Prediction of ignition modes of NTC-fuel/air mixtures with temperature and concentration fluctuations

Minh Bau Luonga,*, Francisco E. Hernández Péreza, Hong G. Ima

aClean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Abstract

The ignition regime criteria proposed by Im et al. \cite{1} are extended to account for temperature and concentration fluctuations. The newly-developed criteria are applied to negative temperature coefficient (NTC) and non-NTC fuels. The statistical volume-averaged Sankaran number, S_a, and the volumetric fraction of $S_a < 1$, $F_{S_a,S}$, are proposed as new metrics to determine \textit{a priori} the combustion modes, combustion intensity, and ignition delay times, with $F_{S_a,S}$ being used to quantify the heat release fraction from spontaneous ignition. It is demonstrated that $F_{S_a,S}$ agrees acceptably with the fraction of heat release from spontaneous ignition obtained by the Damköhler-based analysis from direct numerical simulation (DNS) data. The ignition modes can also be predicted by S_a regardless of the NTC and non-NTC characteristics of fuels over a wide range of initial mean temperatures and different fluctuation levels. Besides, the magnitude of S_a can be used to estimate $F_{S_a,S}$ due to its strong correlation with $F_{S_a,S}$. Additionally, the predicted S_a by the theory, S_{ap}, is compared with the statistical mean S_a showing a consistent agreement and they are found to correlate with the combustion intensity that is characterized by the maximum heat release rate. Finally, the ignition delay time can be correlated with S_{ap} for single-stage fuels, and for NTC fuels if the initial mean temperature lies outside the NTC regime.

Keywords: Direct numerical simulation (DNS), Ignition regimes, Temperature fluctuations, Concentration fluctuations, Negative temperature coefficient (NTC)

1. Introduction

Advanced low-temperature-combustion (LTC) strategies of downsized and boosted engines are capable of offering ultra-low emissions and higher efficiencies \cite{2,3,4}. In these engines, combustion is chemically driven by the autoignition process with no direct means to control the ignition timing and combustion rate. The autoignition process and its timing are highly sensitive to the fuel types and operating conditions, including the intake temperature and pressure, thermal and compositional inhomogeneities of the mixture, the amount of exhaust gas recirculation (EGR), and cooling. As such, these engines are prone to suffer from pre-ignition, a higher possibility of knock, and even super-knock, which is characterized by high-pressure peaks and oscillations leading to a severe structural damage \cite{5,6}. Therefore, a reliable prediction of such abnormal ignition phenomena is of critical importance.

To reduce an excessive heat release rate (HRR), some levels of thermal and compositional fluctuations are desired to achieve a smooth combustion process \cite{2,3,8,9}. In the presence of thermal and/or concentration fluctuations, T' and ϕ', a mixed combustion mode of spontaneous ignition and deflagration is encountered, leading to smooth and prolonged combustion with a lower peak pressure rise rate (PRR) \cite{10,21}. Previous studies reported that larger T' leads to a predominant deflagration mode with a longer duration of HRR \cite{22,23}. However, this effect is significantly reduced when the initial mean temperature, T_0, falls into the negative temperature coefficient (NTC) regime due to the reduced ignition delay sensitivity to temperature \cite{27,31}. Zhang et al. \cite{32} used dimethyl ether (DME) as a surrogate...
Nomenclature

CHRR Cumulative heat release rate
DNS Direct numerical simulation
HCCI Homogeneous-charge compression ignition
HTR High-temperature regime
ITR Intermediate-temperature regime
LTR Low-temperature regime
NTC Negative temperature coefficient
NC (UC) Negatively-correlated (uncorrelated)
RMS Root mean square
SI (WI) Strong (weak) ignition
SCCI/RCCI Stratified-charge/reactivity-controlled compression ignition
PDF Probability density function
PRF Primary reference fuel

Symbols

\(Da \) Damköhler number
\(F_{Da,S} \) Volumetric fraction of \(Sa < 1 \)
\(F_{Da,s} \) HRR fraction by the spontaneous ignition
\(l_e, l_T, l_\phi \) Integral length scale of turbulence, temperature, equivalence ratio
\(T' \) \& \(\phi' \) RMS of \(T \) and \(\phi \)
\(Sa \) Sankaran number
\(S_{ap} \) Predicted Sankaran number
\(\overline{Sa} \) Statistical mean \(Sa \)
\(S_{au} \) Normalized statistical mean \(\overline{Sa}, S_{au} = \overline{Sa}/(\overline{Sa}+1) \)
\(S_{ap,n} \) Normalized predicted \(Sa \), \(S_{ap,n} = S_{ap}/(S_{ap}+1) \)
\(SL \) Laminar flame speed
\(Sp \) Spontaneous front speed
\(T, p, \) and \(\phi \) Temperature, pressure, and equivalence ratio
\(T_0, p_0, \) and \(\phi_0 \) Initial mean \(T, p, \) and \(\phi \)
\(\tau_{ig} \) Ignition delay time
\(\tau_t (\tau_f) \) Turbulent (flame) time scale
\(u' \) Turbulent velocity fluctuation
for NTC fuels to study the influence of the wavelength of the temperature fluctuation representing the integral length scale, the level of temperature gradients, and T_0 on the amplitude of pressure oscillation. They found that a larger wavelength of the temperature fluctuation and/or T_0 in the NTC regime induce a greater amplitude of the PRR oscillation. Pan et al. [33] also reported that the ignition-front of the cases inside the NTC regime travels faster than that of the cases outside the NTC regime, leading to increased interactions between the pressure wave and the developing reaction fronts, which in turn facilitates the formation of a detonation wave.

In a direct numerical simulation (DNS) study, Sankaran et al. [22] showed that the autoignition of a H_2/air mixture with different T' was accurately predicted by a nondimensional Sankaran number, Sa, which is proportional to the ratio of laminar flame speed to the thermal-gradient characterized spontaneous propagation speed. In both experimental and computational studies, Sa was demonstrated as an accurate predictive criterion of the strong/weak mode for homogeneous mixtures in the presence of thermal nonuniformities [34–38]. Strozzi et al. [34] reported a satisfactory agreement between a quantitative Sa-based prediction of the occurrence of autoignition fronts and deflagrations and the chemiluminescence images in a rapid compression machine (RCM) during the early and intermediate stages of combustion. Mansfield et al. [35, 36] conducted experimental studies to investigate the ignition behavior of syngas and iso-octane in a RCM, reporting that Sa accurately predicts the location of the strong ignition limit for various equivalence ratios and locations.

