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Heart diseases are the main cause of mortality in the 

industrialized countries [1]. Therefore, it is very important 
to develop new modern methods to improve the medical 
diagnostics of these diseases. Inter-beat (R-R) interval is the 
time interval between two consecutive R-waves of 
electrocardiogram. RR intervals, used in various analyses, 
can be easily obtained from Holter recordings or from 
steady state measurement.  The analysis of RR-interval time 
series can provide insights into autonomic nervous function 
and provide information about the sympathetic-
parasympathetic autonomic balance and cardiovascular 
health. There are many studies on R-R interval data, which 
use chaos theory [2- 5], fractal scaling analysis [6-11], and 
many other methods of the non-linear system theory [12,13]. 
However, the clinical employment of these methods, based 
on the non-linear system theory, is limited. We believe that 
this may be due to insufficiently deep analysis of existing 
algorithms and some problems with the interpretation of 
results. In this work, we consider the well-known methods 
of fractal analysis for estimating the Hurst exponent of R-R 
intervals obtained from Holter recordings and propose a new 
approach for interpreting the obtained results. 

Peng et al. [14] showed that R-R interval time series 
is a long-range correlated stochastic time series and exhibits 
fractal behavior. For evaluating fractal features of RR-
interval time series Peng et al. [14] proposed detrended 
fluctuation analysis (DFA). DFA method enables estimation 

of the scaling exponent   , which is identical to the Hurst 
exponent (! ) for fractional Brownian motion [6, 9]   

The DFA method is a useful tool because it helped to 
clarify the crossover phenomenon connected with a change 
in short and long-range scaling exponent   [7]. The 
scaling exponents were defined separately for short-term 
(<16 beats) and long-term (>16 beats) R-R interval data. 
Peng and collaborators defined new modeling approaches to 
account for the control mechanisms regulating cardiac 
dynamics on different time scales [7]. Stanley [15] assumed 
that the control mechanisms regulating the heartbeat interact 
as part of a coupled cascade of feedback loops in a system 
operating far from equilibrium. Analyzing the fractal 
characteristics of short-term R-R interval data, Huikuri and 
collaborators [16] demonstrated that the analysis of short-
term fractal correlation properties of heart rate has more 
powerful prognostic information than the traditional 
measures of heart rate among patients with depressed left 
ventricular function after an acute myocardial infarction. 
They obtained that reduced short-term scaling exponent 
predicted both arrhythmic death (p-value<0.001) and 
nonarrhythmic cardiac death (p-value<0.001). A reduction 
in the short-term scaling exponent reflects a loss of the 
short-term correlation properties of R-R intervals [16]. 
However, the presence of short-term and longer-term 
regions does not have a sufficiently clear explanation, so the 
authors [17] suggest that the presence of a longer-term 
region may be a statistical artefact due to the fact that R-R 
intervals are bounded signal. As known in [17], biological 
time series are generally bounded within physiological 
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limits, but pure fBm is typically unbounded. The 
fluctuations grow with the time interval length and the 
expected displacement increases indefinitely with time.  
Thus, given the findings above, our goal in this paper is to 
evaluate the Hurst exponent (! ) as a tool for analyzing 
short-term R-R interval data. 

When assessing Hurst exponents (! ) of R-R interval 
time series we have found that values of Hurst exponents are 
close to zero and close to the flicker-noise (1/f) boundary 
[18, 19, 20]. This complicates the interpretation of the 
results because in this case it is difficult to identify whether 
the signals are realizations of fractional Gaussian noise (fGn) 
or fractional Brownian motion (fBm) with anti-persistent 
behavior [17].  

For evaluating the Hurst exponent (! ), Delignieres 
et al. [19] suggests estimating the scaling exponent  . If 
"#$ $#%, the signal is characterized as fBm; and if #"  
then it should be characterized as fGn. The authors [19] 
believe that if the signal is fGn, the Hurst exponent should 
be estimated using the DFA method with cumulative 
transformation. In case of fBm, the Hurst exponent should 
be estimated with DFA method without cumulative 
transformation. The cumulative transformation is the first 
step of the standard DFA method. This transformation in 
Peng et al. [14] is defined by the following.  For each 
element of the time series , we redefine a mean-centered 
(zero mean) time series 

The data series  is shifted by the mean  and 
cumulatively summed  

 
 

              (1) 

 
where  denotes the cumulative moving average for 

, …, . Further calculations are performed with an 
integrated series (discussed in more detail later). 

However, [14] warn that, for such an approach, there 
is a potential problem with assessing the Hurst exponent for 
fBm with small &$values. For example, for fBm with !'()"  
or !'()%  the type of the signal is sometimes incorrectly 
identified to be fGn.  Delignieres et al. [19] gives the 
percentage of misclassification incurred when determining 
such signal for the synthesized fBm with ! '()%$and !'()")  

Application of power spectral density (PSD) also 
does not solve this problem. In [21], the normal cardiac 
signal is characterized as fGn. However, this result 
contradicts [6] where, by means of a DFA method, the 
normal group is characterized as fBm with antipersistent 
behavior. As it is specified in [19], DFA with transformation 
(1) and PSD methods do not yield satisfactory results 
because of the existence of the negative bias which does not 
allow for differentiation between fBm and fGn on the 1/f 
boundary.  

