Hierarchical porous carbon@PbO$_{1-x}$ composite for high-performance lead-carbon battery towards renewable energy storage

Jian Yina,b, Nan Linc, ZheQi Lina,b, Yue Wanga,b, Cailing Chena,b, Jun Shia,b, JinPeng Baoa,b, HaiBo Lina,b,*, ShouHua Fenga,b, WenLi Zhanga,b,d,**

a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
b College of Chemistry, Jilin University, Changchun, 130012, Jilin, China
c Institute of Energy and Process Systems Engineering, Technische Universität Braunschweig, Frans-Liszt-Sr. 35, Braunschweig, Germany
d Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia

A R T I C L E I N F O

Article history:
Received 11 April 2019
Received in revised form 26 October 2019
Accepted 30 November 2019
Available online

Keywords
Lead-acid battery
Partial state of charge
Hydrogen evolution reaction
Lead-carbon composite
Hierarchical porous carbon

A B S T R A C T

Utility lead-carbon batteries in renewable energy storage applications require fast charge ability and long-term cycling stability, which introduces a fundamental problem that how to improve the electrode kinetics and cycling stability of lead-carbon electrode. Herein, we present an oxygen-deficient PbO decorated rice-husk-based hierarchical porous carbon (RHHPC@PbO$_{1-x}$) composite as an effective additive of negative electrode in lead-carbon battery. The RHHPC@PbO$_{1-x}$ composite was prepared from a facile sol-gel annealing method. The obtained RHHPC@PbO$_{1-x}$ composite and the lead-carbon electrode with RHHPC@PbO$_{1-x}$ additives were characterized by various physicochemical methods, such as scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and multiple electrochemical methods. The RHHPC@PbO$_{1-x}$ composite enhances the electrochemical active surface area and strengthens the structural stability of lead-carbon electrode, which improves the electrode kinetics and the cycling stability of lead-carbon negative electrode. As a result, the cycling life of a 2 V/4 Ah valve-regulated lead-carbon battery with RHHPC@PbO$_{1-x}$ composite additives exhibited a lifespan of 900 cycles (triple of the blank battery). Our work gives an insight for interphase and porosity tuning of lead-carbon additives used in lead-carbon battery. Based on the existing mature production facilities of lead-acid battery, it is promising for this RHHPC@PbO$_{1-x}$ additive to be used in commercial lead-carbon batteries for renewable energy storage.

© 2019

1. Introduction

The demand for the storage of electricity from renewable energy sources has stimulated the fast development of battery technology with low cost and long lifespan [1–3]. Lead-acid battery is the most mature and the cheapest (cost per watt-hour) battery among all the commercially available rechargeable batteries [4]. In renewable energy storage, lead-acid battery is operated under partial state of charge (PSoc). In PSoc, lead negative electrode gradually becomes sulfated, and its capacity decreases rapidly. Various carbon additives inhibit the sulfation of Pb negative electrode [5], due to the improved conductivity [6–8], increased electrochemical active surface area [9–11], enhanced electrolyte diffusion [12,13], and increased double-layer capacitive effects [8,14,15], etc. In consideration of the remarkable cycling life of carbon-enhanced lead-acid battery operated under PSoc operation, the terminology of lead-carbon battery is proposed to introduce a lead-acid battery coupled with a long-life carbon-enhanced lead-carbon negative electrode [16]. Despite the significant performance improvement achieved by adding carbon additives in negative electrode, carbon additives induce a high-rate hydrogen evolution reaction (HER) which results in serious water loss and low energy efficiency during charge-discharge [13,17,18]. Furthermore, the release of hydrogen bubbles could physically destroy the conductive network of lead-carbon electrode and separate the lead and carbon components in lead-carbon electrode [19–21]. As a result, the HER hampers the lifespan enhancement of lead-carbon battery [11,22].