Based on this theoretical framework, Im et al. [1] proposed a scaling analysis to account for the turbulent effect on the ignition process, and derived the turbulent ignition regime diagram to identifying whether a combustion process is ignition controlled or flame-propagation controlled. The ignition regimes were classified into three categories: (1) weak ignition with the dominant mode of deflagration, (2) reaction-dominant strong ignition, and (3) mixing-dominant strong ignition. A further DNS study was conducted to verify the ignition regime diagram using syngas [39], obtaining consistent results with the predictions by the ignition regime diagram. In the previous studies [1, 39], the ignition criterion was qualitatively validated by using single-stage-ignition fuels with thermal fluctuations only. Validation for NTC fuels with temperature and concentration fluctuations along with more quantitative assessment are needed.

In other contexts, Grogan et al. [40, 41] also proposed an ignition regime diagram specifically relevant to the shock tube and rapid compression facilities, while Bradley and co-workers [42–44] identified criteria to develop detonation from a hot spot, which have been further extended to other fuels by Chen and co-workers [45–47], yet the crucial effect of thermal stratification on autoignition and detonation development was recently underscored by Sow et al. [48].

While fundamental studies abound for different fuels with temperature and composition fluctuations, there has been little attempt at formulating a unified theory to predict the autoignition behavior in terms of a few key nondimensional numbers characterizing the nature of the bulk mixture inhomogeneities, especially with complex fuels exhibiting low temperature ignition chemistry, manifested as the NTC behavior, and simultaneous temperature/composition fluctuations. To this end, the objective of the present study is twofold: (1) to extend the ignition regime theory and diagram proposed by Im et al. [1] to accommodate both temperature and concentration fluctuations, and validate the theory for mixtures with NTC fuels, and (2) to derive a quantitative metric for the tendency of strong ignition in terms of the global quantities that characterize the mixture inhomogeneities. The main emphasis is on comparing and assessing various statistical quantities in the prediction metric, for mixtures with different fuels and conditions. New and existing DNS data are used in the analysis and discussion. In what follows, the theoretical framework is presented, and the results are described and discussed.

2. Theoretical framework

2.1. Ignition regime criteria

In this section, the turbulent ignition regime theory [11] is briefly summarized and further extended to conditions with both temperature and concentration fluctuations. According to Zeldovich’s theory [49], the spontaneous propagation speed of an ignition front, S_{sp}, is expressed as

$$S_{sp} = |\nabla \tau_{ig}|^{-1}, \quad (1)$$
where τ_{ig} is the homogeneous ignition delay time at a local mixture condition. While the original Zeldovich theory was derived in terms of temperature variations in the mixture only, it can be extended by expressing $\tau_{ig}(T, \phi)$ as a function of local temperature and equivalence ratio. In the presence of large spatial variations in τ_{ig}, local ignition establishes a deflagration front (weak ignition). For a mixture with a smaller level of τ_{ig} variations, the mixture ignites sequentially and S_{sp} exhibits a rapid ignition front propagation (strong ignition). If S_{sp} is sufficiently large and comparable to the speed of sound, the combustion wave may be coupled with the acoustic wave, leading to a rapid pressure rise and detonation development in some extreme conditions. In the asymptotic limit of zero gradient, S_{sp} becomes infinity, leading to homogeneous autoignition and involving an extremely high-pressure rise rate.

Based on DNS data, Sankaran et al. [22] proposed a criterion to determine the weak or strong ignition modes, introducing the Sankaran number (Sa), which is defined as

$$Sa = \beta \frac{S_L}{S_{sp}}, \quad (2)$$

where β is a weighting factor of 0.5 to account for the quantitative behavior observed in the DNS data. Sa = 1 serves as the boundary between the strong (Sa < 1) and the weak (Sa > 1) ignition.

In practical combustion systems, detailed spatially resolved information about the scalar fluctuations is not available, and thus, prediction of the ignition characteristics must be made based on the statistical averages or filtered quantities. Im et al. [1] conducted a theoretical scaling analysis to derive the statistical average in turbulent conditions, S_{sp} is approximated as

$$S_{sp} = \frac{D_{ai}^{1/2}}{\alpha/S_{sp}}, \quad (3)$$

where $D_{ai} = \tau_{ig}/\tau_{ig}$ is Damköhler number, defined as the ratio of the turbulence integral time scale, l/u', to the ignition delay time, and $\tau_{f} = \alpha/S_{sp}^2$ is the characteristic flame time, where α is the thermal diffusivity of the initial bulk mixture.

Note that Sa is determined based on the statistical quantities of the mixture mean conditions, to be distinguished from the exact Sankaran number, Sa (Eq. 2), which is determined locally from the fully resolved information.

The turbulent ignition regime analysis is now further extended to account for both temperature and concentration fluctuations. In the presence of both temperature and equivalence ratio fluctuations, τ_{ig} is a function of T and ϕ. Using the chain rule, it follows that

$$\nabla \tau_{ig} = \left| \frac{\partial \tau_{ig}}{\partial T} \nabla T + \frac{\partial \tau_{ig}}{\partial \phi} \nabla \phi \right|, \quad (6)$$

where ∇T and $\nabla \phi$ are the temperature and equivalence ratio gradients of the local mixture [1]. Assuming that the temperature and composition fields are related to the turbulent flow field and, thus, have a comparable integral length scale, $l_T \sim l_\phi \sim l_e$ and following a similar approximation for $\nabla \phi \sim \phi'/\lambda_T$ as in the temperature case, Eq. 6 is extended by determining the K factor as:

$$K = \beta \left(\frac{\partial \tau_{ig}}{\partial T} + \frac{\partial \tau_{ig}}{\partial \phi} \phi' \right) \left(\frac{\partial \tau_{ig}}{\partial T} \right)^{1/2}, \quad (7)$$

where s is the sign which becomes positive or negative depending on the statistical distribution of T and ϕ fluctuations. When s is positive if T and ϕ fluctuations are uncorrelated, i.e. T' and ϕ' are completely random, both quantities would enhance the sensitivity of τ_{ig}, thus promoting the deflagrative regime of ignition. On the other hand, if T' and ϕ' are negatively correlated, on statistical average one offsets the other, such that the two effects on K
become subtractive, hence s adopts a negative (positive) sign if $\partial T/\partial \delta\approx \delta/\partial \phi$ is positive (negative). Note that in PPC engines, a late direct injection induces a negatively correlated $T-\phi$ distribution and a nearly identical integral length scale, $l_T \approx l_\phi$, due to the cooling effect of fuel vaporization as verified by experimental studies using optical measurements [56–59] and by computational studies using DNS [56] and LES data from a full-cycle IC-engine simulations [50–55], and by computational studies using optical measurements [60, 61]. As such, the selection of T_0, p_0, and ϕ_0, and the RMS values, T' and ϕ', listed in Table 1 follow the previous studies [56, 60, 61, 62].