The approach in [19] gives results that are contrary 
to the findings in [22] which claims that it is incorrect to use 
DFA for estimating the Hurst exponent when *" . Such 
approach contradicts the theory and yields false results for 
further interpretation of the type and the nature of the signal 
behaviour under investigation. Thus, in this case, [22] 

recommends using other computational methods of the 
Hurst exponent. Therefore, when assessing the Hurst 
exponent, one should consider using other methods in light 
of the weaknesses by the DFA method.  

For this purpose, we will consider following well-
known methods, namely the stabilogram diffusion algorithm 
(SDA) [23] and the detrending moving average (DMA) [24]. 
We believe that using various assessment algorithms of the 
Hurst exponent for R-R intervals will allow one to establish 
a concrete range of values objectively, and to classify the 
signal into either the normal or the pathology groups. It will 
also help to avoid systematic errors connected to the use of 
one or two algorithms which have slight differences in 
realization. 

In [25], the authors proposed analyzing the tendency 
of the studied signal behavior based on Hurst exponent (! ) 
to differentiate between discrete fGn (dfGn) and fBm 
(dfBm). Thus, if the investigated process generates a signal 
that, when ! , tends towards "white noise," this 
process generates dfBm. If the investigated process 
generates a signal that, when ! , tends towards a 
straight line, then this process generates dfGn. 

In this work, we used neural networks to analyze the 
tendency of the studied signal behavior based on the Hurst 
exponent (! ). This approach enables us to classify signals 
and evaluate the correlation properties of the R-R intervals 
for differentiating between the normal and the pathological 
signals.  

However, DFA, DMA and SDA methods have their 
own limitations. Many biomedical signals do not exhibit 
monofractal scaling behavior (as characterized only by a 
single exponent). In some records, one can observe many 
interwoven fractal subsets of the time series. In this case a 
multitude of scaling exponents is required for a full 
description of the scaling behavior and a multifractal 
analysis must be applied [26]. Here, we consider the 
multifractal analysis, based on generalization of DFA 
method, proposed by Kantelhardt [26]. 

To solve biomedical problems of diagnostics and 
building expert systems, it is necessary to pre-evaluate the 
diagnostic characteristics of the parameters that will be used 
in these systems. In this paper, we evaluate the diagnostic 
characteristics of monofractal and multifractal parameters. 
We propose using the logistic regression model and neural 
network models. To summarize, the goal of this study is to 
evaluate the monofractal and multifractal properties of RR 
intervals for discrimination between the class of normal 
signals against classes that display pathology.  
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In order to investigate the monofractal and 

multifractal properties of R-R intervals in the case of healthy 
subjects (hs) and patients with pathology (pathol) which is 
further classified into congestive heart failure (chf),   atrial 
fibrillation (af),  sudden death (sd), we studied the databases 
of R-R intervals  that are publicly available from 
www.physionet.org [27]. We investigated the 24-hour R-R 
intervals time series of 54 hs (MIT-BIH Normal Sinus 
Rhythm Database), 44 chf (Congestive Heart Failure 
Database), 25 af (MIT-BIN Atrial Fibrillation Database), 23 
sd (Sudden Cardiac Death Holter Database).  
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Consider a stochastic time series { }. The 
Hurst exponent, denoted ! +$ derived from this time series 
can be utilized to quantify the correlation structure (or more 
generally, dependence structure) of { }. Mandelbrot 
[28]  showed  that  the  mean  square  local displacement 

 of a long-range correlated  stochastic 

time series  is related to the  time  interval  by  the  
expression: 

                                  

     
,     (2) 

 
where the  is the Hurst exponent, which is a real number 
in the unit interval range (0,1). The interpretation of the 
Hurst exponent is as follows. When , the past and 
future increments are positively correlated (which is the 
definition of persistent behavior). When ,  the past 
and future increments are negatively correlated (anti-
persistent behavior). When  then the time series 
corresponds to a classical random walk. 

In our work, we use the following three algorithms 
for calculating the Hurst exponent: SDA, DMA, DFA. All 
three methods are based on the calculation of the 
generalized variance. The SDA is a fairly simple method to 
implement. The generalized variance  is calculated as 
follows: 

  

,     (3)     
            

where  is the value that define the number of 

sub-arrays into which the interval  entirely segments the 
discrete one-dimensional domain with size (here,  is 
the number of points), ; and is the 

interval between two points. The parameter   is defined 

as a condition [23]; where  

 . The square displacement 

( ) is calculated for all 
pairs of points located on the same intervals . 

