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Rikke Gade
Aalborg University

Thomas B. Moeslund
Aalborg University

Abstract

In video understanding, action spotting consists in tem-
porally localizing human-induced events annotated with
single timestamps. In this paper, we propose a novel loss
function that specifically considers the temporal context
naturally present around each action, rather than focusing
on the single annotated frame to spot. We benchmark our
loss on a large dataset of soccer videos, SoccerNet, and
achieve an improvement of 12.8% over the baseline. We
show the generalization capability of our loss for generic
activity proposals and detection on ActivityNet, by spotting
the beginning and the end of each activity. Furthermore, we
provide an extended ablation study and display challeng-
ing cases for action spotting in soccer videos. Finally, we
qualitatively illustrate how our loss induces a precise tem-
poral understanding of actions and show how such semantic
knowledge can be used for automatic highlights generation.

1. Introduction
Aside from automotive, consumer, and robotics appli-

cations, sports is considered one of the most valuable ap-
plications in computer vision [54], capping $91 billion of
annual market revenue [31], with $28.7 billion from the Eu-
ropean Soccer market alone [15]. Recent advances helped
provide automated tools to understand and analyze broad-
cast games. For instance, current computer vision meth-
ods can localize the field and its lines [17, 24], detect play-
ers [12, 63], their motion [18, 40], their pose [7, 67], their
team [27], track the ball position [50, 56] and the camera
motion [39]. Understanding spatial frame-wise information
is useful to enhance the visual experience of sports view-
ers [47] and to gather players statistics [57], but it misses
higher-level game understanding. For broadcast producers,

(*) Denotes equal contributions. Code available at https://
github.com/cioppaanthony/context-aware-loss.

Figure 1. Context-aware loss function. We design a novel loss
that leverages the temporal context around an action spot (at a tem-
poral shift of 0). We heavily penalize the frames far-distant from
the action and decrease the penalty for those gradually closer. We
do not penalize the frames just before the action to avoid provid-
ing misleading information as its occurrence is uncertain, but we
heavily penalize those just after, as the action has occurred.

it is of paramount importance to have a deeper understand-
ing of the game actions. For instance, live broadcast pro-
duction follows specific patterns when particular actions oc-
cur; sports live reporters comment on the game actions; and
highlights producers generate short summaries by ranking
the most representative actions within the game. In order to
automate these production tasks, computer vision methods
should understand the salient actions of a game and respond
accordingly. While spatial information is widely studied
and quite mature, localizing actions in time remains a chal-
lenging task for current video understanding algorithms.
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In this paper, we target the action spotting challenge,
with a primary application on soccer videos. The task of
action spotting has been defined as the temporal localiza-
tion of human-induced events annotated with a single times-
tamp [21]. Inherent difficulties arise from such annotations:
their sparsity, the absence of start and end times of the ac-
tions, and their temporal discontinuities, i.e. the unsettling
fact that adjacent frames may be annotated differently al-
beit being possibly highly similar. To overcome these is-
sues, we propose a novel loss that leverages the temporal
context information naturally present around the actions, as
depicted in Figure 1. To highlight its generality and versa-
tility, we showcase how our loss can be used for the task of
activity localization in ActivityNet [23], by spotting the be-
ginning and end of each activity. Using the network BMN
introduced in [34] and simply substituting their loss with
our enhanced context-aware spotting loss function, we show
an improvement of 0.15% in activity proposal leading to a
direct 0.38% improvement in activity detection on Activi-
tyNet [23]. On the large-scale action spotting soccer-centric
dataset, SoccerNet [21], our network substantially increases
the Average-mAP spotting metric from 49.7% to 62.5%.

Contributions. We summarize our contributions as fol-
lows. (i) We present a new loss function for temporal ac-
tion segmentation further used for the task of action spot-
ting, which is parameterized by the time-shifts of the frames
from the ground-truth actions. (ii) We improve the perfor-
mance of the state-of-the-art method on ActivityNet [23] by
including our new contextual loss to detect activity bound-
aries, and improve the action spotting baseline of Soccer-
Net [21] by 12.8%. (iii) We provide detailed insights into
our action spotting performance, as well as a qualitative ap-
plication for automatic highlights generation.