Chemically decorating carbon with hydrophilic molecules [23,24], heterocarbons [25–27], and metal/metal oxides with high HER overpotential [28–30] are demonstrated as effective methods to inhibit the HER of lead-carbon electrodes. Among these methods, compositing carbon with lead species not only suppresses the HER but also could enhance the affinity between lead and carbon components in the lead-carbon electrode [31–33]. Since Pb is of high HER overpotential and is the major component of negative electrode, decorating carbon with lead is one of the best methods to enhance the stability of lead-carbon electrode [34–36] while do not introduce impurities. Nevertheless, in previous studies, the micropore-dominated pore structure, the uneven Pb distribution, and the low porosity of the resulting lead-carbon com-
posite restrict the performance enhancement of lead-carbon electrode [16]. In recent years, hierarchical porous carbon has drawn great attention due to its high specific surface area, high outer surface (high meso- and macro-pore ratio) area and hierarchical porous structure [37–39]. In a lead-carbon battery system, carbon additives with hierarchical pores can enhance the electrochemical active surface area for the growth of energetic Pb branches [40], which significantly enhances the electrode kinetics of Pb/PbSO₄ redox couple [11,41]. Besides, Pb species deposited on carbon surface could enhance the affinity between energetic Pb branches and carbon additives. Therefore, it is of significance to develop a high-surface-area lead-carbon composite with homogeneous Pb deposited on the hierarchical porous carbon for lead-carbon battery.

Rice-husk-based hierarchical porous carbon (RHHPC) is a kind of high-surface-area porous carbon with a three-dimensional hierarchical pore structure [42]. In our previous study, we have demonstrated that RHHPC is beneficial to inhibiting the sulfation of lead electrode and enlarging the electrochemical active surface area [43]. Nevertheless, many technical problems remain for utility applications. On the one hand, the HER rate of RHHPC needs to be further inhibited by uniform Pb coating. On the other hand, considering the large-scale applications of carbon-based additives in lead-carbon battery, we need to produce lead-carbon composite in a facile, large-scale way which can be easily industrialized. In this paper, a sol-gel method was introduced to prepare the precursor of RHHPC@PbO₁ₓ composite. Under annealing process, robust lead-carbon interphase was achieved by annealing-assisted carbon reduction reaction. Lead-carbon battery with RHHPC@PbO₁ₓ composite in negative active materials (NAM) exhibited superior cycling stability in simulated test protocols for renewable energy storage. This work gives an insight for interphase and structural tuning of lead-carbon additives used in lead-carbon battery.

2. Experimental section

2.1. Preparation of RHHPC@PbO₁ₓ composite by sol-gel/annealing

RHHPC was obtained as described in our previous work [42]. A modified sol-gel method [44] combined with annealing was used to prepare RHHPC@PbO₁ₓ composite (Fig. 1a). Specifically, 10 g RHHPC was soaked in 100 mL 19 wt % lead acetate solution with vigorous stirring for 10 min to form a homogeneous solution. 100 mL 21 wt % citric acid solution was added in above solution stirring for 2 h. Gel was formed and dried by solvent evaporation in a 120 °C air-flow oven. Afterward, the precursor was heat-treated at 500 °C for 1 h in a muffle furnace under a heat ramping rate of 10 °C/min⁻¹. As the temperature increased to 500 °C, lead citrate was transformed into carbon and PbO₁ₓ. Thus, the RHHPC@PbO₁ₓ composite with homogeneous PbO₁ₓ deposition was formed in this facile sol-gel/annealing preparation.

The detailed preparation procedures and other necessary additives of lead-carbon cells can be found in our previous publications [22] in which negative pastes contain 1.00 g RHHPC or 1.19 g RHHPC@PbO₁ₓ composite (to ensure the equal mass loading of RHHPC in NAM) with respective to 100 g leady oxide. Lead-carbon cells using RHHPC and RHHPC@PbO₁ₓ additives were denoted as RHHPC and RHHPC@PbO₁ₓ cells, respectively. A blank cell with no RHHPC additives was also made as a reference. The lead-carbon electrodes (geometry size of 40.0 mm × 68.0 mm × 1.5 mm) were assembled into a full battery (Fig. 1b–d). All cells were made by three negative electrodes and two commercial positive electrodes. Small-sized lead-carbon electrodes (geometry size of 6.0 mm × 8.0 mm × 1.5 mm) were made for electrochemical characterization. Commercial absorbent glass mat (AGM) was used as separator and a 5 mol L⁻¹ sulfuric acid solution was used as the electrolyte. The formation and all the electrochemical tests of the cells were conducted on a BTS battery testing system (5 V/6 A, Shen-

![Fig. 1.](image-url)
zhen NEWARE, China) using the methods described in our previous publications [45].