2.2. Quantitative analysis

All reactant mixtures with temperature and composition fluctuations exhibit both weak and strong ignition behavior. If the DNS data are available, the exact distribution of S_a within the domain can be computed and the resulting ignition characteristics in terms of fractional contributions of weak and strong ignition to the total heat release can be determined. Such information serves as the reference target quantity. Here, the objective is to assess whether the S_a criterion based on the statistical mean can predict the ignition behavior consistently, for different fuels and temperature/composition fluctuations.

Figure 1 shows a representative DNS data field illustrating the instantaneous spatial distribution of (a) temperature and (b) equivalence ratio. At such initial conditions, the distribution of the corresponding local τ_y and S_a are shown in (c) and (d), respectively. Subsequently, the probability density function (PDF) for S_a, $P(S_a)$ is constructed in Fig. 2 from which the fractional volume that would lead to strong (SI) and weak (WI) ignition behavior can be predicted. The volume fraction of the regions with $S_a < 1$, $F_{S_a,S}$, is given by

$$F_{S_a,S} = \frac{1}{0} P(S_a)dS_a,$$

which is proposed as a predictive indicator of the fractional heat release rate associated with strong ignition. It follows that the contribution of the weak ignition (deflagration) is determined as $F_{S_a,W} = 1.0 - F_{S_a,S}$. If $F_{S_a,S}$ approaches unity, strong ignition is dominant. These quantities will be used to assess the accuracy of the predictive Sankaran number, S_{ap}, in the next section. Note that the local mixtures with a very large τ_y (e.g., the lean and low-temperature mixtures with $S_a \approx 10$ and $\phi \approx 0.1$ as shown in Fig. 1) can still auto-ignite due to compression heating during the progress of the deflagrative burning.

2.3. Damköhler number analysis

As an alternative metric to determine the strong/weak ignition characteristics, previous studies used the Damköhler number analysis [23–26, 29, 30, 56–60], in which Da was defined as the ratio of the local reaction and diffusion terms for a selected scalar variable:

$$Da = \frac{\dot{\omega}_k}{| - \nabla \cdot (\rho Y_k \mathbf{V}_k)|},$$

where Y_k, \mathbf{V}_k, and $\dot{\omega}_k$ denote the mass fraction, diffusion velocity, and net production rate of species k, respectively, while ρ is the mixture density. For hydrocarbon fuels, a progress of reaction variable, $Y_e \equiv Y_{CO} + Y_{CO}_2$, has been commonly used for the analysis [27, 30, 59, 60]. By applying the above definition to the initial DNS solution field and quantifying Da relative to a threshold value, Da_0, the dominant ignition regime of the mixture can be identified. Here Da_0 is of order unity and depends on the chosen initial condition. For example, it was found in a series of one-dimensional (1-D) simulations that the transition between the two propagation modes occurred approximately at $Da_0 = 4.0$ for n-C$_7$H$_{16}$/air mixtures at $p_0 = 40$ atm and $\phi_0 = 0.3$ in [24]. Base on this alternative criterion, the fractional heat release associated with strong ignition is quantified as

$$F_{Da,S} = \frac{\sum \langle \dot{q} | Da > Da_0 \rangle}{\sum \dot{q}}.$$

where the summation is operated over the total number of computational cells in the DNS domain. Note that $F_{Da,S}$ may vary quantitatively depending on the choice of the threshold value of Da_0, but the result was still found to be consistent [61]. In the subsequent sections, $F_{Da,S}$ will be compared with $F_{S_a,S}$ to verify the predictive accuracy of the extended ignition criterion.

2.4. Description of DNS data under study

In the subsequent analysis, previous DNS data are utilized to validate the prediction of combustion modes for different NTC fuels such as n-C$_7$H$_{16}$ [27, 30], primary reference fuels (PRF) [29, 60], and
Figure 1: (a-b) Representative initial fields of temperature and equivalence ratio (Case 16 in [30]) with $T_0 = 933$ K, $\phi_0 = 0.45$, $T' = 15$ K, and $\phi' = 0.1$, and (c-d) its corresponding ignition delay time and Sa distributions. The black iso-lines of $Sa = 1$ delineate two distinct regions of $Sa < 1$ and $Sa > 1$ which contribute to strong and weak ignition, respectively.

Figure 2: A representative probability density function of Sa distribution, PDF(Sa). SI and WI denote strong and weak ignition, respectively, with a boundary of $Sa = 1$.

DME [62], as well as non-NTC fuels such as i-C_8H_{18} [28] and ethanol. PRF is a blend of iso-octane and n-heptane by volume (e.g., PRF80 - a 80% iso-octane and 20% n-heptane mixture). The summary of the initial conditions for all the selected cases is described in Table 1.

The initial fields of temperature and equivalence ratio from these DNS cases were adopted to perform the statistical analysis of Sa such that the volume-averaged (mean) Sa, \overline{Sa}, of the spatial Sa distribution, the probability density function of Sa, $P(Sa)$, and the volume fraction of the regions with Sa < 1, $F_{Sa,S}$, are obtained. In addition, Sa_p for each DNS case was also computed based on the information of the initial mean bulk mixture conditions such as T_0, p_0, and ϕ_0, and the RMS values, T' and ϕ'.