 For the DMA1method, the generalized variance 
 is calculated as follows: 
1

 

     , (4) 

where  is the value that define the number of 

sub-arrays into which the interval  entirely divides the 
discrete one-dimensional domain with size (where  is 
the number of points), , where  is the 

length of the sliding window. The parameter   is defined 

as a condition  [24], where 

=2,3,4,…, . The square displacement 
 

 

is calculated over each sliding window of length . 
The DFA method is more complex in 

implementation compared to the SDA and DMA methods. 
The generalized variance  is calculated as follows: 

1

,      (5)1
11111111111111111111 

where ,-./  – a first degree polynomial which is a linear 
approximation over each sliding window of length ; 

where  is the value that define the number of 

sub-arrays into which the interval  entirely divides the 
discrete one-dimensional domain with size (where  is 
the number of points), . The fine-tuning 

parameter   is defined as a condition  

[24]; where =2,3,4,…, . The square displacement 

 
is calculated over each sliding window of length . The 
polynomial application allows the DFA method to be 
steadier against outliers and influence of a low-frequency 
component [17, 22, 29]. Traditionally, the DFA method is 
used with a cumulative transformation (1). It is important to 
note that the DFA method has the shortcoming when the 
time series data when H is close to 1. In this situation, the 
DFA method overestimates the Hurst exponent to be greater 
than one. This is problematic because such values cannot be 
interpreted as the Hurst exponent. Thus, the value that is 
obtained as a result of applying the DFA method is called 
the scaling exponent. Therefore, in order to characterize the 
signal, it is advisable to use the SDA or DMA methods, 
which do not have this disadvantage. Thus, to avoid 
confusion and incorrect interpretation, the result of the 
calculation of the DFA method is usually called scaling 
exponent.  Note that the log-log plots of , ,  
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as  functions of yield a straight line with slope ! $
[23]. To minimize the saturation effects caused by finite size, 
[23] suggests imposing the constraint [23]. 

The generalized multifractal DFA (MFDFA) 
procedure consists of calculating the q-th order fluctuation 
function, where, the index variable q can take any non-zero 
real number [26]: 

 
 

        (7) 

 
The square displacement  is calculated over each 
sliding window of length , as in the previous case for the 
DFA method. The log-log plot of  , as a 

function of , yields straight line with slope , denoted 
generalized Hurst exponent . The study of the 
dependence of the generalized Hurst exponent on  
allows us to determine the multifractal properties of the 
signal. For a monofractal signal,  is independent of 0 
(that is,  is a constant) and equals the Hurst exponent 

 = ! . On the contrary, for a multifractal time series, 1-0/ 
is a decreasing function of 0 and the simple Hurst exponent 
is obtained for 0 = 2. The singularity spectrum is calculated 
by means of the following relation: 
 
   and     (8) 
 
where  denotes the strength of a singularity spectrum and 

is the fractal dimension of a points set with particular 
. For a monofractal signal, the set representing  

reduces to a single point. The measure of degree of 
multifractality is evaluated by the width of its spectrum: 
       
                                                       (9) 
 
where . Larger width suggests higher 
level of multifractality of the spectrum [26]. 
 
 
E=* 612%$&2*

*
2343567897:$747:;<=<$$

$
In order to correctly classify the group label (signal 

type) for a test signal (i.e., to classify into one of the hs, chf, 
af and sd groups) and to avoid the systematic error 
associated with the application of one algorithm or two 
which have minor differences in implementation, our 
proposed approach is to use three algorithms for estimating 

the Hurst exponent: DFA, DMA and SDA. Table 1 shows 
the results achieved without cumulative transformation (1). 
Because the estimated Hurst exponent values have empirical 
distributions that are different from the normal distribution 
(>?@7:AB<0.05, Kolmogorov-Smirnov test), we have used 
the median (Me) in order to assess the average value of the 
Hurst exponent, and used the first quartile  and third 

quartile  to assess the variation or spread of the 
distribution of the estimated Hurst exponents. 
 
 

 
* Indicates a significant difference between healthy (hs) and 
pathological group, >?@7:AB<0.01,! Kruskal-Wallis test was 
conducted.  

 
 

As can be seen from the data in Table 1, the time 
series of R-R intervals of the hs group for all three methods 
of calculating the Hurst exponent are identified as fBm with 
antipersistent behavior. In contrast, the patholology group 
has a time series of R-R intervals with Hurst exponents 
close to zero, which can be characterized as fBm with 
poorly correlated anti-persistent behavior, fGn or 
uncorrelated "white noise". 

To classify a signal, the feature used in this paper is 
the Hurst exponent calculated with the cumulative 
transformation (1). In the case of "white noise", the 
cumulative transformation generates a non-correlated fBm 
with !$ '$ ()C  [19], otherwise a signal with & ()C is 
generated. Table 2 shows the calculations, made with 
cumulative transformation (1).1
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0,B"#1 H Mean of the Hurst exponent without 
cumulative transformation (1) (2B – median, – first 

quartile,  – third quartile, G-p  - group, N - number) 

G-p N 

DFA 

2B$( - 

) 

DMA 

2B$( - 

) 

SDA 

2B$( - 

) 

hs 54 0.28 
(0.21-0.33) 

0.23 
(0.18-0.27) 

0.12 
(0.10-0.18) 

chf 44 0.06* 
(0.05-0.10) 

0.06* 
(0.03-0.10) 

0.06 
(0.03-0.14) 

af 25 0.06* 
(0.05-0.08) 

 0.05* 
(0.03-0.07) 

0.03* 
(0.01-0.06) 

sd 23 0.06* 
(0.03-0.09) 

0.05* 
(0.03-0.08) 

0.06 
(0.03-0.22) 
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* Indicates a significant difference between the healthy (hs) 
group and the group with pathology (chf, af and sd), >?@7:AB$
<0.01, Kruskal-Wallis test was conducted. 