2.2. Physicochemical characterization and calculation

Morphologies of the additives and lead-carbon electrodes were characterized by a Scanning Electron Microscope (SEM, SU8020, Hitachi, Japan) and a Transmission Electron Microscope (TEM, FEI Tecnai G2 S-Twin, USA). Elemental analysis was tested by energy-dispersive X-ray spectroscopy (EDS, Bruker, Germany) combined with SEM and FEI Tecnai G2 S-Twin equipped with EDS Detector. The crystal structure of RHHPC@PbO\textsubscript{1-x} composite was determined by powder X-ray diffraction (XRD) with Cu k\textalpha radiation on a Rigaku D/Max 2500 diffractometer. X-ray photoelectron spectroscopy (XPS) data were obtained on an ESCALAB 250 X-ray photoelectron spectrometer with an Mg k\textalpha excitation source. Nitrogen adsorption/desorption isotherms were measured by a nitrogen adsorption/desorption analyzer (3H-2000PM2, Beishide, China). The specific surface areas and pore size distributions of carbon additives and lead-carbon electrodes were evaluated by the Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) models, respectively.

2.3. Electrochemical test and evaluation

Three-electrode electrochemical tests: The counter electrode was a commercial paste-type PbO\textsubscript{2} electrode, and the reference electrode was mercurous sulfate electrode [22,46]. The HER rates of lead-carbon electrodes were evaluated by linear scan voltammetry (LSV), steady-state polarization, and electrochemical impedance spectroscopy (EIS). After the formation, a 20 min negative polarization at −1.20 V was conducted to ensure the fully charged state of the lead-carbon electrodes. LSV was tested within the potential range from −1.50 V to −1.20 V at a scan rate of 5 mV s-1. Steady-state galvanostatic polarization of the lead-carbon electrodes were tested stepwise with constant currents of 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, and 50 mA after 20 min. The voltages were recorded by a multimeter. EIS was tested at −1.30 V and open circuit potential (OPC) in the frequency range of 100 kHz–100 mHz with a voltage amplitude of 5 mV. Cyclic voltammetry (CV) tests were carried out within the potential range from −1.50 V to −0.60 V at scan rates of 1, 5 and 10 mV s-1, respectively. All the electrochemical tests (CV, LSV, and EIS) were conducted on a Parstat 2273electrochemical workstation (Ametek, USA) in ambient environment.

Battery electrochemical performances: Galvanostatic charge-discharge tests were carried out to evaluate the electrochemical performances of lead-carbon electrodes. After formation, two negative electrodes were removed, leaving one negative and two positive electrodes, thus making the negative electrode a capacity-limiting factor. The cells were discharged at currents of 0.1C\textsubscript{10}, 0.2C\textsubscript{10}, 0.4C\textsubscript{10}, and 0.8C\textsubscript{10}. In the deep charge/discharge cycling under P\textsubscript{SOC} operation, cells were tested within 0–60% SoC [40,47] using the following protocols: (1) Fully charge the cells, and discharge cells to 1.8 V at 0.1C\textsubscript{10} rate; (2) After resting for 5 h, charge the cells at 0.1C\textsubscript{10} rate with a voltage limit of 2.4 V for 6 h; (3) Discharge the cells at 0.1C\textsubscript{10} rate to 1.8 V; (4) Repeat step (2) and (3) for 4 times, then examine the capacity of cells with step (1); (5). Repeat step (4) to continue the deep charge/discharge cycling under P\textsubscript{SOC} operation.

The hand-made blank and RHHPC@PbO\textsubscript{1-x} cells (4.0 Ah of 2 h capacity with balanced negative and positive capacities) were also made and tested according to the Chinese National Standard (GB/T 22473-2008) (with equal authenticity to the International Electrotechnical Commission standard, IEC 61427:2005). Cycling test ends when the capacity of the lead-carbon cell drops below 80% of its initial discharge capacity after one cycle set [48]. All the electrochemical performances of batteries were tested on a BTS battery testing system (5 V/6 A, Shenzhen NEWARE, China).

