A locally and globally phasevise mass conservative numerical algorithm for
the two-phase immiscible flow problems in porous media

Xiaolin Fart, Amgad Salanra*, Shuyu Suh

'Computational Transport Phenomena Laboratory (CTPL), Division of Physteices and Engineering (PSE),
King Abdullah University of Science and Techogy (KAUST), Thuwal 2395%900,Saudi Arabia
%Faculty of Engineering, University of Regina, Regina, SK., Canada

(*Corresponding author E-mail address: amgad.salama@egina.cg
Abstract

In this work, we introduce anovel numerical methodto solve the problem of two-phase
immiscible flow in porous mediathat is conservative toboth phases.In the widely used
implicit pressure, explicit saturation (IMPES) schemgthe conservation d mass ofboth the
two phases aresummed to form an equation involving the total$ A O Aveldciy. In the
discretization of such an equation it becomes difficult to enforce the conservation of mass
of each phaseTo guarantee the conservation of mass ofboth phaseslocally and hence
globally, we introduce a scheme in whichthe time discretization of the mass conservation
equations is considered separately.Cellcentered finite difference (CCFD) methods are
adopted for spatial discretization, where the vaiables of fluid properties (i.e. relative
permeability and mobility) are upwinded separately according tothe velocity of each
phase and not according to the total velocity Furthermore, this new scheme updates all
phase velocities and uses therto update thecorresponding phase saturation.In addition, a
two-scale of timesplitting methods are adopted for pressure equation and saturation
equations to improve the computational efficiencyFor the sake of simplicity, we show a
number of examples oftwo-phase system in twedimensional geometry solved using the
new scheme. It is shown thathe new scheme is moreembracing the physicsand it can be
more accurate than traditional IMPES schemeparticularly for the cases in which the phase

velocities arein opposite direction, and conventional IMPES schemes fall
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Introduction

Multiphase flows, especiallytwo-phase flows,in porous mediarepresent one of the
most complex phenomenathat involve several interesting features. They exist in many
natural and engineering applications including oil and gas production, contaminant
transport and remediation (e.g.,NAPL and DNAPL)chemical engineering reactorsand
many others[1-4]. Therefore, there has beesignificant amount of research works orthis
interesting topic focusing, primarily, on developing suitable framework that can model
such complexphenomena Apparently, pore scale simulation is very costly and prone to
difficulties with respect to 1) the required geometrical reconstruction of real porous media
configurations, 2) defining the suitable modeling approach that is suited to consider
multiphase flow system at pore scale (e.g., sharp interfaaes. diffuse interface[5, 8]) and 3)
the required dense mesh to capture the essential features of this system. All these and
many others make the appeal to pore scale simulation to model large scale porousdiee
domain impractical. Therefore, there has beena great deal of motivation among
researchers to adapt a framework based on the continuum hypothesis to modslich
systems a t | arger scal e ( e. gln,thisOrameworkdas nusier of e , fioe
overlapping continua representing each phase communicate with each othehrough
coupling terms. Furthermore, upscaled variables represent continuous functions of space
and time which enable the governing equations to be described in the form ofacroscopc
differential equations [e.g.9-15].

Two-phase immiscible flows have been largely studied due totheir essence and
importance. They furnish the basefor the more complex multiphaseflow systems. This
includes, for instance, two-phase compmsitional flow, three phase flow, etc However, there
are still some challenges in the investigation of twghase flow problemsincluding, as
mentioned, the enforcement of mass conservation of the phases

In two-phaseimmiscible flows the governing equations are highly onlinear. Such
nonlinearity is a consequence of the completunctional relationships involving hydraulic
conductivities, capillary pressure and phase saturationsA number of formulations have
been proposed to modekwo-phaseimmiscible flows in porous media that are suitablefor

different engineering applications based on assessing the importance of differet¢rms