2. Related Work

Broadcast soccer video understanding. Computer vision
tools are widely used in sports broadcast videos to pro-
vide soccer analytics [42, 57]. Current challenges lie in un-
derstanding high-level game information to identify salient
game actions [13, 60], perform automatic game summa-
rization [49, 51, 61] and report commentaries of live ac-
tions [65]. Early work uses camera shots to segment broad-
casts [16], or analyze production patterns to identify salient
moments of the game [46]. Further developments have
used low-level semantic information in Bayesian frame-
works [25, 55] to automatically detect salient game actions.

Machine learning-based methods have been proposed
to aggregate temporally hand-crafted features [5] or deep
frame features [28] into recurrent networks [44]. Soccer-
Net [21] provides an in-depth analysis of deep frame fea-
ture extraction and aggregation for action spotting in soccer
game broadcasts. Multi-stream networks merge additional

optical flow [10, 59] or excitement [6, 51] information to
improve game highlights identification. Furthermore, atten-
tion models are fed with per-frame semantic information
such as pixel information [13] or player localization [32] to
extract targeted frame features. In our work, we leverage
the temporal context information around actions to handle
the intrinsic temporal patterns representing these actions.

Deep video understanding models are trained with large-
scale datasets. While early works leveraged small custom
video sets, a few large-scale datasets are available and worth
mentioning, in particular Sports-1M [30] for generic sports
video classification, MLB-Youtube [43] for baseball activ-
ity recognition, and GolfDB [41] for golf swing sequenc-
ing. These datasets all tackle specific tasks in sports. In our
work, we use SoccerNet [21] to assess the performance of
our context-aware loss for action spotting in soccer videos.

Video understanding. Recent video challenges [23] in-
clude activity localization, that find temporal boundaries
of activities. Following object localization, two-stage ap-
proaches have been proposed including proposal gener-
ation [9] and classification [8]. SSN [69] models each
action instance with a structured temporal pyramid and
TURN TAP [20] predicts action proposals and regresses
the temporal boundaries, while GTAN [38] dynamically
optimizes the temporal scale of each action proposal with
Gaussian kernels. BSN [36], MGG [37] and BMN [34]
regress the time of activity boundaries, showing state-of-
the-art performances on both ActivityNet 1.3 [23] and Thu-
mos’14 [29]. Alternatively, ActionSearch [4] tackles the
spotting task iteratively, learning to predict which frame to
visit next in order to spot a given activity. However, this
method requires sequences of temporal annotations by hu-
man annotators to train the models that are not readily avail-
able for datasets outside ActivityNet. Also, Alwassel et
al. [3] define an action spot as positive as soon as it lands
within the boundary of an activity, which is less constrain-
ing than the action spotting defined in SoccerNet [21].

Recently, Sigurdsson et al. [52] question boundaries
sharpness and show that human agreement on tempo-
ral boundaries reach an average tIoU of 72.5% for Cha-
rades [53] and 58.7% on MultiTHUMOS[64]. Alwas-
sel et al. [3] confirm such disparity on ActivityNet [23], but
also show that it does not constitute a major roadblock to
progress in the field. Different from activity localization,
SoccerNet [21] proposes an alternative action spotting task
for soccer action understanding, leveraging a well-defined
set of soccer rules that define a single temporal anchor per
action. In our work, we improve the SoccerNet [21] action
spotting baseline by introducing a novel context-aware loss
that temporally slices the vicinity of the action spots. Also,
we integrate our loss for generic activity localization and
detection on a boundary-based method [34, 36].



Figure 2. Action context slicing. We define six temporal segments around each ground-truth action spot, each of which induces a specific
behavior in our context-aware loss function when training the network. Far before and far after the action, its influence is negligible,
thus we train the network not to predict an action. Just before the action, we do not influence the network since a particular context may
or may not result in an action (i.e. an attacking phase may lead to a goal). Just after the action, its contextual information is rich and
unambiguous as the action has just occurred (i.e. a goal leads to celebrating). Hence, we train the network to predict an action. Finally,
we define transition zones for our loss function to be smooth, in which we softly train the network not to predict an action. For each
class c, the temporal segments are delimited by specific slicing parametersKc

i and are materialized through our time-shift encoding, which
contains richer temporal context information about the action than the initial binary spotting annotation.

