Figure 1: Example of a MIMO system where the vector
s is transmitted by M transmitter antennas via a channel
matrix H . The received vector y is a collection of N
receiver antennas’ observations.

described by the input-output relation in the following
Equation 1:

y = Hs + n, (1)

where the vector y = [y1, ..., yN]T represents the received
signal. H is an N × M channel matrix, where each
element hi j is a complex Gaussian random variable that
models the fading gain between the j-th transmitter and
i-th receiver. The vector s = [s1, ..., sM] represents the
transmitted vector, where si belongs to a finite alphabet
set denoted by Ω. Finally, n = [n1, ...,nN]T represents
the additive white Gaussian noise with zero mean and
covariance IN, where IN designates the identity matrix
of size N. For convenience, let us consider S as the set
of all possible combinations of the transmitted vector s.
The possible number of combinations corresponds to the
complexity of the MIMO system and it is calculated as
follows: |S| = |Ω|M.

There are two options to decode the received signal.
Either we use linear decoders characterized by low
complexity and poor performance in terms of BER, or
we use non-linear (optimal) decoders characterized by
good BER quality but high complexity.

Linear decoders multiply and map the received signal
using a matrix denoted by Hinv (M ×N), obtained from
the channel matrix H . The most commonly used linear
decoders in the literature define Hinv as follows:
• Maximum Ratio Combining (MRC), where the Hinv

is equal to:
Hinv = HH .

• Zero Forcing (ZF), where the Hinv in case of M ≤ N
is equal to:

Hinv = (HH ·H)−1 ·HH .

• Minimum Mean Square Error (MMSE), where the
Hinv matrix used by this decoder is equal to:

Hinv = (HH ·H +
1

SNR
· Im) ·HH ,

with the Signal-to-Noise Ratio SNR = P, where P
is the average transmit power, since we normalize
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the noise covariance to identity, without loss of
generality.

As for non-linear decoders, the Maximum Likelihood
(ML) is the de facto decoder, exhibiting high complexity.
It calculates a posteriori probability for each possible
transmitted vector s ∈ S. In other words, the algorithm
performs a brute-force exploration of the entire search
space, as shown in the following Equation 2:

ŝML = arg min
s∈S
||y−Hs||2. (2)

The ML decoder chooses the vector s that minimizes
the distance between the received vector y and the
assumed transmitted vector Hs. In perfect conditions,
i.e., in absence of noise, this minimum distance is equal
to zero, which indicates that the transmitted vector is
exactly the received one, up to a channel multiplication.
For more details about the ML decoder, the reader may
refer to [26]. Another example of non-linear decoders is
the Sphere Decoder (SD) algorithm [10], [27]. This latter
mimics the ML decoder, but limits the search for the
candidate vector to a smaller space than ML, reducing
enormously the complexity. The SD algorithm consists
in exploring solutions inside a sphere of radius r set
initially by the user, as shown in the following Equation
3:

||y−Hs||2 < r2, where s ∈ S. (3)

The radius may then be updated subsequently during
the search process at runtime to further prune the search
space and reduce the complexity. In the following sec-
tion, we describe the baseline SD algorithm and its
components in more details.

B. Conventional Sphere Decoder Algorithm

The SD algorithm operates on a search tree that mod-
els all possible combinations of the transmitted vector.
This algorithm aims to find the best path in terms of
distance from the received signal, while ignoring non
promising branches. Equation 3 can be translated in
solving the integer least-square problem. It starts with
a preprocessing operation by performing a QR decom-
position of the channel matrix H as H = QR, where
Q ∈ CN×N is an orthogonal matrix and R ∈ CN×M is an
upper triangular matrix. This preprocessing step permits
to expose the matrix structures of Q and R, which will
be eventually used to simplify the computations. Indeed,
by using the orthogonality of Q and considering only
the M ×M upper part of R, the problem defined in the
Equation 3 can be transformed into another equivalent
problem as follows:

||y−Hs||2 = ||y−QRs||2

= ||Q(QHy−Rs)||2

= ||QHy−Rs||2

= ||ȳ−Rs||2, where ȳ = QHy

= ||



ȳ0

ȳ1

.

.

.
ȳM−1


−



r00 r01 .... r0M−1
0 r11 .... r1M−1
. . .... .
. . .... .
. . .... .
0 0 ... 0 rM−1M−1





s0
s1
.
.
.

sM−1


||

2.

Therefore, finding the supposed transmitted vector (ŝ)
in Equation 1 is equivalent to solving the following
minimization problem:

min
M∑

k=1

gk(sM−1, ..., sM−k), (4)

where gk(sM−1, ..., sM−k) = ||ȳM−k −
∑M−1

i=M−k(r(M−k),isi)||2.
This latter formulation of the problem allows us to model
all possible combinations of the transmitted vector (i.e.,
search space) as a search tree with M layers. To find
the path with the minimum distance from the received
signal, the SD algorithm is decomposed into three com-
ponents: branching, evaluation, and pruning. Figure 2

Algorithm 1: The Sphere Decoder (SD) Algorithm.
Data: Received signal y
Constellation order Ω
Channel estimation H
Noise variance estimation σ2

Radius r
Result: Decoded vector ŝ

1 initialization;
2 List < −− root;
3 while List != ∅ do
4 P = select node (List);
5 List = List - {P};
6 Generate successors Pi o f P / i = {1, ..., |Ω|};
7 for each Pi do
8 if E(Pi) < r then
9 if Pi is a leaf node (complete solution) then

10 r= E(Pi);
11 (The evaluation of sub-problem Pi.)
12 ŝ = FPi ;
13 else
14 List = List ∪ Pi;
15 end
16 else
17 prune the branch;
18 end
19 end
20 end

shows an example of the SD search tree and highlights
the SD components on a MIMO system with three transit
antennas using the Binary Phase-Shift Keying (BPSK)
modulation.
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8
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Figure 2: This figure represents an example of the SD search tree for a MIMO system with three transmit antennas.
At each level, one symbol is fixed, starting with the last one. The partial evaluation of each node (sub-problem)
is stored inside the circles. The pruning process uses the evaluation of the node and the sphere radius r to avoid
unpromising branches.

In the following, we describe formally each of the SD
components, as described in Algorithm 1.