(e.g, capillarity, compressibility). For example, in vadose zone hydrology, it has routinely
been assumed that the air phase ialways maintained at atmospheric pressure an@s a
consequence theequation for the air phasemay be canceled The model is, therefore,
reduced to a single equation known as the Richards equatioi§-19]. However, in many
other situations involving, for example, rapid infiltration where buckets of air are
entrapped by water, a full description of multiphase system may be required\s explained
earlier, the governing equationsfor two-phase systems are nonlinear partial differential
equations that are usual solved numerically[e.g.,20-22]. One of the favorabldeatures of
any numerical scheme is its ability to maintain conservation of material, momentum and
energy both locally and globally[23-24]. However, in some casethese requirements are
compromised or not respected on accountto our judgment that the output data makes
sense.Indeed in some algorithms the errors cancel each other, in a sense, such that the
solution does not diverge; however, it would be nice to design algorithms that saty
conservation principals naturally. In particular, the numerical solution of the problem of
two-phase immiscible flow in porous media, which is essentially nonlinear,could be
obtained using either fully implicit or semi implicit schemes. Elly implicit schemes[25-26]
are, usually, easily designed such that conservations alf phasesare satisfied However,it
faces a number of challenges with respect to the choice of a good iterative solegrd the
need to considerpreconditioners. On the other hand he semi implicit techniques (e.g., the
IMPES scheme) solva linear systemof equationsbut it suffers from possible compromise
of the conservation of mass of one or more phases and alsobeing biased with respect to
the choice of primary variables. In this work we introduce a semi-implicit numerical
scheme that is conservative teachphase and in the same time not biased with respect to
the choice of the primary variables.

To the best of our knowledge, in literature Chen et al.2}], for the first time,
proposed a semiimplicit, fully mass conservative numerical scheme for twephase
immiscible flow, however, their work has beenbased on the mixed finite element method
(MFEM) with the same time step size for both pressure and saturation equations. The
MFEM is so complexwhich makes itextremely impractical to apply to engineeringrelated
practices. On the other hand, using the same time step size for both pressure and saturation

equations further affect its application for large scale simulationsg8]. The current work

3



implements a fully mass conservative scheme for twphase immiscible flow systens that

is based on the CCFD methods coupling with upwind strategy, which is easyimplement
and very suitable for engineering applicatios. Furthermore, a &rge time step size for
pressure equation and smaltime step size for saturation equations are respectively
applied, which largely improved the computational efficiencyWe show some examples on
the use of this scheme versus the other schemes commonly dse literatures. Our scheme

is based on the IMPES algorithm and it works for multiphase system. For the sake of
simplicity and to compare with existing literatures, the examples that are shown here are

based on twephase systems.

Governing equations

The governing equations describing flow and transport oftwo-phase system in
porous media are based on the framework of the continuum hypothesis in which field
variables are continuous functions of space and time29-31]. In this framework, the
conservation laws are described in the form of partial differential equationWithout loss of
generality, we onsider a system composed ofwo immiscible phases, namely, a wetting
phase (W) and nonwetting phase (17). In this case itis possible to construct two
overlapping continua for the phasesand a set of governing equations could be established
for each phase. Thereforethe mass conservation associated with each phasemay be

written as:

s oo~ N =



In the above equationse is the porosity of the porous medium” is the density of
the| -phase,)) is a source/sink term,”l is the velocity of the| -phase,j is the pressure of
the| -phase,l is the gravity, 0 is the absolute permeability,;Q is the relative permeability
of the| -phase, and is the viscosity of thg -phase.Generally, h multiphase systens, the
pressure of thel -phase iscomplicated if @pillarity is to be considered.That is within each
averaging volume there may exist several phases with each phase may interface with one
or more phases and therefore multiple capillary pressure relations may be needed. In other
words, ateach point of the space, there exist several capillary pressure relations between
the phase of interest and the other phase$n two-phase system on the other handthis is

much simpleraswe canonly define a single capillary pressure relationship suchHhat

For the sake of simplicity, however, we ignore the capillary pressure and therefore
the pressure at any point of the space is the same fdne two phaseslt is, however,
important to mention that our algorithm is still applicable to systems with capillary
pressure. A number of relationships are required to relate the relative permeability of each
phase with saturation. These relationships are usually obtained experimentally and

therefore we have
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The above equations accounts for compressibility ahe phases, when the phases

are incompressible, the mass conservation equation reduces to
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The numerical solutiors of the above set of equations are usually obtained
numerically for which a number of techniques exist but they all fall under the category of
being implicit or semi implicit. Among them the so-called Implicit Pressure Explicit
Saturation (IMPES) scheme has recently gaa popularity because of its simplicity.
However, there have been a number of concerns with respect to satisfying the conservation

of mass of both phases as will be described in the next section.