3. Results and discussion

RHHPC and RHHPC@PbO\textsubscript{1-x} possessed macropores with various sizes as shown in Fig. S1 (see Supporting Information) and Fig. 2a–b. The macropores in RHHPC and RHHPC@PbO\textsubscript{1-x} composite are beneficial for fast ionic transport in the NAM [42]. SEM, TEM and High-angle annular dark-field (HAADF) images demonstrated that nano-size PbO\textsubscript{1-x} particles were uniformly deposited in RHHPC@PbO\textsubscript{1-x} composite (Fig. 2c–e). Elemental mappings tested by EDS illustrated the uniform distribution of Pb element on the RHHPC@PbO\textsubscript{1-x} composite (Fig. 2e). XRD pattern of precursor gel showed the typical hump peaks of amorphous carbon centering around 24° (002) and 44° (100), while the peaks of lead citrate are too weak to be identified (Fig. S2). By contrast, in the XRD pattern of the annealed RHHPC@PbO\textsubscript{1-x} composite, the new diffraction peaks of β-PbO (JCPDS No. 38-1477) and Pb (JCPDS No. 04-0686) were obvious (Fig. 2f). The chemical compositions and oxidation states of RHHPC@PbO\textsubscript{1-x} composite were analyzed by XPS spectra (Fig. 2g and h). XPS survey spectrum corroborates the existence of C, O and Pb elements, which matches well with the EDS result. High-resolution spectra of Pb 4f centering around 138.6 eV and 143.4 eV can be differentiated into two pair of peaks of Pb (136.9 eV and 141.7 eV) and PbO (138.6 eV and 143.4 eV) [49–52]. Due to the deficiency of oxygen in PbO\textsubscript{1-x} the above lead-carbon composite is named as RHHPC@PbO\textsubscript{1-x} composite. Furthermore, since Pb was obtained by carbon reduction of PbO in the annealing process, an enhanced, stable three-phase heterogeneous composite structure (RHHPC/Pb/PbO) was formed between PbO and RHHPC. In this three-phase heterogeneous composite structure, RHHPC/Pb acts as interphase could enhance the structural stability of RHHPC@PbO\textsubscript{1-x} composite. The enhanced lead-carbon interphase could contribute to inhibiting HER and building the conductive network between sponge lead and RHHPC@PbO\textsubscript{1-x} composite in a formed lead-carbon electrode. The EDS analysis (Figs. S3 and S4) indicated a lead loading of 19.3 wt % in RHHPC@PbO\textsubscript{1-x} composite.

N\textsubscript{2} adsorption/desorption isotherm was used to identify the pore structure of RHHPC@PbO\textsubscript{1-x} composite. As shown in Fig. 3a, the isotherms of RHHPC and RHHPC@PbO\textsubscript{1-x} composite belonged to the combined I/IV type according to the International Union of Pure and Applied Chemistry classification, indicating that RHHPC and RHHPC@PbO\textsubscript{1-x} composite possess micro/mesoporous structures. Because in RHHPC@PbO\textsubscript{1-x} some PbO\textsubscript{1-x} particles are embedded in the pores of RHHPC, the pore volume and specific surface areas of RHHPC@PbO\textsubscript{1-x} composite (0.66 cm3 g-1 and 1111.3 m2 g-1) are lower than those of the RHHPC (1.03 cm3 g-1 and 1810.2 m2 g-1), as shown in Table S1. The relatively high pore volume and specific surface area of RHHPC@PbO\textsubscript{1-x} composite could benefit the electrode kinetics of Pb/PbSO\textsubscript{4} redox, and subsequently improve the charge acceptance of lead-carbon electrode [11].

HER is the main factor that limits the cycling stability of lead-carbon electrode. The HER rates, tested by LSV, were shown in the ascending order of blank < RHHPC@PbO\textsubscript{1-x} < RHHPC electrodes (Fig. 4a). Besides LSV, we have made a quantitative comparison of HER gravimetric current through steady-state polarization technique (Fig. 4b). At −1.50 V, the HER current densities of blank, RHHPC, RHHPC@PbO\textsubscript{1-x} electrodes were −6.5, −72.5 and −40.5 mA g-1, respectively. The different HER kinetics of lead-carbon electrodes were further analyzed by the EIS at −1.30 V (Fig. S5) and fitted with an equivalent circuit (Fig. S5) [40]. The simulated results are presented in Table S2. The RHHPC@PbO\textsubscript{1-x} electrode exhibited a higher charge transfer resistance (45.7 k\textohm) than the RHHPC electrode (29.6 k\textohm), which is in accordance with the results of LSV and steady-state polarization. The above results suggest that the RHHPC@PbO\textsubscript{1-x} composite with robust lead-carbon interphase slows down the HER rate of the lead-carbon electrode.