1) Branching
the branching component for a MIMO system with

M transmit antennas is performed over the symbols
of a transmitted vector. This process creates a search
tree with M levels, so that each level corresponds to
one symbol. Thereby, the last level of the search tree
contains all possible combinations of the transmitted
vector. Each search tree node is characterized by a set
of fixed symbols denoted by F. In this way, there is no
fixed symbols in the root node (Froot = ∅). The branching
component is essentially a recursive process that divides
the search space related to a search tree node P over
several successors (or sub-problems) Pi, i = 1, ..., |Ω|. Each
subsequent successor is eventually handled in the same
way until a complete solution is found, i.e., until the
number of symbols in the solution is equal to M. The
number of immediate successors depends on the size of
the alphabet. For example in Figure 2, the size of the
constellation in the BPSK modulation is two (-1 and +1).
In this case, we have two immediate successors (P1,P2) of
node P, where P1 is characterized by the set FP1=Fp∪{−1}
and P2 is characterized by the set FP2=Fp ∪ {+1}. At
each level of the search tree, we perform branching
over one symbol. Since matrix R from the QR decom-
position is upper triangular, each level l of the search
tree corresponds to a symbol sM−l. For example, level 1
corresponds to symbol sM−1 and level M corresponds to
symbol s0. Thus, we begin by fixing sM−1, then symbol
sM−2, and so on, until we reach the leaf nodes where
symbol s0 is fixed.

2) Evaluation
the evaluation component represents the process of

computing the Partial Distance (PD) of each search
tree node from the received signal. After the branching
process, the evaluation, denoted by E in Algorithm 1,
is calculated for each successor using Equation 4. More
precisely, the evaluation of a search tree node P char-
acterized by L fixed symbols ( Fp = {sM−1, ..., sM−L})
is defined as E(P) =

∑L
k=1 gk(sM−1, ...., sM−k). This comes

down to calculate:

E(P) = ||


ȳM−L
.
.

ȳM−1

−

0 . .... rM−L,M−2 rM−L,M−1
. . .... . .
. . .... . .
0 0 ... 0 rM−1,M−1



sM−L
.
.

sM−1

 ||2.
This means that we use only the last L elements in
vector ȳ and the last L lines in matrix R to compute
the evaluation of a node P with L fixed symbols where
L = |Fp|.

3) Sphere Radius and Pruning
the sphere radius defines the region of the search space

in which an intelligent enumeration can be performed.
The radius represents an important parameter for deter-
mining the complexity of the SD algorithm, since a large
value of the radius induces a high complexity. The ideal
value for the radius should as small as possible, but as
long as the corresponding region still includes the ML
solution. The sphere radius, denoted by r, imposes an
upper limit for the expression ||ȳ−Rs||2, which leads to
reject any partial combination of the transmitted vector
s with a partial evaluation greater than r. The sphere
radius used in this paper is equal to r2 = N ·M · 10

−SNR
10
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Figure 3: Exploration strategies used by the SD algorithm.

and is the same used in [24]. Tuning and studying the
impact of r on complexity and performance is critical but
beyond the scope of this paper.

The pruning process consists in detecting and elim-
inating the unpromising branches in the search tree
by using both the sphere radius and the evaluation of
nodes. As seen in Equation 4, the evaluation increases
each time we fix a new symbol in the transmitted vector.
This means that a node P with a partial evaluation
E(p) >= r2 can not lead to a complete solution that
improves the best one already found. In this specific
case, the node is eliminated. In order to ensure an
efficient pruning process during the search, we replace
the value of the radius each time a new better solution
(leaf node) s ∈ S is explored, i.e., r2 = E(s). Updating
the value of the radius during the pruning phase is very
important for the subsequent explorations of the search
tree. This feature may prevent exploring a huge number
of branches that are outside of the sphere radius.

C. Exploration Strategies

To give an idea about the magnitude of the search
space, the number of combinations (leaf nodes) for a
MIMO system with the BPSK modulation and fifty
transmit antennas is 1.1258999 e+15. Exploring all these
possibilities under real-time constraints is prohibitively
expensive. The exploration strategies for the SD algo-
rithm define the way the search tree is explored and
traversed, as illustrated in line 4 of Algorithm 1. The
performance of each exploration strategy depends on
the MIMO configurations and the underlying hardware
architectures. For this reason, we investigate in this
paper the impact of several exploration strategies on
the SD complexity. The SD search tree is stored using a
list structure and is partially explored at each iteration.
Figure 3 shows the two typical ways of exploring a tree:
Breadth-First and Depth-First.

1) Breadth-First Traversal Strategy
the Breadth-First Strategy (BFS) explores the search

tree level by level, which means that all nodes of a
given level must be explored before moving toward the
lower levels. In practice, implementing the BFS consists
to apply First-In First-Out (FIFO) strategy on the data list
that contains the tree, i.e., selecting always the rightmost

node in the list. The BFS is particularly very suitable for
parallel implementation since all nodes of a given level
can be treated independently. This enables to efficiently
exploit the available computing resources. However, its
major drawback is the high memory footprint during the
search process. This makes its application very limited
in practice, especially for massive MIMO systems where
the number of possible solutions may be tremendous.
The second major drawback of the BFS strategy is the
fact that the sphere radius remains the same throughout
the search process, since this strategy reaches the leaf
nodes only at the last level. The static sphere radius
cannot be updated at runtime and engenders a poor
pruning process, which induces a very high complexity
even for small MIMO systems.

2) Depth-First Traversal Strategy
the Depth-First Strategy (DFS) is a recursive process

based on a backtracking technique. Unlike the BFS, the
DFS aims to reach leaf nodes as quickly as possible by
exploring down the current path. Once it reaches the
leaves, DFS may explore backward to retrieve new nodes
and carry on again along the new path until attaining
the bottom of the tree. This process is pursued until all
nodes are explored. In practice, implementing the DFS
consists to apply a Last-In First-Out (LIFO) strategy to
the data list that contains the tree. In other words, the
DFS always select the leftmost node in the list, which is
the most recently added to the list after the branching
process. The interesting fact that should be highlighted
for DFS in general is the limited memory usage. This
feature makes it very suitable in practice for challenging
problems such as decoding messages in massive MIMO
systems. The other interesting fact is the possibility of
updating the value of the sphere radius dynamically due
to the huge number of entirely explored solutions. Al-
though the complexity may be improved for sequential
implementations, the DFS does not expose parallelism
compared to BFS. Therefore, it may not be suitable in
presence of high number of computing resources needed
to operate large MIMO configurations.