  
 
As can be seen from Tables 1 and 2, the DFA and 

DMA methods give good results for discriminating between 
the healthy R-R intervals and the pathological groups under 
the settings with transformation (1) and without the 
transformation. However, applying the DFA method with 
cumulative transformation leads to results, demonstrating 
values greater than one (!$*$" ). This value is called scaling 
exponent. It should be mentioned that authors [22] point that 
it is not correct to estimate the time series with the value 
!*"  to define the type of the studied signal behaviour. 
Therefore, further in the calculations for correct evaluation 
of the Hurst exponent we used the DMA method. The 
appendix provides possible explanations for various results 
of the Hurst exponent estimation of the R-R intervals for 
DFA, DMA and SDA.  

Table 2 demonstrates that R-R intervals of pathology 
are characterized by ! 0.5 and thus the pathology can be 
characterized as “white noise”. In order to determine 
statistically significant differences between pathology R-R 
intervals and white noise, a statistical comparison of the 
Hurst exponents of studied pathologies with the surrogate 
series was made. To statistically differentiate  between  a 
white noise series and original  time  series  we  applied  the  
method  of  surrogate  data [30, 31, 32Q   introduced  by 
Theiler et al. [30]. 

 A similar procedure was made for the healthy group 
R-R intervals. In this study, surrogate series were obtained 
by randomly mixing the components of the original time 
series for each record. Thus, the surrogate series represents 
non-correlated signals with a mean and a variance equal to 
the original time series. As a result, 4 types of surrogate 
series were obtained for the hs group R-R intervals and for 
pathology R-R intervals. Further, for the surrogate series, 
the Hurst exponents were calculated. Table 3 gives the 
values for the surrogate series calculated by the DMA 
method. The >?@7:AB<, obtained after comparison with the 
original time series, are given in Table 3. 
 
 

 
* Indicates that there is no statistically significant difference 
between the original and surrogate time series, >?@7:AB>0.05, 
Mann-Whitney test was conducted. 

 
 
Table 3 shows that there is no statistically significant 

difference between original and surrogate time series for sd 
(>=0.30). Nevertheless, after the cumulative transformation 
(1), statistically significant differences arise (><0.05). From 
this it can be concluded that pathology R-R intervals are not  
"white noise" though they are “close” in their  behaviour to 
the "white noise".  

To discriminate between the R-R intervals of the 
healthy and  the pathology groups, we used the approach 
proposed in [25] which is based on studying a signal change 
tendency. Thus, for further analysis of the signal type, it is 
necessary to analyze the signal change tendency, which is 
inherent in both   pathological and normal process. For this 
purpose, we constructed two linear single-factor neural 
network models.  

To build and analyze neural network models we 
utilized the software Statistical Neural Network 4.0 C [33].1
To prevent overfitting of the neural network model and be 
able to assess its adequacy, all data were divided into two 
sets using a random number generator. The first is the 
training set (116 cases) and the second is the testing set (30 
cases). After training the model, the threshold for rejecting 
the null hypothesis (to declare that there are significant 
differences between the fractal characteristics of R-R 
intervals of healthy and pathological subjects) was 
optimized based on the ROC curve. The optimal 
acceptance/rejection threshold for the model was determined 
by optimizing Youden index (J): J=max (sensitivity + 
specificity-1) [34]. This procedure is implemented in 
Statistical Neural Network 4.0 C [33].1

Now consider model-1, where the Hurst exponents, 
calculated with DMA method without the transformation (1), 
were used as independent input data. The single-factor 
neural network model-1 is stated as follows:  
      Y = 3.50 H – 0.12, threshold  Y = 0.44       (10) 

If in this model Y  Y  , then the signal is classified 
into the hs group; otherwise, it is classified as a pathological 
case. Figure 1 shows the ROC curve of this model. The area 
under the ROC curve (AUC) of this model is 0.92 (95% CI 
0.88-0.97). 

³

´ threshold

³ threshold

1
0,B"#1K Mean of the Hurst exponent with cumulative 
transformation (1) (2B – median, – first quartile, 

– third quartile, G-p  - group, N - number) 

G-p N 

DFA 

2B$( - 

) 

DMA 

2B$( - 

) 

SDA 

2B$( - 

) 

hs 54 1.06 
(1.01-1.16) 

0.92 
(0.90-0.94) 

0.90 
(0.87-0.91) 

chf 44 0.77* 
(0.59-0.99) 

0.87* 
(0.77-0.92) 

0.87 
(0.83-0.92) 

af 25 0.63* 
(0.54-0.75) 

0.75* 
(0.67-0.84) 

0.79* 
(0.69-0.86) 

sd 23 0.59* 
(0.47-0.78) 

 0.80* 
(0.70-0.86) 

0.84* 
(0.82-0.87) 

 

!!

!!