The initial turbulent flow fields in all DNS cases were prescribed by an isotropic kinetic energy spectrum function [63]. Temperature and concentration fields were generated in the same manner with different random numbers to reproduce thermal and compositional non-uniformities, as shown in Fig. 1, which corresponds to a negatively correlated T–ϕ distribution with the integral length scales of temperature and equivalence ratio of $l_T = l_\phi = 1.25$ mm. All the DNS cases were performed at a constant volume with a square domain of 3.2×3.2 mm2 under the homogeneous-charge compression ignition (HCCI) relevant conditions of high pressure and a wide range of the amplitude of temperature fluctuations. The integral turbulence time scale, τ_t, was chosen to be comparable to the ignition time scale, τ_ig, ≈ 1.0, which allows significant turbulence-chemistry interactions.
DME and n-heptane, exhibiting strong NTC behavior, were chosen as representative two-stage-ignition fuels to investigate the effect of temperature and equivalence ratio fluctuations on the combustion modes by varying the initial mean temperatures and different fluctuation levels \([27, 30, 62]\). The reduced kinetic mechanisms of 30-species for DME \([64]\) and 58-species for \(n\)-C\(_7\)H\(_8\) \([27]\) were adopted. In other two DNS studies \([29, 60]\), a 116-species reduced mechanism for primary reference fuels was used with the consideration of temperature, equivalence ratio, and reactivity fluctuations under HCCI, stratified-charge and reactivity-controlled compression ignition (SCCI, RCCI) conditions. To investigate the effect of thermal inhomogeneity under spark-assisted compression ignition (SACI) operating conditions, a 99-species reduced kinetic mechanism for \(i\)-C\(_8\)H\(_18\) was adopted.\(^{28}\)

An additional parametric study for a non-NTC single-stage-ignition fuel was performed by varying different initial mean \(T_0\) and fluctuation \(T'\) of the temperature using the 28-species reduced ethanol mechanism. Two six-dimensional (2-D) DNS cases were selected where \(T_0\) was systematically varied from 880 K to 1070 K, leading to a wide range of homogeneous ignition delay times from 10 ms to 0.5 ms (see Fig. \(3\)), thus covering the conditions commonly encountered in internal combustion engines and shock-tube devices. Similarly, additional four 2-D cases with \(T_0\) from 680 K to 1045 K (see Fig. \(5\)) and \(T'\) of 60 K were performed using DME for a complete validation with the NTC two-stage-ignition fuels. Table 1 summarizes the details of the physical parameters in the DNS cases.

As a consideration of the baseline chemistry, Fig. \(4\) shows the homogeneous ignition delay, \(\tau_{\text{ig}}\), of \(n\)-C\(_7\)H\(_8\)/air mixture as a function of temperature and equivalence ratio at the conditions of \(p_0 = 40\) atm, \(\phi_0 = 0.45\) as in \([30]\). To compute \(S_{\text{ig}}\), the sensitivities of ignition delay to \(T\) and \(\phi\), \(\partial \tau_{\text{ig}}/\partial T\) and \(\partial \tau_{\text{ig}}/\partial \phi\), respectively, are required. They are plotted as \(\partial \log \tau_{\text{ig}}/\partial T\) and \(\partial \log \tau_{\text{ig}}/\partial \phi\) in Fig. \(4\) and Fig. \(5\) for a range of conditions considered. Two main points are noted from these two figures.

First, the ignition delay time varies non-monotonically with temperature. In particular, \(\partial \log \tau_{\text{ig}}/\partial T\) is negative in the low- and high-temperature regimes, whereas \(\partial \log \tau_{\text{ig}}/\partial T\) is positive in the intermediate-temperature regime (i.e., from 867 K to 982 K in Fig. \(4\)). This is referred to as the negative-temperature coefficient (NTC) regime in which the ignition delay increases with increasing temperature. Because of the non-monotonic behavior of \(\partial \log \tau_{\text{ig}}/\partial T\) (distinct from the single-stage-ignition fuels), the variation of \(\partial \log \tau_{\text{ig}}/\partial T\) within/near the NTC regime is shallow.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Fuel</th>
<th>Mechanism</th>
<th>(T_0) (K)</th>
<th>(p_0) (atm)</th>
<th>(\phi_0)</th>
<th>(T') (K)</th>
<th>(\phi')</th>
<th>(l_\tau) (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoo et al., 2011</td>
<td>n-C(_7)H(_8)</td>
<td>58-species</td>
<td>850, 934, 1008, 1067</td>
<td>40</td>
<td>0.3</td>
<td>15, 30, 60, 100</td>
<td>-</td>
<td>1.24</td>
</tr>
<tr>
<td>Yoo et al., 2013</td>
<td>i-C(_8)H(_18)</td>
<td>99-species</td>
<td>1035</td>
<td>20</td>
<td>0.3</td>
<td>15, 30, 60</td>
<td>-</td>
<td>1.25</td>
</tr>
<tr>
<td>Luong et al., 2013</td>
<td>PRF50, PRF80, PRF100</td>
<td>116-species</td>
<td>1025</td>
<td>20</td>
<td>0.3</td>
<td>15, 30, 60</td>
<td>-</td>
<td>1.25</td>
</tr>
<tr>
<td>Luong et al., 2015</td>
<td>n-C(_7)H(_8)</td>
<td>58-species</td>
<td>805, 933, 1025</td>
<td>40</td>
<td>0.45</td>
<td>15, 60</td>
<td>0.05, 0.1 (NC & UC)</td>
<td>1.25</td>
</tr>
<tr>
<td>Luong et al., 2017</td>
<td>PRF50</td>
<td>116-species</td>
<td>800, 900, 1000</td>
<td>40</td>
<td>0.45</td>
<td>15, 30</td>
<td>0.05, 0.1 (NC)</td>
<td>1.0</td>
</tr>
<tr>
<td>Luong et al., 2019</td>
<td>CH(_3)CH(_2)O</td>
<td>30-species</td>
<td>770, 900, 1045</td>
<td>30</td>
<td>0.5</td>
<td>15, 30</td>
<td>0.075, 0.15 (NC & UC)</td>
<td>1.0</td>
</tr>
<tr>
<td>This study</td>
<td>CH(_3)CH(_2)O</td>
<td>30-species</td>
<td>850, 900, 1045</td>
<td>30</td>
<td>0.5</td>
<td>60</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>This study</td>
<td>C(_2)H(_5)OH</td>
<td>28-species</td>
<td>820, 900, 1020, 1070</td>
<td>40</td>
<td>0.5</td>
<td>15, 30, 60</td>
<td>-</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table 1: Physical parameters of all the DNS cases. Other physical parameters: Damköhler number, \(D_\text{A} = \tau_{\text{ig}}/\tau_\text{e}\) \(\approx 1.0\), the integral length scale of velocities and scalar fields of temperature and equivalence ratio, \(l_\tau = l_\varphi = \lambda_\varphi\). \(T_0\), \(p_0\), and \(\phi_0\) denote respectively the initial mean temperature, pressure, and equivalence ratio. \(T'\) and \(\phi'\) are the root-mean-square (RMS) values of temperature and equivalence ratio, respectively. NC and UC denote negatively-correlated and uncorrelated \(T-\phi\) distributions, respectively.
Figure 3: Homogeneous ignition delay as a function of temperature for DME/air mixtures at $p = 30$ atm and $\phi = 0.5$, and for ethanol/air mixtures at $p = 40$ atm and $\phi = 0.5$. Selected temperatures for 2-D cases (see Table 1) are marked with symbols.