IMPES numerical scheme

Consider a twadimensional, two-phase system wherew denotes the wetting phase
and n denotes the nonwetting phase, based on the above system of equations (ignoring
capillarity), the unknowns involved in this system include, saturaibn of both phases
("Y RY), velocity of both phases T h1 ), pressure (), relative permeability of both phases
(Q ,°Q ). We havea total of 7 unknowns and 7 equations which may be solved implicitly
to obtain the unknowns in each time step. However, because the governing set of equations
is nonlinear, a semiimplicit scheme has been developedot linearize the above equations
This is the IMPES scheme which sased on the following procedure:

Add Egs.6 for the two phases and using Eq. 3, one obtains an equation of the form

5

Jl N (7)
where I °I 7l isthetotal velocityardry 13 1] is the total source/sink term. The
above equationcan be rewritten as

nd— n ] nwv— n "] n (8)

And upon some manipulationsone gets

ny_ fp N " "_ | n )

where _  _ — — s the total mobility with _ and_ are the mobility of the

wetting and non-wetting phases, respectively.The nonwetting phase velocity @n be
expressed as:
| Q. " 0O'H (10)

¥_.In the IMPES scheme

where "Qis the fractional flow of the nonwetting phase,”Q _

Eqg. 9is used to obtain the pressure field given the saturation from the previous time step,

thus

nQ_ A nay o 1 1 (11)



The spatial discretization of the above equation requires the value of the absolute
permeability and total mobility at the cell faces. In this scheme, the harmonic average is
used to obtain the absolute permeability at the cell facesnd the upwind value of
saturation based on the total velocityis used to determine the total mobility.This equation

generates a linear system of equations which can be written in matrix form as
o 1 & (12)

To update thesaturation, one needs to decide which saturation equation to usker
saturation update.In other words, it is left to the choice othe researcherto pick whichever
saturation equation hdshe likes based on his interestlf the saturation equation based on

the non-wetting phase, for example, is chosen one updates the saturation using

T %0“ :)‘Q ’?'I ” ” DTH /4 o
T o - n Y
where™Q QY  _ 7Z_ is the fractional flow of the wetting phase.Now there are a

number of points worth investigation, the first is related to the fact thatit becomes
inconceivable how the discretization of the saturation equation, Eq. 13, satisfy the
conservation of massf the two phasesThat is thefractional flow of the non-wetting phase
would be upwinded using the total velocity rather than the phase velocity. While this may
not be a problem when the velocities of both phases are collinear, in cases when the
velocities of the phases arenot collinear it becomes doubtful the satisfaction of the
conservation of both phases. fie secondis the fact that the choice of one of the saturation
equations to update the saturation seems to be biaseBurthermore, the upwinding of the
fractional flow of the nonrwetting phase, as given in Eq. 13 seems ambiguous if taken with
respect to the total velocity.Mortgat et al. [32] pointed out that the fractional flow ratio
should upwind based on the phase velocityThey suggested the use of the combined etfie
of the term in the square bracket of Eq. 1¥Xou and Sun 83] pointed out this problem and
showed, based ordiscontinuous Galerkin analysighat it can lead to erroneous conclusion,
particularly when the velocity of individual phasesis not collinear. Table Al (in the

appendix) showsa pseudo code describinghe steps followed in this algorithm.

Conservative to two phases, IMPEBased scheme



In order to construct a mass conservative scheme for both phases, we propose
instead of summing the terms as gen in Eq. 8 and discretize the resulting equation, Eq. 10

that we discretize Eq. 8 directly in other words, using constructing the total velocity

equation in the form

ndl ndl o N (14)
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pressure yields
nw_ n | na_ q "] A (15)

Based on this approachhe mobility of each phases upwind based on the velocity okach

phase(Fig. 1) and this result in a global system of the form

6 0 n ® O A (16)
Apparently, this is equivalent to updating the velocity in thdollowing manner
7, O_ Nk h (17)
where 3 N " "Qaln doing so, the value ofo _ is computedusing harmonic meanfor

0 and upwind value for based on the velocify, . Once the velocity field is updatedthe

saturation of both phasess updated using the following two equations:
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Taking the equation for the saturation of the nonwetting phase as an example and similar

argument can be done for the wetting phase, Eq. 18 can be manipulated as:

T %0 S o~ " . 5 ,
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Cellcentered finite difference(CCFD)methodsfor spatial discretization