1Q

3Q
1Q

3Q
1Q

3Q

0,B"#1 L1Mean of the Hurst exponent for the 
surrogate series calculated by the DMA method. (2B 
– median, – first quartile, – third quartile) 

G-p N 
DMA 

2B$( - ) 

DMA(cumul) 

2B$( - ) 

hs 54 0.04(0.03-0.05); 
><0.001 

0.53(0.52-0.54);   
><0.001 

chf 44 0.06(0.03-0.10); 
><0.001 

0.52(0.51-0.53); 
><0.001 

af 25 0.04(0.03-0.05); 
>=0.008 

0.51(0.50-0.52);  
><0.001 

sd 23 0.04(0.03-0.05); 
>=0.30* 

0.51(0.50-0.52); 
><0.001 

 

!! !!

1Q 3Q 1Q 3Q
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To assess the adequacy of the model, its sensitivity 
and specificity were calculated. Here, sensitivity is defined 
as the ratio of the correctly defined hs to the total number of 
hs, and specificity - the ratio of the correctly identified 
pathology to the total number of pathological cases. The 
classification results of model-1 are given in Table 4. 

 
0,B"#1R11 Forecasted results of model-1. 

Classification 
results 

Set 
training testing 

Classification 
hs pathol hs pathol 

Correct 35 67 12 14 
Incorrect 5 9 2 2 

Total cases 40 76 14 16 
 
 

The sensitivity of the model on the training set is 88% 
(95% CI 75%–96%), specificity – 88% (95% CI 80%–95%); 
the sensitivity of the model on the testing set is   86% (95% 
CI 61–99 %), specificity – 88% (95% CI 66%–99%). The 
sensitivity and specificity of the constructed model on the 
training and testing set are not statistically significantly 
different (p = 0.77 and p = 0.72, respectively), which 
indicates the absence of “fitting” coefficients and the 
possibility of using the model on new data. 

Next consider model-2, where the Hurst exponents, 
calculated with DMA method with conversion (1), were 
used as independent input data. The single-factor neural 
network model-2: 
      Y = 1.26 H – 0.68, threshold  Y = 0.56    (11) 

If in this model D $D  , then the signal is classified 
as healthy; otherwise it is classified into the pathology group.   
Figure 1 shows the ROC curve of this model. AUC of 
model-2 equals 0.88 (95% CI 0.83-0.94). The classification 
results of model-2 are shown in Table 5. 
 
 
0,B"#1P11 Classification results of model-2. 

Classification 
results 

Set 
training testing 

Forecast 
hs pathol hs pathol 

Correct 37 60 8 17 
Incorrect 8 11 1 4 

Total cases 45 71 9 21 
 
 

The sensitivity of the model on the training set is 82% 
(95% CI 70%–92%), specificity – 85% (95% CI 75–92 %); 
the sensitivity of the model on the testing set is 89% (95% 
CI 56%–100 %), specificity – 81 % (95% CI 61% –95%). 
The sensitivity and specificity of the constructed model on 
the training and testing set are not statistically significantly 
different (p=0.99 and p= 0.96, respectively), which indicates  
the absence of “fitting” coefficients and the possibility of 
using the model on new data. 
 

)
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It is clear from Equations (10) and (11) that the 

pathological process is characterized by a decrease in the 
Hurst exponent. Upon further analysis of Equation (10) and 
Table 3, we  conclude that for the R-R intervals time series 
for the pathological tend to behave like "white noise," where 
& .  We conclude that the R-R intervals for pathology 
are fBm [25]. Thus, taking into account the results of Table 
1, demonstrating ! 0 for pathology, we conclude that the 
patholology R-R intervals are realizations of a fBm process 
with weakly correlated antipersistent behavior. 

Suppose now that the R-R intervals are characterized 
as fGn. Then, according to [19], the Hurst exponent for the 
healthy group (hs) will be determined using a cumulative 
transformation, which corresponds to the results in Table 2, 
where ! 1. From Equation (11), we see that for the hs 
group there is a tendency for & . But, from this, 
according to [25], it follows that the R-R intervals for the 
healthy group tend to behave like a straight line, which is 
not true. Thus, the R-R intervals are fBm. 

To determine how the cumulative transformation 
affects the quality of discrimination between the R-R 
intervals of the hs and pathology groups, we compared the 
AUC of model 1 (0.92 (95% CI 0.88-0.97)) and the AUC of 
model 2 (0.88 (95% CI 0.83-0.94)). Using the ANOVA 
method, there is a statistically significant difference between 
the groups (>?@7:AB = 0.013). Thus, model 1 has better 
discriminating properties than model 2. We believe that this 
is due to the fact that when performing transformation (1), 
some useful information is lost. One possible explanation 
may be due to a change in the frequency characteristics of 
the signal after the cumulative transformation (see the 
Appendix). Thus, for the discrimination between the hs and 
pathology groups, it is more expedient to use the DMA 
method without the cumulative transformation (1).   

However, the cumulative transformation (1) is often 
used with DFA for multifractal analysis. We now investigate 
how the cumulative transformation can affect the 
performance of discrimination between the normal and the 
pathology groups for DFA. To address this, we build model 
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3, where the Hurst exponents were calculated using the DFA 
method without conversion (1), and model 4 – with 
conversion (1). Figure 2 shows the ROC curves of these 
models.  
 