Figure 4: (a) Homogeneous ignition delay of n-heptane/air mixture as a function of temperature and its gradient with respect to temperature, $\partial \log \tau_{ig} / \partial T$, at a pressure of 40 atm, equivalence ratio of 0.45, and for ethanol/air mixtures at $p = 40$ atm and $\phi = 0.5$. (b) Homogeneous ignition delay as a function of equivalence ratio and its gradient with respect to equivalence ratio, $\partial \log \tau_{ig} / \partial \phi$, for three different temperatures at $p = 40$ atm.

Compared to those in the low- and high-temperature regimes. These features help to explain the observed DNS results in [27, 30], where it was found that the temperature fluctuation is less effective in reducing the pressure rise rate if T_0 is within/near the NTC regime. Therefore, it is expected that the mixture within the NTC is more susceptible to autoignition if no concentration fluctuations exist. This behavior on the ignition mode is further quantified by PDF(S_a), $F_{sa,S}$, S_a, and S_{ap} in the following sections under various conditions.

Second, in contrast to the non-monotonic behavior of $\partial \log \tau_{ig} / \partial T$, $\partial \log \tau_{ig} / \partial \phi$ monotonically decreases with increasing ϕ. The resultant effect of the T and ϕ variations on τ_{ig} is shown in Fig. 5 along with the behavior of its derivatives with respect to T and ϕ. It is seen that the NTC characteristics ($\partial \log \tau_{ig} / \partial T > 0$) are mainly due to the temperature effects. In the previous DNS studies [23, 29, 59, 60, 65, 66], a negatively-correlated $T-\phi$ distribution, representing the evaporative cooling effect of fuels, suppresses the deflagration development if T_0 is outside the NTC regime, while it has a synergistic effect if T_0 is inside the NTC regime. As such, the extended predictive criterion of the combustion modes following Eq. 7 in the presence of both T' and ϕ' at different bulk mixture conditions needs to be examined.

3. Results and discussion

Based on the 0-D ignition data shown in Fig. 5, the overall ignition characteristics in terms of weak versus strong ignition are predicted. The roadmap of the analysis is as follows. First, for different DNS results the PDF and volume-averaged quantities of the exact S_a are computed and their correlation with the fractional heat release, $F_{Da,S}$, is assessed. It will be demonstrated that the local evaluation of exact S_a according to Eqs. 5 and 7 correctly predicts the heat release behavior for all cases under consideration. Therefore, the first point that the Sankaran criterion can be extended to a general mixture temperature and composition fluctuations will be made. Subsequently, considering that the exact S_a is unavailable in general engineering Reynolds-averaged Navier–Stokes (RANS) simulations, the predicted S_a, S_{ap}, is computed by using Eq. 6, Eq. 7, and the mean quantities, T_0, ϕ_0 and p_0, for all DNS data and its accuracy in predicting the same ignition metric is assessed. As such, it will be shown that the S_{ap} criterion can be used to predict the ignition characteristics of nearly homogeneous mixtures with temperature and composition fluctuations, including NTC fuels.
For a systematic progression of discussion, the overall combustion characteristics of the ethanol/air mixtures and the DME/air mixtures are discussed first, followed by the analysis of deterministic prediction of different criteria.

3.1. Overall combustion characteristics

To have a comprehensive picture of validation, in addition to the previous DNS studies, ten additional cases covering a wide range of ignition delay times are performed by varying \(T_0 \), \(T' \), and the \(T' - \phi' \) combination. The temporal evolution of mean HRR and iso-contours of HRR for some of these cases are shown in Fig. 6 and Fig. 7 for ethanol, and in Fig. 8 and Fig. 10 for DME.

3.1.1. Temperature inhomogeneities

In general, decreasing the initial mean temperature and/or increasing the fluctuation levels promote deflagration fronts, prolonging the combustion duration and lowering the maximum HRR. As such, a weak combustion mode is observed for all the cases of ethanol shown in Fig. 6 and Fig. 7, even for the case with \(T_0 \) of 900 K and \(T' \) of 15 K. Regardless of the variation in \(T' \) and \(T_0 \), the maximum mean HRR for these three cases is of the same order of magnitude as shown in Fig. 6b. Note that these three cases were selected such that they have nearly identical \(F_{Sa,S} \) of 0.3.

In contrast to the weak-ignition cases of ethanol, spontaneous ignition (characterized by high peak HRR in Fig. 8 and Fig. 10) is dominant even with \(T' \) of 60 K for the DME case at \(T_0 \) of 900 K and \(T' \) of 15 K due to a small variation of \(\tau_{ig} \) with temperature within/near the NTC regime as shown in Fig. 3, whereas flame propagation is dominant for the cases with \(T_0 \) beyond the NTC regime (i.e., \(T_0 \) of 680 K and 1045 K) for the same level of temperature fluctuation, \(T' \) of 60 K. Similar results were found for \(n \)-heptane [27, 30] and PRF50 and PRF80 [67].

As a further quantitative verification, \(\overline{\Delta a} \) and \(F_{Sa,S} \) for the DME cases of \(T_0 \) at 680 K, 900 K, and
Figure 7: 2-D iso-contours of the normalized HRR at \(\tau_{ig} \) at which the maximum spatial-mean HRR occurs for the ethanol/air mixtures. The top row corresponds to the cases with \(T' \) of 60 K, and the bottom row corresponds to the three cases with nearly identical \(F_{Sa,S} \) of 0.3, but with different \(T' \). For a direct comparison, the HRR contour of each case is normalized by its corresponding 0-D maximum HRR.

Figure 8: Temporal evolution of the mean heat release rate for DME/air mixtures at \(p_0 \) of 30 atm and \(\phi_0 \) of 0.5. The HRR contour of each case is normalized by its corresponding 0-D maximum HRR.

1045 K are found to be, respectively, 4.2 \& 0.20, 0.5 \& 0.92, and 1.3 \& 0.4. The cases with \(T_0 \) of 680 K and 1045 K have \(S_a \) greater than one, suggesting a weak-ignition dominance, while for the case with \(T_0 \) of 900 K, a strong ignition is expected. The predictive accuracy of \(S_a \) and \(F_{Sa,S} \) is further verified by the magnitude of \(F_{Da,S} \) that will be discussed in the next section.