CV curves reveal the different electrochemical behaviors of lead-carbon electrodes (Figs. 4c and 5c). Compared with the blank electrode, the shifts of redox peaks towards the scanning directions indicate the higher porosity of RHHPC and RHHPC@PbO\textsubscript{1-x} electrodes. The ab-
solute values of redox peak currents of the RHHPC and RHHPC@PbO$_{1.8}$ electrodes were higher than the blank electrode. Higher peak current densities imply higher electrochemically active surface areas for Pb$^{2+}$ deposition resulting from the addition of RHHPC and RHHPC@PbO$_{1.8}$ composite. As shown in Table S3, the reversibility of Pb/PbSO$_4$ redox couple of lead-carbon electrode was compared with the absolute ratio of reduction and oxidation peak current ($I_{a}/|I_{c}|$). The $I_{a}/|I_{c}|$ values of blank, RHHPC and RHHPC@PbO$_{1.8}$ electrodes were 0.45, 0.66 and 0.70, respectively. The highest $I_{a}/|I_{c}|$ ratio of the RHHPC@PbO$_{1.8}$ electrode corresponds to the best reversibility of Pb/PbSO$_4$ redox of all lead-carbon electrodes.

EIS was also used to analyze the electrochemical kinetics of the lead-carbon electrodes, as shown in Fig. 4d. The equivalent circuit diagram in Fig. S6d was used for simulation [40]. As presented in Table 1, the R_{Cl} values of lead-carbon electrodes were smaller than that of the blank electrode (3.0 Ω). The smallest R_{Cl} value of all belongs to the RHHPC@PbO$_{1.8}$ electrode (1.8 Ω), which implies its fast kinetics of Pb/PbSO$_4$ redox couple. The Q_{dl} value corresponds to the electrochemical active surface area of lead-carbon electrode [22]. Although the specific surface area of RHHPC was higher than that of the RHHPC@PbO$_{1.8}$ composite, the highest Q_{dl} value belongs to the RHHPC@PbO$_{1.8}$ electrode (0.114 Ω^{-1} $s^{0.5}$) rather than RHHPC electrode (0.095 Ω^{-1} $s^{0.5}$). The reason is elaborated as follows. The enhanced lead-carbon interphase of RHHPC@PbO$_{1.8}$ composite establishes the effective connection between RHHPC@PbO$_{1.8}$ composite and sponge lead, which improves the utilization of hierarchical pores of lead-carbon electrode for the deposition of energetic lead. In addition, the R_{Cl} values of lead-carbon electrodes were lower than that of the blank electrode, which suggests the beneficial effects for electrolyte adsorption of RHHPC@PbO$_{1.8}$ composite [6,40].

Rate capabilities and the cycling performances of lead-carbon cells in deep charge/discharge cycling under PSoC operation were
tested. Fig. 5a shows the same discharge capacities of ca. 2.50 Ah at 0.1C_{10} rate for all the cells at the beginning of cycling. When the discharge rate was switched back to 0.1C_{10}, the discharge capacities recovered to ca. 2.50 Ah, which suggests the excellent stabilities of lead-carbon cells. The discharge capacity of RHHPC@PbO_{1-x} cell (1.64 Ah) at 1C_{1} rate was significantly higher than that of the blank (0.94 Ah) and RHHPC (1.35 Ah) cells. The high capacity of RHHPC@PbO_{1-x} at 1C_{1} cell is in agreement with the results from CV and EIS. The RHHPC@PbO_{1-x} composite with enhanced lead-carbon interphase improves the utilization of its hierarchical pores, which enlarges the electrochemically active surface area of lead-carbon electrode effectively.