 
*+,- / -$EFG$8A6@B<$35$H3IB:?J$74I$H3IB:?K)$

 
 

A comparison of the AUC of model-3 (0.93 (95% CI 
0.88-0.97)) against the AUC of model-4 (0.88 (95% CI 
0.83-0.94)) did not reveal a statistically significant 
difference (>?@7:AB=0.21). Thus, in the DFA method, the 
cumulative transformation does not help to improve the 
predictive (and classification) ability of the model.  )
1
1
2A:9=567897:$747:;<=<)$
1

RR-interval time series is non-stationary and 
fluctuates about the mean value in an irregular and complex 
manner. R-R-interval time series of the hs, chf, af and sd 
groups have been studied using the MFDFA method of 
analysis of an on-stationary time series. In order to avoid the 
square displacement  close to zero, the data for each 
case was transformed by equation (1) to obtain the 
integrated signal. To study the multifractal properties of hs 
R-R intervals time series and the pathological group, the q-
th order fluctuation functions  for 0 = -5, -4, -3, -2, -1, 
1, 2, 3, 4, 5 were calculated. The corresponding generalized 
Hurst exponents  were denoted: h_-5, h_-4, h_-3, h_-2, 
h_-1, h_1, h_2, h_3, h_4, h_5. Figure 3 shows the variation 
of  with 0 for hs and pathology groups where the values 
of  decrease with increasing 0. The variation of  
with 0 indicates a multifractal behavior in R-R intervals in 
all the four groups.  
)
)
)

)
*+, -0- Generalized Hurst exponent 1-0/ vs. order 0 for 

healthy (hs) and the pathological groups chf, af and sd. Error 
bars represent the standard error of the mean. 

 
 

The degree of multifractality in each case can be 
determined quantitatively by the width of the spectrum L . 
From equation (9), we evaluated the mean values (mean  
standard error) of L  in all the four cases: hs  = 

0.61 0.08, chf   = 1.11 0.12, af = 0.58 0.15, 

sd =0.60 0.20. There are not statistically significant 

differences among: , and  (p-value>0.05, 
ANOVA). The width of the spectrum for the chf group 

is significantly greater (>?@7:AB<0.05, ANOVA) than 

each of  hs , af ,  sd , which suggests that the 
degree of multifractality is higher for chf group compared to 
the healthy and other pathology groups. 

To further examine the ability of multifractal analysis 
to discriminate between (or differentiate) the hs R-R 
intervals time series and the pathological group R-R 
intervals time series, we built a neural network model. At 
the first stage, we identified statistically significant values 
using a logistic regression model (EZR (R-STATISTICS) 
[35]). These significant features were subsequently used for 
prediction or classification of test signals. The input to the 
logistic regression model were the attributes (generalized 
Hurst exponents) h_-5, h_-4, h_-3, h_-2, h_-1, h_1, h_2, h_3, 
h_4, h_5. The output variable for a R-R time series is the 
grouping indicator which was Y = 1 for the healthy group 
and Y = 0 for the pathology group. To select the minimum 
set of factor attributes that were significantly associated with 
the output variable, a step-by-step acceptance / rejection of 
variables (stepwise-variable selection) was used. As a result, 
two attributes were identified to be significantly associated 
with the group, which are presented in Table 6. Area under 
the ROC curve 0.96 ( 95% CI 0.92 – 0.99). The logistic 
regression model (model 5) estimating the probability (M/ 
for signals from healthy group is: 
                           

     -12.86+7.02 h_2+7.67 h_5      (12) 
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  0,B"#1O   The coefficients of the logistic regression two-
factor model - 5 

Value 
Regression 
coefficients 

b m 
p-val Odds ratio 

(95% CI) 

h_2 7.02 1.64 <0.01 2.02(1.46-2.78) 
h_5 7.67 1.55 <0.01 2.15(1.59-2.91) 
Constant -12.86 2.15 <0.01  

 
 

Table 6 demonstrates that when h_2 increases by 1.0, 
the probability of the belonging to the hs increases by 2.02 
times (95% CI 1.46-2.78). When h_5 increases by 1.0, the 
chances of being attributed to hs increase by 2.15 times 
(95% CI 1.50-2.91). 

A two-factor neural network model-6 for predicting 
hs and pathol was built on the selected values. 
 
                Y = 0.78 h_2 + 0.97 h_5 – 0.97,  
                 threshold  Y = 0.50       (13) 
 
If in this model Y  Y  , then the test signal will be 
classified into the hs group; otherwise it will be classified as 
a pathology group. Figure 4 shows the ROC curve of this 
model. AUC equals 0.95 (95% CI 0.92-0.99). The 
classification results of model-6 are given in Table 7. 
 