3.1.2. Temperature and concentration inhomogeneities

The temporal evolution of HRR profiles for DME cases from [62] with \(T' \) of 30 K and \(\phi' \) is shown in Fig. 9 at three distinct low-, intermediate-, and high-temperature regimes. The HRR contours of three representative cases of \(\phi = 0.15 \) are shown at the bottom row of Fig. 10. Contrary to the \(T' \)-only cases, in the presence of both \(T \) and \(\phi \) inhomogeneities and the negative \(T - \phi \) correlation, \(T_0 \) of 900 K results in a much lower HRR (due to the synergistic effect of \(T' \) and \(\phi' \)) than those of \(T_0 \) outside the NTC regime (due to the subtractive effect of \(T' \) and \(\phi' \) for the cases with \(T_0 \) of 770 K and 1045 K), as seen in the bottom row of Fig. 10. Quantitatively, \(S_a \) and \(F_{Sa,S} \) for the three cases in Fig. 10 are 0.5 \& 0.85, 2.1 \& 0.56, and 0.3 \& 0.95 for \(T_0 \) of 770 K, 900 K, and 1045 K, respectively. The prediction of \(F_{Sa,S} \) is in agreement with the HRR contours regardless of the presence of the \(T - \phi \) inhomogeneities.

These observations can be explained by Eq. 7.
Figure 9: Temporal evolution of the mean heat release rate for DME/air mixtures with $T - \phi$ fluctuations at T_0 of 770 K, 900 K, and 1045 K, p_0 of 30 atm, and ϕ_0 of 0.5. NC and UC denote the negative correlation and uncorrelated $T - \phi$ distribution.

Figure 10: 2-D iso-contours of the normalized HRR at τ_{ig} at which the maximum spatial-mean HRR occurs for the DME/air mixtures. The top row corresponds to the cases with temperature fluctuations only, T' of 60 K, and the bottom row corresponds to the cases with both temperature and equivalence ratio fluctuations, T' of 30 K and ϕ of 0.15 [62]. For a direct comparison, the HRR contour of each case is normalized by its corresponding 0-D maximum HRR.

According to Eq. 7, the contributions of temperature and equivalence ratio to S_a_p can be discerned by examining $T'\frac{\partial \tau_{ig}}{\partial T}$ and $\phi' \frac{\partial \tau_{ig}}{\partial \phi}$. Table 2 lists the values of these terms for six DME cases with a negatively-correlated T-ϕ distribution [62]. As readily seen in Table 2, the absolute magnitudes of $T'\frac{\partial \tau_{ig}}{\partial T}$ and $\phi' \frac{\partial \tau_{ig}}{\partial \phi}$ are comparable, having contributions to S_a_p of the same order. If they are subtractive (i.e. T_0 of 770 K and 1045 K with negatively-correlated T-ϕ), the resulting HRR pro-

files are similar to 0-D ignition (spontaneous ignition), which is reflected in a high peak HRR (see Fig. 9). On the other hand, if they are additive (T'_{0} or ϕ') only and a negatively correlated (NC) T-ϕ distribution, the peak of HRR is reduced. Note also that for the case T_{0} of 900 K inside the NTC regime, both negative and uncorrelated T-ϕ distributions result in an additive effect on Sa_{p} such that with the same level of T' and ϕ', nearly identical HRR profiles are obtained, except for the difference in the ignition delay time (see Fig. 9).

Consistent findings were reported with different T_{0} and different fuels such as n-heptane [30, 65, 66], PRF50 [60], biodiesel [59], hydrogen [25]. In a recent study [57], these criteria were used to predict the combustion intensity using LES initial conditions generated from a full cycle engine simulation under direct-injection SI engine conditions over a wide temperature range from 700 K to 1280 K. The prediction was compared with RANS-based simulation data and the results were found to be consistent with the present findings, namely S_{a} and S_{ap} show good agreement, and the correlation of S_{ap} with the combustion intensity is consistent with Fig. 14 [57].

The results from the DNS studies, and the S_{a}-based prediction for the DME and n-heptane cases are also qualitatively consistent with previous experimental findings. The experimental studies in References [68, 69] found that inappropriate mixture preparation by the fuel-direct injection can cause an adverse effect on HCCI combustion, leading to excessive HRR due to the offset effect of temperature and fuel inhomogeneities. Dec and co-authors [3, 11, 70] found that fuel stratification reduces the maximum PRR under highly boosted conditions, which is attributed to the NTC-chemistry enhancement of iso-octane-like fuels such as gasoline; however, no benefit of the maximum PRR reduction was achieved under naturally aspirated intake conditions.

3.2. Quantitative prediction of combustion modes

As discussed in the previous section, the combustion modes are highly sensitive to the initial mean temperatures, fuel types, and temperature and con-

<table>
<thead>
<tr>
<th>Case</th>
<th>T_{0} (K)</th>
<th>T' (K)</th>
<th>ϕ'</th>
<th>$T'\partial\tau_{ig}/\partial T$ (ms×10^{-2})</th>
<th>$\phi'\partial\tau_{ig}/\partial\phi$ (ms×10^{-2})</th>
<th>S_{a}</th>
<th>S_{ap}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>805</td>
<td>15</td>
<td>0.05</td>
<td>-21.5</td>
<td>-23.4</td>
<td>0.11</td>
<td>0.09</td>
</tr>
<tr>
<td>2</td>
<td>805</td>
<td>15</td>
<td>-</td>
<td>-21.5</td>
<td>-</td>
<td>0.21</td>
<td>0.42</td>
</tr>
<tr>
<td>3</td>
<td>805</td>
<td>-</td>
<td>0.05</td>
<td>-</td>
<td>-23.4</td>
<td>0.19</td>
<td>0.4</td>
</tr>
<tr>
<td>4</td>
<td>933</td>
<td>15</td>
<td>0.05</td>
<td>15.6</td>
<td>-19.6</td>
<td>0.57</td>
<td>1.4</td>
</tr>
<tr>
<td>5</td>
<td>933</td>
<td>15</td>
<td>-</td>
<td>15.6</td>
<td>-</td>
<td>0.26</td>
<td>0.55</td>
</tr>
<tr>
<td>6</td>
<td>933</td>
<td>-</td>
<td>0.05</td>
<td>-</td>
<td>-19.6</td>
<td>0.27</td>
<td>0.62</td>
</tr>
<tr>
<td>7</td>
<td>1025</td>
<td>15</td>
<td>0.10</td>
<td>-24.6</td>
<td>-27.4</td>
<td>0.14</td>
<td>0.16</td>
</tr>
<tr>
<td>8</td>
<td>1025</td>
<td>15</td>
<td>-</td>
<td>-24.6</td>
<td>-</td>
<td>0.65</td>
<td>1.23</td>
</tr>
<tr>
<td>9</td>
<td>1025</td>
<td>-</td>
<td>0.10</td>
<td>-</td>
<td>-27.4</td>
<td>0.55</td>
<td>1.08</td>
</tr>
</tbody>
</table>

Table 2: The mean and predicted Sankaran numbers, S_{a} and S_{ap}, along with the contributions from the temperature and equivalence ratio terms, for nine representative 2-D n-heptane cases [59] with either T' or ϕ' only and a negatively correlated (NC) T-ϕ distribution, and for six 2-D DME cases [62] with a NC T-ϕ distribution.
centration fluctuations. A robust metric to quantify the combustion mode, combustion intensity, and ignition delay times is needed. In this regard, different predictive criteria and their predictive accuracy will be examined in the following section.