Fig. 5b-d shows the cycling performance of cells in deep charge/discharge cycling under PSOC operation [40,47]. Because the 100% deep of discharge and the 5 h's rest at 0% SoC cause serious sulation problem, the discharge capacities of all cells decrease quickly. In the 81st cycle, the discharge capacity of blank cell was lower than 80% of the capacity at the 1st cycle, while the discharge capacity of RHHPC cell at 136th cycle decreased to 80% that of the capacity at the 1st cycle. After 350 cycles, the RHHPC@PbO_{1-x} cell displayed a capacity as high as 96.5% of the discharge capacity at its 1st cycle. What is more, the cycling life of RHHPC@PbO_{1-x} cell was fourfold of the blank cell, and twice of the RHHPC cell. The above result verifies the good effect of RHHPC@PbO_{1-x} composite with enhanced lead-carbon interphase on suppressing HER, strengthening the conductive network between RHHPC@PbO_{1-x} composite and sponge lead, and enlarging the electrochemical active surface area for Pb deposition. Furthermore, the conductive network makes full use of the hierarchical pores of the RHHPC@PbO_{1-x} electrode. Both of the enhanced lead-carbon interphase and the hierarchical pores of RHHPC@PbO_{1-x} composite contribute to the excellent performances of RHHPC@PbO_{1-x} cell. Furthermore, fast declines in the charge acceptance of RHHPC and blank cells as well as the excellent charge acceptance of RHHPC@PbO_{1-x} cell were observed (Fig. S7), which agrees well with the EIS and CV results.

The negative electrodes before and after the PSOC cycling test were characterized by XRD, SEM and N_{2} adsorption/desorption techniques. As shown in Fig. 6, the XRD pattern of blank electrode showed typical peaks of Pb and PbSO_{4} before the PSOC cycling tests, while the RHHPC and RHHPC@PbO_{1-x} electrodes only showed Pb peaks. The above results suggest that RHHPC and RHHPC@PbO_{1-x} composite expedites the formation process of lead-carbon electrodes. After PSOC operation, the RHHPC@PbO_{1-x} electrode had the least amount of PbSO_{4} among all lead-carbon electrodes, while the RHHPC electrode had a larger amount of PbSO_{4}. SEM images in Fig. 7 reveal the morphology changes of negative electrode. Before PSOC cycling, the blank electrode showed a majority of block particles, while the RHHPC and RHHPC@PbO_{1-x} electrodes mainly possessed carrot-shaped Pb branches. Hence, RHHPC and RHHPC@PbO_{1-x} composite contribute to the high specific surface area of NAM, which enhances the charge ac-
Fig. 5. (a) Rate capabilities and the performances under PSoC operation of the (b) blank, (c) RHHPC and (d) RHHPC@PbO₁₋ₓ cells.

Fig. 6. The XRD patterns of lead-carbon electrodes (a) before tests and (b) after the PSoC operation.

ceptance of NAM. After cycling test, a passive layer of PbSO₄ was formed on the surface of blank electrode. Obviously, some RHHPC particles were separated from the sponge lead in the RHHPC electrode due to the severe HER reaction. Different from blank electrode and RHHPC electrodes, RHHPC@PbO₁₋ₓ electrode remained the high specific surface area of NAM without separation phenomenon, which is in accordance with the pore parameters tested by N₂ adsorption/desorption isotherms (Fig. S8 and Table S4). Compared with RHHPC@PbO₁₋ₓ electrode, the relatively low specific surface area and pore volume of RHHPC electrode result from the poor connection between RHHPC and sponge lead. What is more, apparently, RHHPC@PbO₁₋ₓ electrode exhibit an integrated lead-carbon composite morphology, which is due to that the strengthened RHHPC/C interphase enables the growth of Pb energetic branches. The integrated lead-carbon structure enables the long-term cycling stability of lead-carbon electrode. In addition, according to the current density distribution, the most polarized region as well as the part which is the part most likely get sulfated of the negative electrode focus on the bottom [53–56]. Hence, the detached part on the bottom represents bad charge acceptance of blank and RHHPC electrodes. The compactness of RHHPC@PbO₁₋ₓ electrode is well pre-
served (Fig. S9) because of its robust lead-carbon interphase and the unique hierarchical pore structure.

As a demonstration for the storage of electricity generated from renewable energy from photovoltaics and wind, the lead-carbon full batteries (4.0 Ah of 10 h capacity) were tested according to the Chinese National Standard (GB/T 22473-2008). The cycling performances of lead-carbon full batteries are shown in Fig. 8. The blank battery ran only 2 cycle sets (300 cycles) before the discharge capacity drops to 2.97 Ah (less than 80% of 4.0 Ah). The RHHPC@PbO₁₈ battery completed 6 cycle sets (900 cycles) with a discharge capacity of 5.39 Ah in the end (Fig. S10a). The cycling number of RHHPC@PbO₁₈ battery was three times that of the blank battery. Compared with the charge voltage in the standard GB cycling test, blank battery exhibited serious polarization phenomenon while the RHHPC@PbO₁₈ battery showed steady charge-discharge behavior (Figs. 8 and S10b). To highlight the unique performances of RHHPC@PbO₁₈ composite, we also compared the specific capacities and cycling stabilities between the lead-carbon cells made by our RHHPC@PbO₁₈ and other additives in literatures (Table 2). Actually, the capacity retention of RHHPC@PbO₁₈ cell is the best among the references. There is no doubt that the RHHPC@PbO₁₈ composite can improve the cycling life of lead-carbon battery towards renewable energy storage.