IV. Leveraging The Sphere Decoder Algorithm Toward
MassiveMIMO

In this section, we present an initial set of optimization
techniques to improve the exploration and the evalua-
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tion phases in our SD algorithm.

A. Best-First Strategy
In order to improve the search tree exploration, we

introduce the Best-First Strategy (Best-FS). This strategy
is very similar to the DFS since both are meant to explore
leaf nodes first. However, the Best-FS targets a better
quality of leaf nodes (in terms of distance from the
received signal) as compared to the DFS exploration
model. After the branching process, Best-FS chooses first
the node with the best evaluation in order to complete
its exploration. The only difference against the DFS
model is that the nodes generated after the branching
process are sorted according to their partial distance
before being inserted into the list. Since the number
of nodes generated after the branching is limited, the
overhead time of the sorting process is insignificant. The
exploration based on Best-FS is theoretically more suited
for SD implementation since it targets better quality leaf-
nodes. Therefore, this approach proactively reduces the
sphere radius throughout during the SD process, which
decreases the number of explored nodes and thus, the
memory footprint and the arithmetic complexity.

After optimizing the exploration phase, we aim to
further reduce the SD complexity by optimizing its
evaluation phase. This latter represents the most time-
consuming part of the SD algorithm, since it is calculated
for each search tree node. To achieve this goal, we
consider two aspects: reducing the number of evalua-
tion steps and avoiding redundancy in the evaluation
process.

B. Grouping Evaluation Steps
The idea here is to reduce the number of intermediate

evaluation points for each path in the search tree. For a
MIMO system with M transmit antennas, we generally
perform M evaluation points to reach the leaf nodes,
which may be overwhelming when scaling up massive
MIMO systems. Reducing the number of evaluation
points can be achieved by performing the branching
process simultaneously over several symbols instead of
one at a time. Indeed, performing the branching over J
positions in the transmitted vector allows us to reduce
the number of evaluation points from M to M/J. For
instance, performing the branching over five symbols for
a MIMO system with 100 transmit antennas will reduce
the number of evaluation points for each search tree
path from 100 to only 20. Beside shortening the overall
processing time of the evaluation phase, this grouping
technique allows to reach the leaf nodes more quickly
which may result not only in reducing the latency over-
head but also in pruning earlier a lot of branches.

However, we should keep in mind that the num-
ber of immediate successors will increase according to
the number of fixed symbols in the branching process.
Therefore, instead of creating |Ω| new successors, we cre-
ate |Ω|J new successors. The parameter J should be tuned
accordingly to trade-off complexity and parallelism.

C. Incremental Evaluation

Since the search tree for massive MIMO may be huge,
it is paramount to optimize the evaluation in order to
achieve good performance. Our goal here is to further
reduce the complexity of the evaluation step by avoiding
redundant computations.

We recall that the evaluation of a search tree
node P with L fixed symbols is equal to E(P) =∑L

k=1 gk(sM−1, ..., sM−k). We can see that the complexity
of the evaluation increases significantly when moving
toward leaf nodes. In order to avoid this increase in
complexity and to have the same evaluation time for all
search tree nodes, we take advantage of the incremental
nature of the evaluation process for this problem. Indeed,
the evaluation of successors Pi of the node P with Li fixed
symbols, where Li > L, can be decomposed as follows:

E(Pi) =

Li∑
k=1

gk(sM−1, ..., sM−k)

=︷                                                           ︸︸                                                           ︷
L∑

k=1

gk(sM−1, ..., sM−k)︸                      ︷︷                      ︸
E(P)

+

Li∑
k=L+1

gk(sM−1, ..., sM−k).︸                         ︷︷                         ︸
non-computed part

(5)

Therefore, we accumulate the calculations during the
evaluation of previous nodes in order to use it later when
evaluating the successors. In this way, the evaluation
process for all search nodes consists to compute only
the non-computed part of Equation 5.

V. Implementation Details of The Parallel Sphere
Decoder Algorithm

This section provides details of the sequential and
parallel Sphere Decoder (SD) implementations based on
the Best-FS combined with the grouping and incremental
evaluation steps.

A. Serial Implementation of the SD Algorithm

In the following, we describe our idea of optimizing
the implementation of the evaluation phase using the
well-known Basic Linear Algebra Subprograms (BLAS).

As mentioned earlier, performing the branching over
J symbols at a time allows us to reduce the number of
evaluation steps. However, it also increases the number
of successors from |Ω| to |Ω|J. Each successor is char-
acterized by a vector of fixed symbols called here v. To
evaluate all successors at once, we propose the following:
We begin by regrouping all successors’ vectors in one
matrix named V, with |v| lines (number of fixed symbols)
and |Ω|J columns (number of successors). After that, we
create a matrix R′ by considering only the last |v| lines
and the last |v| columns of the matrix R. Thereafter,
we use the well-known BLAS library [28] to compute
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B = Y?
−RV, where Y? represents the last |v| elements of

ȳ duplicated |Ω|J times. Finally, we use the matrix B to
deduce the evaluation of each successor by computing
the norm over the columns of matrix B. In this way, we
have been able to optimize the implementation of this
algorithm.

However, searching for the optimal combination of the
transmitted vector is a time consuming operation due
to the large scale of the SD search tree. In this section,
we study the impact and possible gain of exploiting
the processing elements of a single workstation. Indeed,
most of today’s machines are parallel from a hardware
perspective; offering a decent computing power, which
is not exploited in most cases. For this reason, and to
evaluate the possible gain that can be achieved using
small number of computing resources, two parallel SD
approaches are proposed.

Branching 
+

Evaluation

Thread 0 Thread n

Insertion

resulting
nodes

List  containing the search tree

Figure 4: Low-level SD parallelization.