Regarding the spatialdiscretization, we take advantage of CCFD methods coupling with
absolute permeability K at the cell face; see [382] for more details. The CCFDmethods
coupling with upwind strategy enjoy the advantage of local mass (or volume for
incompressible fluid) conservation and easyto-implement feature. We consider a
computational domain ofm;  ohvhast o Oft & O ht & O .mis split into
¢ ® & o & drectangular cells by grid points ™ ® ® E w 0,
T o o E o w Ohm a & E & & O.Acell of O (see
Fig. 1) denotes the sub-domain of chuhda sy @& @ M © @ K & a

where the scalar wariables (such as pressurd), mass density’, saturationi , relative
permeability 'Q , viscosity ) are approximated at the cell centerc hd hx _ while
the $ AOUGO OAI T AEOU 1T &£ AAAE PDPEAGA omOm AB® Ol GEI A
6. . _ © hoha _ foré L _and @ iy Py foré . .With these notations,

we provide the following discrete equations
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Table A2(in the appendix) shows a pseudo code following the steps used in this scheme.
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Fig.1 Sketch of one cell for CCFD spatial discretization

In this work we employ the experimenting field approach to construct the matrix of
coefficients automatically. This approach has recentlgeendeveloped by Sun et al.20] and
has been applied, sioe then, to several problems 35-43]. In this approach, a set of
predefined pressure fields are operated on the discretized equations and the coefficients of
the global matrix are determined.The idea is thatthe set of local problems are solved given
the experimenting pressure fields and the coefficients aréack calculated. A flow chart is

shown in Fig.2, which describes the steps of implementing this technique.
Multi -time step iterative scheme

Since the IMPES scheme is seimplicit, there are restrictions on time step size for
convergence. It has been noticed thdhe saturation advances much more rapidly than the
pressure intime. This brings up the idea of using a mulitime step strategy for solving the
pressure and saturation equationsin this scheme the saturation equation is solved over

multiple steps using the updated pressure field, therefore

¢

= ~

syhooeyh Q -yh
- i ¢x

G " | OReR Pl

=«

where superscript ‘Qrepresents the time step of flowand the flow time interval 0 is

split into U subintervals denoted byo o " o "E o N o M 0

" ~

and¥o " o M o M iy pRiFE R . In addition, the saturation attime stepd "
should satisfy
Yooy g Cy
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Now Eq (27) is anonlinear equation system of'Y" iY" & AY" BY"RYPFE FY"

Summation overaand| of Eq. (27),combining Eg (28), we have

.Q yh ‘ . . ,
1Y ———— N I 0 f ¢ W
h
where we take the facthat
Y Y p gTm

And hence combination of(27) and (28) is equivalent to the system of(27) and (28). The

fixed-point iteration algorithm is adaptedto solvethe coupled system of 27) and (29).

1 Settheinitialguess) " 17 .
1 Eq. (19) is sequentially solved givenijy " (Eq. 27) to obtain"Y™ R 0 R
phcFE D i
1 Solveny MEq. 28)using™Y™ | oRR plFE M i
Repeat2 to 3 wntil the convergenceis reached.
i eyR R o yh R
—gr X 0 I n h OoRM pRFEM I op
TQ "YF] Fl .
D — n "ol 0oq n oG

The upwind strategy is exploited on the mobility term and the block-centered finite
difference (or cellcentered finite difference) method is applied for the spatial
discretization. ThenEg. 29), Eq. 30), Eq.(31) and Eg. 82) lead to the following algebraic

equations, respectively.
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Convergence analysisf the iterative scheme

In this section, we will prove theconvergence analysis under some assumptiorfer two-
phasesituation, which can be straightforwardly, extended to any finite number of phases
based on Eg. (33)-(36). For sake of simplicity the time interval 6 D is divided into 0
uniform subintervals,so¥o " oh oh pjo o o0 hx pRFE RS . This will not
impact the proof for nonruniform subintervals. Physically, it is clear that the saturationi

is bounded in Tip , andthe pressurer) is also bounded Furthermore, the permeability of
both phases has lower and upper boundsTherefore, we propose the following
assumptions

Al. The matrix functions! Y ,! "Y are Lipschitz continuous;that is to say, for any

"Y and"Y there exist constantsd ,0 such that

Yy 1y o Y Y,
vy vy o Y Y,
A2.The matrix functions! Y ,! Y have lower and upper bounds

Theorem. Under assumptions A1A2, if there exist solutionsfor saturation™Y | 0k

and pressure ]  satisfying Eq (18) and Eq. (D) respectively, then"Y"™" & pfE i)
f  fconverge toY" & pFEF) Rl OFf ,f  respectively provided a suitable time
stepYo h .