3.2.1. Probability density function of Sa

For the \(n \)-heptane/air mixture cases with temperature fluctuations only \cite{27}, the initial solution fields were processed and the PDF of Sa distribution is shown in Fig. 11. For most cases, Sa distribution is mainly within the range of Sa < 1, suggesting that they are in the strong ignition regime. In general, for a given \(T' \), a higher bulk temperature shifts the distribution further towards a lower Sa, and for a given \(T_0 \), a higher \(T' \) widens the distribution. However, the NTC characteristics are also manifested in that the Sa distribution is distinctly shifted to lower values for \(T_0 = 850 \) and 934 K. As such, a mixture with a \(T_0 \) outside the NTC range with a higher \(T' \) is more likely to develop weak ignition behavior. Indeed, Yoo et al. \cite{27} reported that the resulting heat release behavior was found to be as expected from the Sa distribution. Additional simulation data by Luong et al. \cite{30} for \(n \)-heptane/air mixtures at different \(\phi_0 \) and \(T_0 \) conditions also showed consistent PDF behavior (not shown here).

3.2.2. Comparison between \(F_{Sa,S} \) and \(F_{Da,S} \)

As a further quantitative assessment, Fig. 12 shows the actual computed values of the fraction of heat release due to strong ignition, \(F_{Da,S} \), plotted against the corresponding volumetric fraction of Sa < 1, \(F_{Sa,S} \), based on the PDF statistics such as those in Fig. 11. For all the cases considered, \(F_{Da,S} \) and \(F_{Sa,S} \) are found to correlate very well, even for the cases in which \(T' \) is as large as 100 K \cite{27} and even though the bulk temperature of some cases falls into the NTC range. There appears to be a systematic shift in the correlation for ethanol and DME cases, which may need to be calibrated further. Nevertheless, all correlations follow approximately a straight line, suggesting that \(F_{Sa,S} \) serves as a good predictive marker to characterize the overall ignition regimes.

3.2.3. Statistical mean Sankaran number, \(\overline{Sa} \)

Next, it is of interest to assess an alternative metric of the volume-averaged Sankaran number, \(\overline{Sa} \), in its prediction of the ignition behavior. Fig. 13 shows the correlation between \(F_{Sa,S} \) and Sa and \(\overline{Sa} \). For both Sa numbers, the subscript \(n \) indicates that the quantities are re-scaled as \(Sa/(1 + Sa) \) to fit within a range between 0 and 1, with 0.5 corresponding to \(Sa = 1 \). All DNS cases are compiled and organized for different fuels. A strong correlation between \(\overline{Sa}_n \) and \(F_{Sa,S} \) is observed regardless of \(T_0 \), \(T' \), and \(T' - \phi \). The correlation is fairly good not only for \(n \)-heptane, DME (also in Fig. 4d in \cite{62}), and a single-stage ignition fuel, ethanol, but it is also observed in other fuel/air mixtures under various conditions such as PRF50 and iso-octane (not shown here).
Figure 12: The HRR fraction of spontaneous ignition (SI), $F_{Da,S}$, obtained by a Damkohler-number-based analysis in the previous DNS studies and the present study (ethanol) as a function of the fraction of $Sa < 1$, $F_{Sa,S}$. The solid line denotes the ratio of $F_{Da,S}/F_{Sa,S} = 1$. The filled symbols corresponding to the T'-only cases and the open symbols corresponding to the $T' - \phi'$ cases are consistently used in Figs. 12–16.

Figure 13: The volumetric fraction of $Sa < 1$, $F_{Sa,S}$, as a function of (a) the normalized Sa, Sa_n, and (b) the normalized predicted Sa, $Sa_{p,n}$.

Figure 14: Comparison of the normalized mean Sa and normalized predicted Sa, Sa_{n} versus $Sa_{p,n}$.

Based on the strong correlations shown in Fig. 13, the magnitude of Sa can be used to directly predict $F_{Sa,S}$. In general, a higher Sa corresponds to a lower $F_{Sa,S}$, which translates into a lower combustion intensity. In particular, $F_{Sa,S} = 0.6$ approximately corresponds to $Sa = 1.0$ ($Sa_n = 0.5$) as a transition point from SI to WI. At this condition, the fractional contribution of the heat release by spontaneous ignition is also about 60%. For $Sa < 0.3$, $F_{Sa,S} = 1.0$ corresponds to purely spontaneous ignition. On the contrary, for $Sa > 1.0$, weak ignition is predicted to be predominant. Therefore, it is demonstrated that Sa can be used to quantitatively predict the combustion modes.

As for the second correlation in Fig. 13(b), despite some scattering, the $Sa_{p,n}$-$F_{Sa,S}$ correlation appears to be also well reproduced, especially in the range of both strong and weak ignition limits, say $F_{Sa,S} < 0.2$ and $F_{Sa,S} > 0.8$. This suggests that $Sa_{p,n}$ can also capture the strong/weak ignition behavior, although at some loss of accuracy in the mixed mode of strong/weak ignition regimes.

3.2.4. Comparison between Sa_n and $Sa_{p,n}$

The normalized predicted $Sa_{p,n}$ is validated by comparing it with the normalized statistical mean Sa_n for four different datasets with and without the NTC behavior as shown in Fig. 14. Overall, $Sa_{p,n}$ exhibits a good agreement with Sa_n in spite of the discrepancy that shows $Sa_{p,n} > Sa_n$ for the most points considered. In general, lowering initial mean temperatures and/or increasing the fluctuation levels (i.e., increased T' and/or ϕ') result in a wider distribution of Sa (e.g., see PDF(Sa) in Fig. 11), thereby increasing Sa_n significantly because τ_{ig} in-
Sa of unity. As Sa is computed by excluding the grid points where Sa takes on values much smaller than 1, Sa, F_{Sa,S} is fitted well by an exponential function as \(f(Sa_n) = 0.945 \exp(-3.187 Sa_n) \) (the thick line in Fig. 15).