 
0,B"#1N11 Classification results of model-6 

Classification 
results 

Set 
training testing 

Forecast 
hs pathol hs pathol 

Correct 40 66 9 18 
Incorrec 4 6 1 2 

Total cases 44 72 10 20 
 
 

The sensitivity of model-6 on the training set is 91% 
(95% CI 80%–98%), specificity – 92% (95% CI 84%–97%); 
the sensitivity of model-6 on the testing set is 90 % (95% CI 
61%–100 %), specificity – 90% (95% CI 72%–99%). The 
sensitivity and specificity of the constructed model on the 
training and testing set are not statistically significantly 
different p-value = 0.57 and p-value = 0.82, respectively, 
which indicates the absence of “fitting” coefficients and the 
possibility of using the model on new data. Thus, to build a 
neural network model that can differentiate between the 
healthy and pathology groups, it is sufficient to use two 
input predictive attributes h_2 and h_5. 

 
 

 
 

 
 
Fig. 4.   ROC curves for   model-1 and model-6. 

 
 
In order to determine whether there is a statistically 

significant difference in the prognostic parameters of  
monofractal approach (model 1) and multifractal approach 
(model 6), we compared the AUC of these two models and 
noted that the difference was found to be not statistically 
significant (p=0.13). Figure 4 shows the ROC curves of 
these models. Thus, both approaches can be used to solve 
the problems for differentiation, discrimination and 
classification of  R-R intervals.  

Given that the degree of multifractality is higher in 
chf subjects, we now consider which values have the ability 
to differentiate and discriminate the chf group from the af 
and sd group. At the first stage, to identify statistically 
significant values and assess their impact, a logistic 
regression model was built as a classifier based on the 
attributes h_-5, h_-4, h_-3, h_-2, h_-1, h_1, h_2, h_3, h_4, 
h_5. The output variable is the group label which takes the 
value  Y = 1 for signals from a patient with chf,  Y = 0 for 
patients diagnosed with either af or sd. To select the subset 
of factor attributes that give significant separation between 
the chf vs af-sd groups, we employed a step-by-step 
acceptance / rejection of variables (stepwise variable 
selection) method. As a result, four factor values were 
identified, which are presented in table 8. The logistic 
forecasting model (model-7) estimating the probability (M/ 
for signals from a patient with chf (model-7) is: 

 

-6.26+33.52 h_3-35.16 h_4+2.88 h_-1+ 

+2.92 h_-5                                                           (14) 
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1
0,B"#1M The coefficients of the logistic regression four-
factor model-7 

Value 
Regression 
coefficients 

b m 
p. val. Odds ratio 

(95% CI) 

h_3 33.52 10.17 <0.01 
3.61 10  
(7.88 10 -
1.66 10 ) 

h_4 -35.16 10.49 <0.01 
5.39 10  

(6.33 10 -
4.60 10 ) 

h_-1 2.88 1.17 <0.01 
1.78 10 

(1.78-
1.78 10 ) 

h_-5 2.92 1.18 <0.01 
1.85 10 

(1.83-
1.87 10 ) 

Constant -6.26 1.83 <0.01  
 

The table 8 demonstrates that, by increasing  h_3 by 
1.0 unit, the odds of belonging to chf  is by 3.61 10  
times the original odds (keeping all the other factors 
constant) which is quite impressive. Similarly, increasing 
h_-1 increases by 1.0, the odds of belonging to the chf group 
is 1.78 10 times the original odds. Again, increasing h_-5 
increases by 1.0 leads to increased odds of being in the chf 
group to be 1.85 10 times the original. The effect of h_4 is 
different from the rest. Here, keeping all attributed constant, 
increasing h_4 by 1.0 unit leads to the odds of being in the 
af-sd group is increased to 5.39 10  times the original. 
Figure 5 shows the ROC curve of model-7.  

 
 
Fig. 5.   ROC curve of model-7 
 
 

AUC of model-7 equals 0.91 (95% CI 0.84-0.97) 
statistically significant (p-value<0.05) exceeds 0.5, which 
indicates the adequacy of the constructed model. Thus, the 

multifractal approach allows us to differentiate chf from 
others pathology: af and sd. For this it is sufficient to use the 
four attributes: h_3, h_4, h_-1, h_-5. 
 
F=* @().$%2'() *

In this paper, we investigated the three most 
commonly used methods for calculating the Hurst exponent, 
namely the SDA, DMA, DFA methods and also investigated 
the performance of these methods in differentiating between 
R-R intervals time series of the healthy from the groups with 
pathology. All three methods are based on calculating the 
generalized variance on different time or spatial domains. A 
log-log plot of1the dependence of the generalized variance 
on the domain size yields a straight line with slope ! . 

To summarize, the SDA method is the simplest of the 
three methods and requires the least amount of computation. 
This method is based on calculating the generalized variance, 
which is based on the square of the displacement for a given 
interval for all possible points within a given interval [23].  
As pointed out in [17] the SDA method has a high 
sensitivity to the low-frequency component in the R-R 
intervals time series. Sometimes it can affect the quality of 
the assessment of the Hurst exponent. Perhaps, this 
drawback of the SDA method leads to low efficiency for the 
differentiation of the healthy from the pathology groups. 
This study concludes that the DFA method cannot be 
recommended for building network models. 