4. Conclusion

A novel RHHPC@PbO₁₈ composite with hierarchical pores has been prepared by a facile combined sol-gel/annealing method. The 2 V/4 Ah valve-regulated lead-carbon battery with RHHPC@PbO₁₈ composite additive in the negative electrode achieved 900 cycles’ cycling life (triple of the blank battery) in the Chinese national standard (GB/T 22473-2008) test. The excellent performance of RHHPC@PbO₁₈ cell originates from the unique lead-carbon interphase of RHHPC@PbO₁₈ composite, which not only inhibits the HER but also enlarges the electrochemical active surface and strengthens the connection between lead and carbon. The lead-carbon battery facilitated by RHHPC@PbO₁₈ composite has the potential to meet the requirements of low-cost, large-scale renewable energy storage technology.

Declaration of competing interest

The authors declared that they have no conflicts of interest to this work.
Fig. 8. The charge/discharge voltage profiles and the Coulombic efficiencies of (a) blank and (b) RHHPC@PbO\textsubscript{1-x} 2 V/4 Ah valve-regulated lead-carbon battery in the standard GB cycling test.

Acknowledgments

The research group acknowledges the financial support provided by the National Natural Science Foundation of China (NO. 21573093), the National Key R&D Program of China (NO. 2017YFB0307500), and JLU Science and Technology Innovative Research Team (NO.2017TD-31).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.energy.2019.116675.

Table 2

<table>
<thead>
<tr>
<th>Additives</th>
<th>Specific capacity</th>
<th>Capacity (mAh g-1)</th>
<th>Cycling stability</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Current</td>
<td>Cycling Number</td>
<td>Current</td>
<td>Cycles</td>
</tr>
<tr>
<td>SDC a</td>
<td>–</td>
<td>–</td>
<td>I\textsubscript{10}</td>
<td>30</td>
</tr>
<tr>
<td>Nano-Pb/AC a</td>
<td>l\textsubscript{3}</td>
<td>–</td>
<td>102.6</td>
<td>100 mA g-1</td>
</tr>
<tr>
<td>MWNT a</td>
<td>–</td>
<td>–</td>
<td>I\textsubscript{10}</td>
<td>205</td>
</tr>
<tr>
<td>0.005%PASP a,c</td>
<td>–</td>
<td>–</td>
<td>I\textsubscript{10}</td>
<td>31</td>
</tr>
<tr>
<td>0.005%PASP a</td>
<td>–</td>
<td>–</td>
<td>I\textsubscript{10}</td>
<td>200</td>
</tr>
<tr>
<td>CSGE a,c</td>
<td>–</td>
<td>–</td>
<td>I\textsubscript{10}</td>
<td>31</td>
</tr>
<tr>
<td>CSGE a,c</td>
<td>–</td>
<td>–</td>
<td>I\textsubscript{10}</td>
<td>208</td>
</tr>
<tr>
<td>RHC a,c</td>
<td>I\textsubscript{2}</td>
<td>1</td>
<td>I\textsubscript{2}</td>
<td>300</td>
</tr>
<tr>
<td>Pb/Carbon a,c</td>
<td>l\textsubscript{10}</td>
<td>1</td>
<td>I\textsubscript{10}</td>
<td>90</td>
</tr>
<tr>
<td>N-doped Carbon b</td>
<td>–</td>
<td>–</td>
<td>I\textsubscript{1}</td>
<td>150</td>
</tr>
<tr>
<td>RHHPC@PbO\textsubscript{1-x} a,c</td>
<td>I\textsubscript{10}</td>
<td>246</td>
<td>I\textsubscript{10}</td>
<td>351</td>
</tr>
</tbody>
</table>

Notes.

a The additives for electrolyte.

b The additives for lead negative electrodes.

c Tested under 100\%DoD in PbSoC operation.
References