B. Low-level Parallel SD Approach

Our first attempt to accelerate the SD algorithm is by
accelerating its exploration process. As depicted in Fig-
ure 4, this first approach aims to accelerate the sequential
process of exploring one search tree stored in a list. At
each iteration, the serial SD algorithm takes a search tree
node from the list and performs the branching operation,
which creates a set of successor nodes. After-that, the SD
calculates the partial distance (evaluation) for all result-
ing nodes before adding them to the list. The idea of
this parallel approach is to perform the branching overs
several nodes at a time. Therefore, at each iteration of the
SD algorithm, we create a set of threads to perform the
same sequential process (branching and evaluation) over
several search tree nodes in a concurrent safe way. This
process is repeated until the list becomes empty. Hence,
the end of the parallel algorithm is reached. The number
of threads and work-load for each one must be adapted
to the number of processing elements available in the
machine. Moreover, to ensure low memory utilization,
this approach uses the Best-FS exploration model.

The interesting fact about this approach is the fair
work-load distribution between parallel threads, which

prevents the idleness especially for this kind of prob-
lems. The down side of this approach is the scalability
issue that may occur when increasing the number of
parallel threads, due to the concurrent access to the same
data-structure. To avoid this problem, a second parallel
SD approach is proposed.
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Figure 5: High-level SD parallelization.

C. High-level Parallel SD Approach
As depicted in Figure 5, our second parallel scheme

can be seen as a high level parallelization in which
several instances of the SD algorithm explore simulta-
neously the search space. Indeed, this scheme exploits
the fact that the global tree which models all possible
combination of the transmitted vector can be divided
into several smaller subtrees where each can be explored
independently from the others. The only shared informa-
tion between the SD instances is the value of the sphere
radius; which is updated each time a new better solution
is explored by parallel threads. The proposed parallel
scheme, which exploits the multi-core CPU processors,
is based on the Master/Worker paradigm. According to
this paradigm, we have one instance of the SD algorithm
playing the role of the master process and other SD
instances as workers. The master divides the search tree
into several sub trees, which are meant to be explored by
workers. We define a work-pool as a set of active nodes
generated by the SD algorithm during the search process.
Two kind of work-pool can be identified: a master-
pool owned by the master process, and several local
work-pools owned by the different workers. Initially, all
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workers are blocked, waiting for nodes to explore. The
master creates the root node and begins the exploration
of the search tree which generates a set of nodes in the
master-pool. When the number of nodes in the master-
pool is greater than the number of workers, the master
wakes up blocked workers by sending to each one of
them a node (subtree). After that, each worker launches
its own SD instance to explore the sub-tree related to the
received node. In order to efficiently reduce the sphere
radius, all parallel SD instances (threads) explore their
subsequent subtree according to the Best-FS model. The
master periodically checks on the state of workers and
wakes-up any blocked one (worker with an empty work-
pool). Each time the master-pool is empty, the master
checks the state of all workers. If all of them are blocked,
the master sends an end signal to all parallel threads.

Load-balancing problem: Due to the prohibitive com-
plexity of SD, and the irregular work-load in the SD
sub-trees, a load-balancing strategy must be used. This
latter has an objective to increase the efficiency of our
high-level parallel SD approach by avoiding the idle-
ness of workers. In our case, the idleness of workers
appears only in the case where the master work-pool
is empty. Our idea to avoid the idleness of workers is
to perform a workload redistribution over all blocked
workers whenever the master work-pool is empty. In this
case, the master locates the worker which has the highest
number of unexplored nodes. Then, it distributes them
over blocked workers and move the most of remaining
nodes to its own work-pool. In this way, we have been
able to ensure a fair work-load distribution during the
decoding process.

The parallelization allows to speedup enormously the
exploration process and reduce the SD complexity. How-
ever, the complexity of the latter is still very high to deal
with massive MIMO systems under real-time constraint.
For this reason, we propose in the following a new
approximate algorithm that perform a trade-off between
the complexity and the performance in terms of error
rate.

Similarly to the DFS, the Best-FS may be less suitable
for parallelization as compared to the BFS exploration
model. The number of nodes handled at each iteration
is limited, leading to a low hardware occupancy.

VI. Our Hybrid Sphere Decoder / K-Best Algorithm

The main idea of our proposed approximate approach
is to achieve an acceptable BER in real-time complexity,
i.e., losing a bit in performance (as compared to the
SD algorithm), but wining in terms of complexity. The
challenge is to find the appropriate balance to achieve
both near ML performance and real-time response.

One of the best reference algorithms performing a
trade-off between the complexity and the performance
is the K-best algorithm [29]. Similarly to SD, the K-best
algorithm [29] operates on a search tree that models
all possible combinations of the transmitted vector (see

Figure 6). It explores the search tree level by level ac-
cording to the BFS model. However, the algorithm keeps
only the best K nodes in terms of evaluation for further
exploration, and the remaining nodes from the level
are systematically removed. This process is repeated for
each level until reaching the last one where leaf nodes
(solutions) exist. Among these solutions, the algorithm
returns the best one in terms of distance. Since the search
tree of this algorithm contains k nodes in each level,
the total number of explored nodes by this algorithm
is equal to (M − 1) × K, where M refers to the number
of transmit antennas. Thereby, this algorithm has a fixed
complexity irrespective to SNR.

Moreover, the number of kept nodes (K) should be
carefully considered since it impacts the complexity of
the algorithm. On one hand, a large value of parameter
K allows the algorithm to achieve a near SD performance
in terms of BER. However, the algorithm complexity
increases significantly and can even exceed the SD com-
plexity. In addition to that, a large value of K induces a
significant sorting overhead, making the complexity of
K-best far from real-time response. On the other hand,
a small value for parameter K reduces the complexity,
however, the algorithm loses in performance in terms
of BER. Moreover, the performance of the algorithm, in
terms of BER, drops significantly for dense constella-
tions. To overcome all these drawbacks, we propose a
hybrid parallel algorithm, named SD-K-best that takes
all the benefits of SD and K-best algorithms. Our hybrid
approach also aims to reduce the complexity of our high-
level parallel SD version, while taking benefit from the
Best-FS exploration, the sphere radius, and the diversi-
fication gain.

Figure 6: The K-best algorithm with K=2.