3. Methodology
We address the action spotting task by developing a

context-aware loss for a temporal segmentation module, and
a YOLO-like loss for an action spotting module that outputs
the spotting predictions of the network. We first present the
re-encoding of the annotations needed for the segmentation
and spotting tasks, then we explain how the losses of these
modules are computed based on the re-encodings.
Problem definition. We denote by C the number of classes
of the action spotting problem. Each action is identified
by a single action frame annotated as such. Each frame of
a given video is annotated with either a one-hot encoded
vector with C components for the action frames or a vector
of C zeros for the background frames. We denote by NF

the number of frames in a video.

3.1. Encoding

To train our network, the initial annotations are re-
encoded in two different ways: with a time-shift encoding
used for the temporal segmentation loss, and with a YOLO-
like encoding used for the action spotting loss.
Time-shift encoding (TSE) for temporal segmentation.
We slice the temporal context around each action into seg-
ments related to their distance from the action, as shown
in Figure 2. The segments regroup frames that are either
far before, just before, just after, far after an action, or in
transition zones between these segments.

We use the segments in our temporal segmentation mod-
ule so that its segmentation scores reflect the following
ideas. (1) Far before an action spot of some class, we can-
not foresee its occurrence. Hence, the score for that class
should indicate that no action is occurring. (2) Just before

an action, its occurrence is uncertain. Therefore, we do not
influence the score towards any particular direction. (3) Just
after an action has happened, plenty of visual cues allow for
the detection of the occurrence of the action. The score for
its class should reflect the presence of the action. (4) Far
after an action, the score for its class should indicate that it
is not occurring anymore. The segments around the actions
of class c are delimited by four temporal context slicing pa-
rameters Kc

1 < Kc
2 < 0 < Kc

3 < Kc
4 as shown in Figure 2.

The context slicing is used to perform a time-shift encod-
ing (TSE) of each frame x of a video with a vector of length
C, containing class-wise information on the relative loca-
tion of x with respect to its closest past or future actions.
The TSE of x for class c, noted sc(x), is the time-shift (i.e.
difference in frame indices) of x from either its closest past
or future ground-truth action of class c, depending on which
has the dominant influence on x. We set sc(x) as the time-
shift from the past action if either (i) x is just after the past
action; or (ii) x is in the transition zone after the past action,
but is far before the future action; or (iii) x is in the transi-
tion zones after the past and before the future actions while
being closer to the past action. In all other cases, sc(x) is
the time-shift from the future action.

If x is both located far after the past action and far be-
fore the future action, selecting either of the two time-shifts
has the same effect in our loss. Furthermore, for the frames
located either before the first or after the last annotated ac-
tion of class c, only one time-shift can be computed and is
thus set as sc(x). Finally, if no action of class c is present
in the video, then we set sc(x) = Kc

1 for all the frames.
This induces the same behavior in our loss as if they were
all located far before their closest future action.



Figure 3. Pipeline for action spotting. We propose a network
made of aframe feature extractor and atemporal CNN out-
puttingC class feature vectors per frame, asegmentation module
outputting per-class segmentation scores, and aspotting module
extracting2+ C values per spotting prediction (i.e. the con�dence
scores for the spotting, its locationt and a per-class prediction).

YOLO-like encoding for action spotting. Inspired by
YOLO [45], each ground-truth action of the video engen-
ders anaction vectorcomposed of2 + C values. The �rst
value is a binary indicator of the presence (= 1 ) of the ac-
tion. The second value is the location of the frame annotated
as the action, computed as the index of that frame divided
by NF . The remainingC values represent the one-hot en-
coding of the action. We encode a whole video containing
NGT actions in a matrixY of dimensionNGT � (2 + C),
with each line representing an action vector of the video.