The ratio \(\overline{q}_m/\dot{q}_m^0 \) is approximately equal to 0.2 for Sa of unity. As Sa takes on values much smaller than unity, \(\overline{q}_m/\dot{q}_m^0 \) increases exponentially and approaches unity, such that the purely spontaneous ignition mode becomes dominant. The correlation between \(\overline{q}_m \) and \(Sa_n \) is fitted well by an exponential function as \(f(Sa_n) = 0.945 \exp(-3.187 Sa_n) \) (the thick line in Fig. 15).

The scatter plot of \(\overline{q}_m/\dot{q}_m^0 \) and \(F_{Sa,S} (F_{Da,S}) \) also shows in Fig. 15a-d a similar monotonic and exponential increase in \(\overline{q}_m/\dot{q}_m^0 \) with \(F_{Sa,S} (F_{Da,S}) \). Fig. 15 also suggests that \(Sa_n \) and \(Sa_{p,n} \) are better metrics to correlate with \(\overline{q}_m/\dot{q}_m^0 \) because the variation in \(\overline{q}_m/\dot{q}_m^0 \) is not reflected by \(F_{Sa,S} \) and \(F_{Da,S} \) when \(F_{Sa,S} \) and \(F_{Da,S} \) approach unity, while \(Sa_n \) and \(Sa_{p,n} \) monotonically decrease with increasing \(\overline{q}_m/\dot{q}_m^0 \).

3.2.5. Correlation between the maximum HRR and \(Sa_n, Sa_{p,n} \)

As an additional relevant physical observable in the ignition system, quantitative prediction of the combustion intensity is further demonstrated by the ratio of \(\overline{q}_m \) and \(\dot{q}_m^0 \). The maximum spatial-mean HRR, \(\overline{q}_m \), normalized by its corresponding maximum 0-D homogeneous HRR, \(\dot{q}_m^0 \), is plotted as a function of \(Sa_n \) and \(Sa_{p,n} \) in Fig. 15. A good correlation between \(\overline{q}_m \) and \(Sa_n \) is observed in Figure 15a, and a consistent correlation between \(\overline{q}_m/\dot{q}_m^0 \) and \(Sa_{p,n} \) is also found in Fig. 15b.

Figure 15: The normalized maximum spatial-mean HRR, \(\overline{q}_m/\dot{q}_m^0 \), as a function of (a) the normalized \(Sa_n \), \(\overline{q}_m = Sa/(Sa+1) \), (b) the normalized \(Sa_n \), \(Sa_{p,n} = Sa_p/(Sa_p+1) \), (c) \(F_{Sa,S} \) and (d) \(F_{Da,S} \). The solid line shows the fitting correlation \(\overline{q}_m/\dot{q}_m^0 \) as a function of \(Sa_n \), \(f(Sa_n) = 0.945 \exp(-3.187 Sa_n) \).
Sa increases turning around. It was also found that both Sa and 1/0.6 are close to 1. The normalized ignition delay time of these cases is expected for those cases due to the NTC behavior. The ignition regime criteria proposed by Im et al. [1] was extended to consider both temperature and concentration fluctuations. The auto-ignition modes of different fuels with and without the NTC regime together with thermal and/or compositional non-uniformities were examined to validate the extended criteria.

Extensive DNS results were used to validate the predictive accuracy of the proposed criteria. It was demonstrated that the combustion modes of strong/weak ignition were well captured by the normalized statistical mean Sankaran number, Sa, and the volumetric fraction of Sa = 0.5 (Sa = 1) was found as a predictive metric to identify the transition between the weak and strong ignition regimes.

In addition, the HRR fraction from strong ignition can be quantified by FSa,S. FSa,S shows a satisfactory agreement with F_Sa,S from the DNS analysis. FSa,S can also be approximated by the relative magnitude of Sa. At Sa = 0.5, the F Sa,S is approximately equal to 0.6, suggesting that 60% (40%) heat release attributed from spontaneous ignition (deflagration). As Sa increases turning greater than unity, higher Sa,S yields more deflagration fronts, ultimately resulting in the dominant deflagration mode (weak ignition).

Finally, the predicted Sa, Sa,p, is in good agreement with Sa. It was also found that both Sa and Sa,p correlate very well with the normalized maximum heat release. Moreover, a good correlation between the ignition delay time and Sa,p was observed for single-stage fuels, and NTC fuels if T0 lies outside the NTC regime. In summary, the validity of the ignition regime criteria [1] considering temperature/composition inhomogeneities has been demonstrated for a variety of fuels.

4. Conclusions

The ignition regime criteria proposed by Im et al. [1] was extended to consider both temperature and concentration fluctuations. The auto-ignition modes of different fuels with and without the NTC regime together with thermal and/or compositional non-uniformities were examined to validate the extended criteria.

Extensive DNS results were used to validate the predictive accuracy of the proposed criteria. It was demonstrated that the combustion modes of strong/weak ignition were well captured by the normalized statistical mean Sankaran number, Sa, and the volumetric fraction of Sa = 0.5 (Sa = 1) was found as a predictive metric to identify the transition between the weak and strong ignition regimes.

In addition, the HRR fraction from strong ignition can be quantified by F Sa,S. F Sa,S shows a satisfactory agreement with F_Sa,S from the DNS analysis. FSa,S can also be approximated by the relative magnitude of Sa. At Sa = 0.5, the F Sa,S is approximately equal to 0.6, suggesting that 60% (40%) heat release attributed from spontaneous ignition (deflagration). As Sa increases turning greater than unity, higher Sa,S yields more deflagration fronts, ultimately resulting in the dominant deflagration mode (weak ignition).

Finally, the predicted Sa, Sa,p, is in good agreement with Sa. It was also found that both Sa and Sa,p correlate very well with the normalized maximum heat release. Moreover, a good correlation between the ignition delay time and Sa,p was observed for single-stage fuels, and NTC fuels if T0 lies outside the NTC regime. In summary, the validity of the ignition regime criteria [1] considering temperature/composition inhomogeneities has been demonstrated for a variety of fuels.
Acknowledgements

This work was sponsored by competitive research funding from King Abdullah University of Science and Technology. This research utilized the computational resources of the KAUST Supercomputing Laboratory.

References