Indeed, our hybrid approach is based on our high-
level parallel scheme, which means that a Master/Worker
paradigm is also used in this approximate approach. The
mater process executes a SD instance which builds the
SD search tree in the master work-pool. To accelerate the
exploration process of this tree, we use several work-
ers with a low-complexity K-best algorithm. In other
words, the master performs the pre-processing phase
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and generates the root of the SD search tree. After-that, it
explores the search tree by a SD algorithm according to
the Best-FS exploration mode which allows to explore
first the most promising combinations. To accelerate
the exploration process, the master sends nodes, from
the head of the master work-pool (right-most nodes),
for workers to complete their exploration. Each worker
explores the received node by the mean of a K-best
algorithm. Therefore, after the branching a worker keeps
only the best K successors in terms of partial distance
and ignore the rest which reduces the complexity. In-
addition to the best K nodes selected by each worker,
additional nodes may also be selected if their distance is
very close to the distance of selected nodes. Moreover,
since the value of parameter K used by each worker is
small, there is an insignificant sorting overhead which
allows workers to rapidly reach leaf-nodes and improve
the radius. Improving the radius allows to reduce even
more the complexity of workers. i.e., workers keep only
the best successors which are inside the radius. This
allows to target better quality combinations. In the case
where the kept nodes by a worker are outside the
radius, the corresponding worker ends its exploration
and requests a new node from the master. The fact that
the search tree is built in parallel allows to take benefit
from the diversification gain which may allow to explore
good combination and thus reducing more efficiently the
radius and avoiding the explorations of huge number
of branches. Finally, the ends of this hybrid approach
is reached when the master work-pool is empty. The
whole number of explored nodes by our hybrid SD-K-
best is much bigger than the number of explored nodes
by the K-best algorithm which leads to improve the BER
performance. However, since this approach takes benefit
of parallel architectures, the complexity of our hybrid
SD-K-best can be less than the complexity of K-best
algorithm, since the average number of explored nodes
by a processing element is lower. In this way, we have
been able to achieve both low complexity and good BER
performance as demonstrated in the experiment results
section.

VII. Experimental Results

In this section, we report the results of our proposed
approaches. This section is organized in three parts.
The first part shows the impact of different exploration
strategies and optimization techniques on the SD com-
plexity. The second part of this section reports the impact
of using parallel architectures to accelerate the explo-
ration process of the SD algorithm. Finally, the third
part presents the results, in terms of BER performance
and time complexity, of our proposed approximate algo-
rithms for large MIMO systems.

We perform our experiments using a two-socket 10-
core Intel Ivy Bridge CPU running at 2.8 GHz with 256
GB of main memory. Hyper-threading is enabled on the
system in order to maximize resource occupancy. For
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Figure 7: Impact of exploration strategies on SD per-
formance for the 18 × 18 MIMO system using BPSK
modulation.

all the experiments, we consider the case of a perfect
channel-state information. This means that the channel
matrix is known only at the receiver.

A. Results of Optimizing the SD components
In the following, we report the results of using differ-

ent exploration strategies and optimization techniques
on the SD complexity.

Figure 7 reports the complexity and the number of
visited tree nodes by our SD algorithm using different
exploration strategies for a 18 × 18 MIMO system with
BPSK modulation. The first result from Figure 7 is the
positive impact of depth exploration strategies (DFS and
Best-FS) on the SD algorithm complexity, as compared
to the BFS exploration, especially in low SNR region.
Indeed, the DFS is faster than BFS in low SNR region.
This huge difference in complexity is the result of re-
ducing the number of explored nodes, as reflected in
Figure 7 (b). Indeed, the goal of the DFS is to reach leaf
nodes quickly, which allows to explore a large number
of combinations (leaf nodes). Thus, reducing the sphere
radius and avoiding the exploration of non-promising
branches, which reduces the complexity. This is not the
case of the BFS. This latter explores the search tree level
by level until reaching the last one where solutions
exist. Therefore, the sphere radius remains the same
during the decoding process. In-addition, the majority
of nodes explored by the BFS belongs to lower levels of
the search tree where the evaluation process has higher
complexity as compared to the early levels of the tree. To
summarize, the BFS explores huge number of nodes with
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Figure 8: Impact of our optimization techniques on the SD performance for a 52 × 52 MIMO system using BPSK
modulation.

high evaluation complexity as compared to the DFS. The
latter avoids non-promising branches at early levels of
the search tree. According to the same figures, the Best-
FS performs even better as compared to the complexity
of using the BFS and DFS strategies. Indeed, the Best-
FS guides the search process toward better quality leaf
nodes, which reduces the sphere radius more quickly
and efficiently. Therefore, reducing further the number
of explored nodes as compared to the DFS. This explains
why the complexity of SD using the Best-FS is better than
the complexity of the SD using the DFS. Figure 7 (a) also
shows that the difference in complexity between the dif-
ferent exploration strategies decreases when increasing
the SNR until reaching the same complexity for SNR
equals to 24. This behavior is related to the estimation
of the initial sphere radius. Indeed, the higher the SNR
(lower noise) the better the estimation of the initial
sphere radius. In fact, when reaching 24 dB, the initial
sphere radius becomes smaller which induces an effi-
cient pruning process for the BFS and equal number of
explored nodes as we can see in Figure 7 (b). Moreover,
Figure 7 (a) also shows that using the SD algorithm with
Best-FS allowed us to reach real-time response (10−2s)
from 0 dB SNR, while the SD algorithm with DFS and
BFS needs a SNR of 10 dB and 16 dB respectively to
ensure a real-time decoding process. Thus, a difference
of 16 dB in power consumption.

As a conclusion, the Best-FS is more suitable for serial
implementation of the SD algorithm. For this reason, we
will use it for all remaining experiments.

Figure 8 shows the impact of our optimization tech-
niques on the complexity of SD algorithm for 52 × 52

MIMO system using BPSK modulation.
The first sub-figure (a) reports the complexity of per-

forming the branching over several symbols at each
iteration of the SD algorithm in low SNR region (0
dB). The subfigure shows that the best performance is
reached when fixing two symbols at a time. After that,
increasing the number of fixed symbols increases the
complexity. This is mostly due to the increase in the
number of resulting nodes that need to be evaluated;
which induces an overhead in computation, especially
when using a single CPU-core. For this reason, it is
important that the number of fixed symbols fits well the
targeted architecture and the number of its processing
elements.