3.2. Loss and Network Design

Temporal segmentation loss.The TSE parameterizes the
temporal segmentation loss described below. For clarity, we
denote byp the segmentation score for a framex to belong
to classc output by the segmentation module, ands as the
TSE ofx for classc. We detail the loss generated byp in this
setting, notedL(p; s). First, in accordance with Figure 2,
we computeL(p; s) as follows:

L (p; s) =

8
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>>>>>>>>>>>>>>:
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3
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4 (5)

� ln(1 � p) s � K c
4 . (6)

Then, following the practice in [14, 48] to help the net-
work focus on improving its worst segmentation scores, we
zero out the loss for scores that are satisfying enough. In
the case of Equation (4) whens = 0 , we say that a score
is satisfactory when it exceeds somemaximum margin� max.
In the cases of Equations (1) and (6), we say that a score
is satisfactory when it is lower than someminimum margin
� min. The range of values forp that leads to zeroing out the

loss varies withs and the slicing parameters in most cases.
This is achieved by revisingL(p; s) as in Equations (7) and
(8). Figure 1 shows a representation of~L(p; s).

~L(p; s) =
�

max(0; L (p; s) + ln( � max)) 0 � s < K c
3 (7)

max(0; L (p; s) + ln(1 � � min)) otherwise. (8)

Finally, the segmentation lossL seg for a given video of
framesx1; : : : ; xN F is given in Equation (9).

L seg =
1

C NF

N FX

i =1

CX

c=1

~L(pc(x i ); sc(x i )) (9)

Action spotting loss. Let Npred be a �xed number of ac-
tion spotting predictions generated by our network for each
video. Those predictions are encoded inŶ of dimension
Npred � (2 + C), similarly toY.

We leverage an iterative one-to-one matching algorithm
to pair each of theNGT ground-truth actions with a pre-
diction. First, we match each ground-truth location of
Y � ;2 with its closest predicted location in̂Y � ;2, and vice-
versa (i.e. we match the predicted locations with their
closest ground-truth locations). Next, we form pairs of
(ground-truth; predicted) locations that reciprocally match,
we remove them from the process, and we iterate until all
ground truths are coupled with a prediction. Consequently,

we build Ŷ
M

as a reorganized version of the actions en-

coded inŶ, such thatY i; 2 andŶ
M
i; 2 reciprocally match for

all i � NGT.
We de�ne the action spotting lossL as in Equation (10).

It corresponds to a weighted sum of the squared errors be-
tween the matched predictions and a regularization on the
con�dence score of the unmatched predictions.

L as =
N GTX

i =1

2+ CX

j =1

� j

�
Y i;j � Ŷ

M
i;j

� 2
+ �

N predX

i = N GT+1

�
Ŷ

M
i; 1

� 2
(10)

Complete loss. The �nal loss L is presented in Equa-
tion (11) as a weighted sum ofL segandL as.

L = L as+ � segL seg (11)

Network for action spotting. The architecture of the net-
work is illustrated in Figure 3 and further detailed in the
supplementary material. We leverage frame feature rep-
resentations for the videos (e.g. ResNet) provided with the
dataset, embodied as the output of the frame feature extrac-
tor of Figure 3. The temporal CNN of Figure 3 is composed
of a spatial two-layer MLP, followed by four multi-scale
3D convolutions (i.e. across time, features and classes). The
temporal CNN outputs a set ofC� f features for each frame
organized inC feature vectors (one per class) of sizef , as



in [48]. These features are input into a segmentation mod-
ule, in which we use Batch Normalization [26] and sigmoid
activations. The closeness of theC vectors obtained in this
way to a pre-de�ned vector gives theC segmentation scores
output by the segmentation module, as [14]. TheC � f
features obtained previously are concatenated with theC
scores and fed to the action spotting module, as shown in
Figure 3. It is composed of three successive temporal max-
pooling and 3D convolutions, and outputsNpred vectors of
dimension(2 + C). The �rst two elements of these vectors
are sigmoid-activated, theC last are softmax-activated. The
activated vectors are stacked to produce the predictionŶ of
dimensionNpred � (2 + C) for the action spotting task.

4. Experiments

We evaluate our new context-aware loss function in two
scenarios: the action spotting task of SoccerNet [21], and
activity localization and detection tasks on ActivityNet [23].