Proof. For the first iteration (0 ),
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Summation overafrom1toad p & 0 gives
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p hh (38)
Suppose that forQ p the inequality
A A O (39)
hold true where Tt [ <1 exist for properly choosing Yo . Now weprove "y hh "yh
|-> “YFIFI "YFI
yhh yh n oMo Yo fig N
8 & B Yohp M ooyPh P oyh (40)
Subtract Eg. 85) from Eq. (37)
o1 ~yh hog A oo oyh g i Tp
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Numerical examples

Example 1

In this section we providetwo sets of examples of twephase flow in porous media. We first
compare with Buckly-Levertt one-dimensional analytical solution. We show that our
numerical scheme converges to the analyticasolution, which gives confidence inour
scheme We also compare with the numerical work of Hotait and Firoozabadi3]. It is to
be noted that when the velocity of both phasess collinear, both our new technique and the
total velocity formulation are conservative. Therefore, a onedimensional 300-meter-long
domain, originally filled with oil (non-wetting phase), is considaed for simulation. Water
(the wetting fluid) is injected at a constant rateon the left-hand side boundary @ Tt to
drive the oil flowing the right-hand side where the pressure is set constanfThe parameters
for this problem are summarizedin Table 1.At the end, the saturation distribution s of both
phasesasillustrated in Fig. 3.

The resultshows that the proposed algorithm works well for this problem.In addition, the
summation of the two phasegblack points in the figure) is also shown where we can see
that their summation is 1.0 for every cellif ignore the machine round-off and truncated
errors. This numerically shows that the algorithm maintains the mass conservation of the

two phasesrespectively.

Example 2
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We below consider several other interesting cases and show how the new technique able
to handle the complex problem where the velocities of both phases are opposite to each
other. We investigate a gravitydriven flow in a two-dimensional rectangular domain. In
these examples, the wetting phase (heavier) is initially setting in the middle of the domain
and is allowed to move downwarddue to gravity. The relevant data for all four cases in this
exampleis listed in Table 2. We consider different scenarios in whichthe 2D domain is
inclined off the horizontal with an angle. The inclination angles considered in this work
include 0°, 30, 45 and 6@, respectively. The considered cases are marked as followsase
(a) is the base case withzero angle of inclination and the gravity effect is only on the
vertical direction. Case (b), represents the case whenthe domain is inclined with 30
degrees which implies that the gravity will have component effects on both vertical and
horizontal directions. Case(c) and case (d) demonstrate the effect of gravity with the
inclination angles of 45° and 60, respectively. For all cases nitially the water (wetting
phase) isinitially saturating the central subdomainwith size of15 by 15squared meters of
the simulated rectangular domain. The oil (non-wetting phase) is quiescently surrounding
the water in the rest of the domain. All rectangular boundaries are no flow boundary{he
entire field is uniformly partitioned into v 1t v TTells.The simulation time is[0, 1.64] years
uniformly split into 6000 subintervals. For these cases, the traditional IMPES scheme
works badly even with quite small time step size.But exploiting our proposed scheme, it
solves thiskind of problem much better. Fig. 4 shows the contours of the saturation of the
water as well as the velocity vectorsThe saturation profile of wetting-phase is provided for
several different time steps(see Figures 5-8). Figure 5 showsthe contours of wetting phase
saturations after 300 time steps for all the four cases.For case 4a, the water falls
downwards because of the density difference between the two phasedt moves
downwards parallel to the vertical direction. In cases 5b-5d the wetting phase flows
towards bottom left corner with different extents because of the gravity effect on both
vertical and horizontal directions. That is while it moves more towards theSouth boundary
for the 30° scenario, it moves equally towards both the South and West boundaries fibre
450 scenario while it moves more towards the West boundary for the 80scenario. This is
also manifested inFig.6 where the wetting phasehas alreadytouched the South boundary