Similarly, sub-figures (b) and (c) report respectively the
complexity over SNR and the improvement percentage
of our optimizations in two SNR regions. The sub-figures
show the positive impact of our incremental evaluation
process on the complexity of the SD algorithm. The incre-
mental evaluation process allowed us to increase the per-
formance of the SD algorithm up to 108%, i.e., more than
two times faster. Moreover, fixing two positions in the
transmitted vector at a time, allowed an improvement in
complexity up to 152%. Combining both optimizations
allowed us to achieve even higher improvement to reach
240%. In addition to the improvement in complexity,
we also have an improvement of four dB in power
consumption as compared to the basic SD version. This
improvement is the results of (1) grouping some evalu-
ation steps and (2) avoiding redundancy in computing
the evaluation for each search tree node.

Figure 9 shows the complexity of our approach as
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Figure 9: Complexity of our optimized SD algorithm as
compared to our previous GPU-SD work in [24] for the
25 × 25 MIMO system.

compared to our previous work in [24] using a 25 × 25
MIMO system with BPSK modulation. The figure also
shows the complexity results of the most used linear
decoders in the literature: MMSE, ZF, and MRC. The
25× 25 MIMO system represents the biggest that can be
solved by the SD algorithm with BFS, due to the huge
memory resources required by this strategy.

Figure 9 shows the importance of carefully optimizing
the SD algorithm before moving toward its paralleliza-
tion. Indeed, our optimized SD implementation is up to
255 times faster in the low SNR region and 15 times
faster in the high SNR region as compared to the GPU-
based SD in [24]. Figure 9 shows that, unlike linear
decoders which have constant complexity, the complex-
ity of the SD algorithm decreases when increasing the
SNR. This behavior is closely related to the fact that the
initial value of the sphere’s radius, which is inversely
proportional to the SNR. Therefore, higher the SNR, the
smaller initial sphere radius, which reduces the search
space, and thus, the complexity.

B. Results of our Parallel SD Approaches

In the following, we report the impact of using parallel
architectures on the SD complexity. Two parallel ap-
proaches have been proposed. The first parallel approach
(PL-SD) uses a set of threads to explore several nodes at
a time; while the second parallel approach (PSD) uses
simultaneously several instances of the SD algorithm to
explore the search tree in parallel. Due to the unbalanced
work-load for each instance, two version of the PSD are
proposed depending on the nature of the used load-
balancing strategy: PSD with static load-balancing (S-
PSD) and PSD with dynamic load-balancing (D-PSD).
In our PL-SD approach, creating and destroying threads
at each iteration induces a considerable overhead time,
which slows down considerably this parallel version. To
overcome this problem, the workload for each parallel
thread must be high enough to cover this overhead time.
In our case, the workload for each thread is around
twenty nodes.

Figure10 shows the impact of increasing the number of
parallel threads on the time complexity of our parallel
SD approaches. This time is measured for SNR equals
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Figure 10: Impact of increasing the number of threads
on the complexity of our parallel SD approaches for a
10 × 10 MIMO system using 16-QAM modulation.

to zero. Figure10 also shows the speedup obtained by
our approaches for each number of threads. The first
result from the figure is the positive impact of paral-
lelism on reducing the complexity of the SD algorithm.
As we can see in Figure 10, the curve of our low-
level parallel approach has three phases. A first phase,
between two and ten threads, characterized by a rapid
decrease in complexity, when increasing the number of
threads. This means that adding threads in this phase
is beneficial and reduces the complexity. This is due
to the positive impact of splitting the work-load over
several processing elements (CPU-cores) and the low
synchronization overhead. This overhead is related to
the concurrent access to the same data structure that
contains the search tree. This latter must be accessed by
one thread at a time to have a valid execution result.
After that, begins a second phase between ten and thirty-
five threads where adding new threads has no impact
of the decoding time. This can be explained by fact
that the synchronization overhead neutralizes the gain
of exploiting additional processing elements. After that,
a third phase begins. This last is characterized by an
increase in complexity when increasing the number of
parallel threads. This behavior is related to the overhead
of synchronization which increases when increasing the
number of threads. Along with the sequential execution
of threads by processing elements. As a result, an ideal
number of threads for this low-level version will be
between twenty and thirty for this parallel approach.

Figure 10 also shows the results of our high-level par-
allel approach with static and dynamic load-balancing
strategies. This parallel version is based on splitting
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the search tree into several subtrees, where each one
is explored independently by a parallel thread. The
gain obtained by our high-level approach using a static
load-balancing (S-PSD) strategy is limited due to the
imbalanced work-load in each subtree. This results in
a long execution time for few threads while others are
ideal. By adding our dynamic load-balancing strategy
(D-PSD), the performance of our high level parallel
approach improved substantially. In fact, adding our
proposed dynamic load-balancing strategy allowed us
to reach a relative speedup of forty times faster us-
ing twenty CPU-cores and thirty-five parallel threads
as compared to our optimized serial SD version. The
curve of our high-level approach has two phases. A first
phase characterized by a rapid decrease in complexity
(increase in speedup), and a second phase where adding
new threads does not change the complexity. The first
phase, between two and twenty threads has a super-
linear speedup. This speedup is the result of (1) low
synchronization overhead since each thread explores its
subtree independently from the others. Therefore, no
concurrent access to the same data structure. (2) The
fair work-load distribution among parallel threads due
to our load-balancing strategy. This latter prevents the
idleness of threads. (3) The diversification gain, that
allows to reduce the explored search space as compared
to the serial version. Indeed, dividing and exploring the
search tree in parallel may result in a rapid improvement
of the radius, which allows to avoid the exploration
of several branches explored in the sequential version.
This results in a super-linear speedup as in our case.
Moreover, when the number of threads is greater than
twenty which is the number of available processing
elements (CPU-cores), a second phase begins. In this
phase, the complexity of our high-level approach should
be increasing due to the serial execution of threads by
the processing elements. However, this is not the case.
In fact, we still get performance improvement to reach
41x speedup when using forty threads. This behavior
can simply be explained by the diversification gain that
neutralizes the serial execution overhead of threads and
improve the performance.

The scalability refers to the possibility of still improv-
ing the performance of our parallel approaches when
using huge number of processing elements. According
to Figure 10, our low-level approach does not scale well
since all parallel threads operates on a single search tree.
Therefore, inducing a synchronization overhead which
effects the performance. This is not the case of our high-
level approach which is embarrassingly parallel due
to the low communication and synchronization costs
between parallel threads, since each one operates on its
own search tree. However, it needs a load balancing
strategy to ensure a fair workload distribution among
parallel threads.