4.1. Experiments on SoccerNet

Data. Three classes of action are annotated in SoccerNet
by Giancolaet al. [21]: goals, cards, and substitutions, so
C = 3 in this case. They identify each action by one anno-
tated frame: the moment the ball crosses the line forgoal,
the moment the referee shows a player a card forcard, and
the moment a new player enters the �eld forsubstitution.
We train our network on the frame features already provided
with the dataset. Giancolaet al. �rst subsampled the raw
videos at2 fps, then they extracted the features with a back-
bone network and reduced them by PCA to512features for
each frame of the subsampled videos. Three sets of features
are provided, each extracted with a particular backbone net-
work: I3D [11], C3D [58], and ResNet [22].
Action spotting metric. We measure performances with
the action spotting metric introduced in SoccerNet [21].
An action spot is de�ned as positive if its temporal offset
from its closest ground truth is less than a given tolerance� .
The average precision (AP) is estimated based on Precision-
Recall curves, then averaged between classes (mAP). An
Average-mAP is proposed as the AUC of the mAP over dif-
ferent tolerances� ranging from 5 to 60 seconds.
Experimental setup. We train our network on batches of
chunks. We de�ne a chunk as a set ofNF contiguous frame
feature vectors. We setNF = 240 to maintain a high
training speed while retaining suf�cient contextual infor-
mation. This size corresponds to a clip of2 minutes of raw
video. A batch contains chunks extracted from a single raw
video. We extract a chunk around each ground-truth action,
such that the action is randomly located within the chunk.
Then, to balance the batch, we randomly extractNGT=C
chunks composed of background frames only. An epoch
ends when the network has been trained on one batch per

Method
Frame features

I3D C3D ResNet

SoccerNet baseline 5s [21] - - 34.5
SoccerNet baseline 60s [21] - - 40.6
SoccerNet baseline 20s [21] - - 49.7

Vatset al. [62] - - 57.5

Ours 53.6 57.7 62.5
Table 1.Results on SoccerNet.Average-mAP (in %) on the test
set of SoccerNet for the action spotting task. We establish a new
state-of-the-art performance.

training video. At each epoch, new batches are re-computed
for each video for data augmentation purposes. Each raw
video is time-shift encoded before training. Each new train-
ing chunk is encoded with the YOLO-like encoding.

The number of action spotting predictions generated by
the network is set toNpred = 5 , as we observed that no
chunks of2 minutes of raw video contain more than5 ac-
tions. We train the network during1000epochs, with an
initial learning ratelr = 10 � 3 linearly decreasing to10� 6.
We use Adam as the optimizer with default parameters [33].

For the segmentation loss, we set the margins� max = 0 :9
and� min = 0 :1 in Equations (7) and (8), following the prac-
tice in [48]. For the action spotting loss in Equation (10),
we set� j = 1 for j 6= 2 , while � 2 is optimized (see be-
low) to �nd an appropriate weighting for the location com-
ponents of the predictions. Similarly,� is optimized to �nd
the balance between the loss of the action vectors and the
regularization of the remaining predictions. For the �nal
loss in Equation (11), we optimize� seg to �nd the balance
between the two losses.
Hyperparameter optimization. For each set of features
(I3D, C3D, ResNet), we perform a joint Bayesian optimiza-
tion [1] on the number of frame featuresf extracted per
class, on the temporal receptive �eldr of the network (i.e.
temporal kernel dimension of the 3D convolutions), and on
the parameters� 2; �; � seg. Next, we perform a grid search
optimization on the slicing parametersK c

i .
For ResNet, we obtainf = 16; r = 80; � 2 = 5 ; � =

0:5; � seg = 1 :5. For goals (resp. cards, substitutions) we
haveK 1 = � 40 (resp.� 40, � 80), K 2 = � 20 (resp.� 20,
� 40), K 3 = 120 (resp. 20, 20), and K 4 = 180 (resp.
40, 40). Given the framerate of 2 fps, those values can be
translated to seconds by scaling them down by a factor of
2. The valuer = 80 corresponds to a temporal receptive
�eld of 20 seconds on both sides of the central frame in the
temporal dimension of the 3D convolutions.
Main results. The performances obtained with the op-
timized parameters are reported in Table 1. As shown,
we establish a new state-of-the-art performance on the ac-
tion spotting task of SoccerNet, outperforming the previous
benchmark by a comfortable margin, for all the frame fea-