The DMA method is also based on the generalized 
variance. The average value, used in calculating the variance, 
is estimated using the arithmetic mean for each sliding 
window [24]. This method is most convenient for 
interpreting the results, which is helpful to determine the 
class or group of a test signals. DMA was able to 
differentiate between the healthy and pathology groups 
using the original (untransformed R-R intervals time series). 
Thus, it1is recommended for building network models. 
However, its disadvantage is that after transformation (1), 
the DMA method has diminished ability to differentiate 
between the groups.  

In the DFA method, the average value used in 
calculating the generalized variance is estimated using the 
polynomial, defined on the sliding window [14]. DFA is 
able to differentiate or discriminate between hs and 
pathology groups both with and without cumulative 
transformation and1 can be recommended for building 
network models. However, the use of the DFA method with 
cumulative transformation (1) leads to an overestimated 
Hurst exponent, which as a result generates values greater 
than 1 and hence this method is not always convenient for 
evaluating the type of signal and requires additional 
transformations of the obtained results.1

One of the important issues arising from the analysis 
of the long-range correlation R-R intervals is the 
determination of the type of signal (fBm or fGn). As is 
known, fBm are nonstationary processes, as suggested by 
(2), whereas fGn series have stationary mean and variance 
over time [25]. In order to determine the class or group label 
of the R-R intervals time series, we applied the concept in 
[25] which is based on an analysis of the trend in the 
behavior of the time series. In order to analyze the change in 
the behavior of the signal that occurs in pathology, a class of 
linear single-factor neural network models was used. As a 
result, the hs R-R intervals time series were found to be 
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realizations of a process with properties of a fBm having 
antipersistent behaviour. On the other hand, the pathology 
R-R intervals time series are consistent with fBm but having 
poorly correlated antipersistent behavior. Thus, a normal 
heartbeat is characterized by antipersistent behaviour. 
Specifically, if the R-R interval is long in the current period, 
it is more likely to be shorter in the following period and 
vice versa. This result agrees with the results of Peng et al. 
[6]. Antipersistent behavior of the system suggests the 
presence of feedback mechanisms [36], which allows to 
keep the values of R-R intervals within certain threshold 
values and produce an optimal rhythm for different 
situations (for example: stress, rest, etc.). At the same time, 
the pathology is characterized by poorly correlated 
antipersistent behavior, which, apparently, does not allow 
the heart to respond optimally to certain situations. Thus, 
using a class of linear single-factor neural network models, 
we can analyze the variational tendency of R-R intervals 
time series, which is inherent in the pathological process and 
the norm that allows us to determine the fractal properties of 
the signal. 

Application of MFDFA allowed us to estimate the 
degree of multifractality for the healthy and each of rhe 
pathology signals. The largest spectral width was detected in 
chf signals. This allowed us to build the four-factor logistic 
model that is able to distinguish the chf signal from other 
pathologies, i.e., the  af and sd groups.  

Based on the MFDFA approach, the two-factor 
neural network model, differentiating hs and pathol, was 
developed. We believe that multifractal analysis has the 
potential for producing features that can be used for building 
neural network models that differentiate three types of 
signal separately: hs, chf and af with sd. In this study, we are 
not able to build such a model, as the given sample sizes are 
limited. 

Thus, to determine the type of signal for RR interval 
time series, is most advisable to use DMA method. For 
building expert systems of diagnosing heart diseases, it is 
most advisable to use MFDFA, which is demonstrated to 
more accurately reveal the complex fractal structure of 
biomedical signals. 

 
 

G=* H001)/'.12* *

 
This paper demonstrated that the cumulative 

transformation degrades the quality of the model based on 
the DMA method. One possible explanation may be due to 
sensitivity to low-frequency components. Let us consider 
the frequency characteristics of the R-R intervals before and 
after transformation (1). Figure 1A shows the graphs of the 
average values of the spectral density for the R-R intervals 
before (a) and after the transformation (1) (b). 

 

 
a) 
 
 
 

 
b) 
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It can be seen from the graphs that transformation (1) 

leads to a sharp increase in low-frequency components, 
which leads to an increase in the Hurst exponent [28]. In 
order to determine whether there was a statistically 
significant difference between the normal and the pathology 
classes in the low-frequency region, a comparison was made 
between the average spectral densities at one of the low 
frequencies 0.000977 1 / beat. 

Table 1A shows the average values of the spectral 
density and the results of a comparison between the normal 
and pathology classes for the original and the cumulative 
RR intervals. 
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* Indicates a significant difference between the hs and the 
pathology groups, >?@7:AB<0.01, Kruscal-Wallis test  
** Indicates a significant difference between the hs and the 
pathology groups, >?@7:AB<0.05, Kruscal-Wallis test  
 
 
         Table 1A shows that for the original R-R intervals, 
there is a statistically significant difference between the hs 
and the pathology groups for the spectral density at 
0.000977 (1 / beat), and after the transformation (1) there is 
no statistically significant difference between the normal 
and pathology classes. From this, it can be concluded that 
the low-frequency components affect the differentiating 
ability of the hs and the pathology groups of the DMA 
method. However, despite significant changes in low-
frequency components, the DFA method demonstrates a 
good differentiating ability of the normal and pathology 
classes for the original and cumulative R-R signals. Thus, 
we can conclude that the DMA method is more sensitive to 
low-frequency components than DFA. 
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