Figure 11 shows the performance (complexity,
speedup) of our parallel approaches when increasing the
SNR for two MIMO systems (10× 10 and 16× 16 ) using
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(c) Error rate of our PSD algorithm.
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Figure 11: Complexity of parallel and sequential SD
algorithms with 16-QAM modulation for 10 × 10 and
16 × 16 MIMO systems.

16-QAM modulation. Our both parallel approaches
use thirty-five threads. Moreover, the speedup shown
in this figure is obtained by our high-level parallel
approach (D-PSD). The first observation is that the
performance of our parallel approaches decreases when
increasing the SNR. This is caused by the decrease in
work-load for each parallel process when increasing
the SNR since the sphere radius get smaller. Our
high-level approach gives better performance, for these
two MIMO configurations, as compared to our low
level approach. This latter, does not perform well for
high SNR and has higher complexity as compared to
the sequential SD due to the synchronization overhead.
The figure shows a good performance of our high-level
parallelization scheme, especially for SNR between 0
and 8 db, where we have been able to reach a speedup
around 69 times faster as compared to our optimized
sequential SD algorithm. This speedup is obtained by
using 35 threads and exploiting 20 processing elements
(CPU-cores). This speedup is the result of: (1) reducing
the synchronization overhead by choosing a good
parallelization scheme, (2) exploiting efficiently the
available computing resources by dividing fairly the
work-load using load balancing strategy, and (3) taking



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER < 15

10 11 12 13 14 15 16 17

101

102

103

104

SNR

vi
si

te
d

no
de

s
(s

)

(a) Latency in terms of visited nodes.

serial-SD
S-PSD-16
S-PSD-32
MultiSphere-16
MultiSphere-32
D-PSD-16
D-PSD-32

10 11 12 13 14 15 16 17
102

103

104

105

SNR

PD
ca

lc
ul

at
io

ns
(s

)

(b) Complexity in terms evaluation (Partial Distance (PD)).
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Figure 12: Our PSD’s latency (a), and complexity (b) vs.
our sequential SD and MultiSphere parallel approach for
a 10 × 10 16-QAM MIMO.

advantage of the diversification gain which is not well
studied in the literature. Moreover, Figure 11c shows
the optimal Symbol Error Rate of our PSD for a 10 × 10
and 16 × 16 MIMO systems using 16-QAM modulation.

In the following, we compare our high-level parallel
approaches against most recent works in the literature
[12], [30]. Figure 12 shows a comparison between the
latency and complexity of our PSD for two cases (16
and 32 threads) with the state-of-the-art parallel Mul-
tiSphere [12], Geosphere SDs [30], and our serial SD
implementation for 16-QAM modulation using a 10× 10
MIMO system. For fair comparison, the initial sphere
radius is set to infinite. The number visited nodes refers
to the average number of nodes (per thread) on which
we performed a branching process, and the PD calcu-
lations refers to the average number of partial distance
calculations, i.e., the average number of evaluated search
tree nodes per thread. The PD calculations represents an
important factor that highly influences the complexity of
decoding approaches. For our S-PSD, these numbers are
measured for the thread with the largest work-load, since
the complexity of the parallel version depends depends
on the complexity of this thread.

Figure 12 validates the results of our proposed parallel
approach (PSD), especially when using dynamic load
balancing strategy. For both 16 and 32 cases, the results
of D-PSD outperform the results of parallel MultiSphere
[12] and serial Geosphere [30] in terms of both visited
nodes and PD calculations. Indeed, when increasing the
number of threads from 16 to 32, our D-PSD consis-
tently improves the performance in terms of both visited
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(a) Complexity results of our SD-K-best approach.

D-PSD-30
SD-K-best

Figure 13: Time complexity of our SD-K-best algorithm
vs. D-PSD algorithm for a 18 × 18 MIMO system using
16-QAM modulation.

nodes and PD calculations. This is not the case of the
MultiSphere approach and our S-PSD and in terms of
PD calculations due to the unbalanced workload be-
tween parallel threads. Moreover, our D-PSD reduces
the complexity by a factor of 58x as compared to our
serial SD and 5x as compared to the MultiSphere parallel
approach.

C. Results of Approximate Algorithms
The parallelization allows to improve the performance

of the SD algorithm especially, for large MIMO systems.
However, the complexity remains very high to meet real-
time response requirements for massive MIMO systems.
To deal with such MIMO instances, the use of approx-
imate algorithms is unavoidable. In the following, we
report the preliminary results, as a proof of concept,
of our proposed approximate algorithm SD-K-best and
compare its performance against the well known K-best
algorithm. The main idea of this hybrid algorithm is to
accelerate the exploration of the SD search tree, stored
in the master process, in a approximate way by using
several low-complexity K-best algorithms (workers) run-
ning in parallel to meet real-time requirement.

Figure 13 shows a comparison between the perfor-
mance, in terms of complexity, of our SD-K-best ap-
proach as compared to our Dynamic PSD approach for
a 18 × 18 MIMO system with 16-QAM modulation. We
can see from the figure that our SD-K-best performs
better in terms of complexity as compared to our PSD
since it explores partially the search tree. This makes it
more applicable for various cases. Indeed, our SD-K-best
approach is able to meet real time response from 13 dB,
while our parallel PSD reaches this complexity at 23 dB;
thus, 10 dB difference in power consumption.