for 300, and the West boundary for the 60 scenario. Likewise, Fig. 7 emphasizes this
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observation and Fig.8 providesthe wetting-phase saturation distribution after the wetting-
phasehas almostreached the equilibrium state where the free surface is horizontal.
Saturation profiles of the wetting phasealong the line Y=15 mfor the different scenarios at
different times are shownin Fig. 9. From this figure it is apparent that the wetting phase
plume resides more towards the West boundary with the increase in the angle of
inclination. Figure 10 shows the profile of the summation of saturations over the two
phasesalong the line Y=15 at different times and it is alway4l.0 for all cells as expected.
Figure 11 shows the relative error incurred during simulation for the different scenarios,

which is essentally small.
Example 3

To unleash the full power of this scheme, tiee cases have been further considered. The
first case represents a complex twalimensional porous medium domain with permeability
field of @ Tt @ TTells extracted from 40t layer of SPEbenchmark problem SPE 44]. The
second case represer#ta simple 3Dhomogeneousdomain and the last case represent a
three-dimensional domain of heterogeneous permeability field corresponding to théayers
of 41st - 50t of SPE benchmark 44]. For the threecases, the computational domains are
considered initially saturated with the nonwetting phase. The wetting phase is then
introduced to displace the other phase.

In the first case, the wetting phase is introduced along the whole leftand side boundary. If
the permeability field is homogeneous, the interface will make a front that spans the whole
width of the domain and propagates in the direction of the flow. Sircthe permeability
field is random, the breakthrough front makes a fingeringike pattern as depicted in Fig. 12
which shows contours of the saturation of thenonwetting phase at different times. From
this figure it is clear that once the breakthrough from reaches the opposite boundary, the
wetting phase will advance along the sampath with less invasion to new areas.

The second example represents the case in which the permeability field is uniform. The
invading wetting phase is injected at the corner othe 3D domain. As depicted in Fig. 13,
the interface advances uniformlyfrom the corner inward inside the domain displacing

therefore, the nonwetting phase.
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The lag example is a threedimensional representation of a nonhomogeneous permeability
field corresponding to the SPE benchmarkdfd]. In this example, the wetting fluid invades
the domain through one face of the cuboid domajnFig. 14 The front advances in
nonuniform manner in accordance with the random permeability field.In these three
examples, we have computed the mass errors for each phase at every computational time
steps, which indicate that errors are all in magnitude gb m * p 1t , i.e., in the range of

machine errors and verify the mass conservative property of the proposed schemes.
Conclusion and discussions

In this work, we introduce a numerical algorithm that can handlghe problem oftwo-phase
flow in porous media Its main advantage is thatthe conservationlaws are satisfiedfor
each phase locally which is favorable feature ofany numerical scheme. In this scheme,
phase properties are upwind for each phase separately based on the velocity direction of
each phaseThe CCFD methods coupling with the upwind scheme is applied for the spatial
discretization for its easy implementatian and simplicity. Furthermore, the experimenting
field approach has been used to construct the global system of equations. An iterative
scheme has also been developed to solving saturation updating equations. The idea stems
from the fact that the pressurefield changes much slower than the saturation. In other
words, longer time step may be used to update the pressure which in turn is divided into a
number of subintervals to update saturation. These techniques have been applied to a
number of examples andshow accurate predictions.The proposed fully mass conservative
IMPESschemes for threephase immiscible flow, twophase and threephase compositional

flow are our ongoing work.
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Table 1 Relevant data for Example 1

Domain dimensions omin pl
Rock properties o m]hQ pi A
Fluid properties C ¢j off " p T TN
Relative permeability N YR T p Y h Y Y M
p Y Y
Capillary pressure Ignored
Residual saturations Yo Y g
Injection rate v pmO6TAAU
Mesh size YT p
Table 2 Relevant data for Example 2
Domain dimensions vit vt
Rock properties n hQ pc¢imA
Fluid properties C ¢j ot pTTEH H ¢ nRIN
Relative permeability QT YhQ Y
Capillary pressure Ignored
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Fig. 2 A flow chart diagram for the use of the experimenting pressure field technique to the
problem of twephase flows in porous media
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Fig.3 Saturation distribution of Buckley-Leverett problem: blue curve indicates saturation

of wetting phase and red norwetting phase.
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Y(m)

Fig. 4 Contours of the saturation of thevater initially saturating the middle of the domain
as well as its velocity
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Fig.5 Wetting-phase saturation distribution after 300 time steps
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Fig.6 Wetting-phase saturation distribution after 1800 time steps
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Fig.7 Wetting-phase saturation distribution after 2800 time steps
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Fig.8 Wetting-phase saturation distribution after 6000 time steps
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