Figures 14 and 15 show respectively the SER per-
formance and complexity results for a 16 × 16 MIMO
system using 64-QAM modulation. The figures compare
the results of our SD-K-best algorithm with the results of
K-best algorithm. Our SD-K-best algorithm uses twenty
threads: one as a master process with a SD instance
and nineteen as workers with K-best algorithm to ac-
celerate the search process. Figure 14 shows the results
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Figure 14: SER of our SD-K-best algorithm vs. K-best
algorithm for a 16 × 16 MIMO system using 64-QAM
modulation.

of our proposed SD-K-best with several configurations
k ∈ {1, 2, 6, 8}. The figure also shows the results of the K-
best algorithm with two configurations k=10 and k=32.
The value of K refers to the number of kept nodes at
each level by K-best algorithm, as well as workers in
SD-K-best. The error rate for K-best algorithm with ten
kept nodes does not reach the acceptable error rate (10−3)
even when reaching 26 dB. By increasing the value of K
to 32, the performance of the latter is improved to meet
this requirement in 22 dB. As compared to the K-best
algorithm, our proposed SD-K-best algorithm performs
better in terms of error rate and reach an acceptable rate
even with small value of kept nodes. When increasing
the number of kept nodes, the performance of our SD-
K-best algorithm increases until reaching stagnation, i.e.,
increasing the number of kept nodes has minor impact
on the SER. Moreover, our SD-K-best algorithm is able to
reach acceptable error rate at a round 20 dB. Thus four
dB improvement in power consumption as compared to
the K-best algorithm with K equals to 32. The perfor-
mance of our proposed approach in terms of error rate is
explained by the large number of explored combinations
as compared to a conventional K-best algorithm. Since
each worker takes a subtree from the master and ex-
plores it according to the K-best algorithm, while taking
benefit from the sphere radius to explore only promising
branches which reduces the complexity.

Figure 15 (a) shows the average number of explored
nodes per thread of our SD-K-best algorithm against
the number of explored nodes by K-best algorithm for
a 16 × 16 64-QAM MIMO system. In the same way,
Figure 15 (b) shows the time complexity of our SD-K-best
approach against K-best algorithm for the same MIMO
system.

We can see from the Figure 15 that the complexity
and the number of visited nodes by the K-best algorithm
are fixed and stable across SNR. This is not the case of
our SD-K-best algorithm since the average number of
explored nodes per thread decreases when increasing the
SNR. This behavior is closely related to the sphere radius
which depends essentially on the SNR, i.e., higher the
SNR the smaller the radius, thus reducing the number of
explored nodes and the complexity. However, the whole
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Figure 15: Our SD-K-best latency (a), and complexity (b)
vs. K-best approximate approach for a 16 × 16 64-QAM
MIMO.

number of explored nodes by all workers in SD-K-best
algorithm is much bigger as compared to the K-best
algorithm which explains the improvement in error rate.
Moreover, Figure 15 (b) shows that the complexity of
the SD-K-best algorithm is higher than the complexity
of K-best algorithm in SNR between 18 and 22 dB
region. This is due to the fact that the SD-K-best explores
more search space than K-best algorithm, which explains
why its complexity is higher. Furthermore, the high
complexity is also explained by the complexity of the
SD algorithm executed by the master process. However,
this is not the case in the high SNR region (22 dB to 26
dB) where the SD-K-best algorithm has less complexity
than K-best algorithm. This is the results of an efficient
pruning process due to the small sphere radius in this
region. In other words, the SD-K-best in the high SNR
region explores less solutions, but they are of good
quality as compared to K-best explored combinations.
The challenge to deal with massive MIMO efficiently is
based on finding the appropriate trade-off between the
complexity and the performance in terms of error rate.
To find it in our case, we combined strengths of both
PSD and K-best algorithms to ensure low complexity and
good BER at the same time. Unlike literature works, our
proposed SD-K-best approach is able to reach both real
time complexity and good error rate from SNR equals
to 28 dB.

In the following, we scale-up the number of antennas
to evaluate the ability of our hybrid SD-K-best algorithm
to guarantee both low complexity and good error rate
performance.

Figure 16 shows the obtained results in terms com-
plexity and error rate performance, for a 100×100 MIMO
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(a) Error Rate.
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(b) Complexity in terms of decoding time (s).
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Figure 16: Error rate and complexity of our SD-K-best
and K-best algorithms for a 100×100 MIMO system using
64-QAM modulation.

system with the 64-QAM modulation, i.e., an uncoded
transmission rate of 400 bits per transmission. The first
observation from the figure is the ability of approximate
algorithms to deal with large MIMO systems. This is not
the case of the SD algorithm due to its prohibit complex-
ity. Figure 16 (a) shows the large improvement in terms
of error rate performance of our SD-k-best algorithm
with low number of kept nodes, as compared to K-best
algorithm due to the diversification gain obtained from
using parallelization. Moreover, starting from 22 dB, our
algorithm has a low complexity than k-best algorithm
due to the small radius in this region, which induces
an efficient pruning process. Furthermore, increasing the
number of kept-nodes for our SD-K-best algorithm have
a good impact of the error rate, without increasing much
the complexity as shown in Figure 16 (b). Indeed, the
diversification gain improves more efficiently the radius
which helps to reduce the overhead of increasing the
number of kept-nodes.

In addition, the high SNR region in Figure 16 (b)
shows that the curves begin to stabilize (floor) before
even reaching the 10 ms threshold. In fact, when dealing
with a larger number of antennas and constellation sizes,
reaching a first leaf node can take more than 10 ms.
This is due to the heavy computation needed at each
level of the tree and the limited number of computing
elements in CPU architecture. For this reason, it is critical
to use highly efficient computing architectures with a
large number of computing elements such as GPUs,
which will be the subject of our future work.

VIII. Conclusion
We proposed in this paper the optimization of a well

known optimal decoder with high complexity named,
the Sphere Decoder (SD) algorithm. To achieve this
goal, three levels have been considered. The first level
consisted in optimizing the SD complements, especially
the exploration strategies and the evaluation process
since they have a huge impact on the complexity. Since
the search tree for all the possible combination of the
transmitted vector is huge, the second level aimed to
speedup the search-tree exploration process by using
parallel architectures. Finally, the third level consisted
to use approximate algorithms that perform a trade-
off between the complexity and the performance. The
obtained results in each level confirmed our proposals
and allowed us, not only to speedup the SD algorithm by
a factor of 60× using a 16-QAM modulation, but also to
deal with large MIMO systems with dense constellations,
such as 100×100. To conclude this work, the challenge to
deal with massive MIMO efficiently is based on finding
the appropriate trade-off between the complexity and the
performance in terms of error rate. To find it in our case,
we combined the strengths of both parallel SD and K-
best algorithms to ensure a low complexity and good
error rate performance at the same time.

In the future, we plan to explore more parallel
approximate algorithms to deal with a multi-user case
situation using GPU architectures.
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