tures. ResNet gives the best performance, as also observed
in [21]. A sensitivity analysis of the parametersK c

i reveals
robust performances around the optimal values, indicating
that no heavy �ne-tuning is required for the context slic-
ing. Also, performances largely decrease as the slicing is
strongly reduced, which emphasizes its usefulness.
Ablation study. Since the ResNet features provide the best
performance, we use them with their optimized parameters
for the following ablation studies.(i) We remove the seg-
mentation module, which is equivalent to setting� seg = 0
in Equation (11). This also removes the context slicing and
the margins� max and� min. (ii) We remove the action context
slicing such that the ground truth for the segmentation mod-
ule is the raw binary annotations,i.e. all the frames must be
classi�ed as background except the action frames. This is
equivalent to settingK 1 = � 1 = K 2 = � K 3 = � K 4.
(iii) We remove the margins that help the network focus on
improving its worst segmentation scores, by setting� max =
1; � min = 0 in Equations (7) and (8).(iv) We remove the
iterative one-to-one matching between the ground truthY
and the predictionŝY before the action spotting loss, which

is equivalent to usinĝY instead ofŶ
M

in Equation (10).
The results of the ablation studies are shown in Table 2.

From an Average-mAP perspective, the auxiliary task of
temporal segmentation improves the performance on the ac-
tion spotting task (from58:9% to 62:5%), which is a com-
mon observation in multi-task learning [66]. When the seg-
mentation is performed, our temporal context slicing gives
a signi�cant boost compared to using the raw binary an-
notations (from57:8% to 62:5%). This observation is in
accordance with the sensitivity analysis. It also appears
that it is preferable to not use the segmentation at all rather
than using the segmentation with the raw binary annotations
(58:9% vs 57:8%), which further underlines the usefulness
of the context slicing. A boost in performance is also ob-
served when we use the margins to help the network focus
on improving its worst segmentation scores (from59:0%
to 62:5%). Eventually, Table 2 shows that it is extremely
bene�cial to match the predictions of the network with the
ground truth before the action spotting loss (from46:8% to
62:5%). This makes sense since there is no point in evaluat-
ing the network on its ability to order its predictions, which
is a hard and unnecessary constraint. The large impact of
the matching is also justi�ed by its direct implication in the
action spotting task assessed through the Average-mAP.
Results through game time.In soccer, it makes sense to
analyze the performance of our model through game time,
since the actions are not uniformly distributed throughout
the game. For example, a substitution is more likely to oc-
cur during the second half of a game. We consider non-
overlapping bins corresponding to5 minutes of game time
and compute the Average-mAP for each bin. Figure 4
shows the evolution of this metric through game time.

Segm. Slic. Marg. Match. Result

(i) X 58.9
(ii) X X X 57.8
(iii) X X X 59.0
(iv) X X X 46.8

Ours X X X X 62.5
Table 2. Ablation study. We perform ablations by(i) removing
the segmentation (� seg = 0 ), hence the slicing and the margins;
(ii) removing the context slicing (K 1 = � 1 = K 2 = � K 3 =
� K 4); (iii) removing the margins that help the network focus on
improving its worst segmentation scores (� min = 0 , � max = 1 ); (iv)
removing the matching (usinĝY instead ofŶ

M
in L as). Each part

evidently contributes to the overall performance.

Figure 4.Performance as function of game time. Average-mAP
spotting performance over the game time with all ground-truth ac-
tions of the dataset binned in5 minute intervals. It appears that
actions around the half-time break are more challenging to spot.
Number of actionsfor each bin.Our performance (62:5%).

It appears that actions occurring during the �rst �ve min-
utes of a half-time are substantially more dif�cult to spot
than the others. This may be partially explained by the oc-
currence of some of these actions at the very beginning of a
half-time, for which the temporal receptive �eld of the net-
work requires the chunk to be temporally padded. Hence,
some information may be missing to allow the network to
spot those actions. Besides, when substitutions occur dur-
ing the break, they are annotated as such on the �rst frame of
the second halves of the matches, which makes them prac-
tically impossible to spot. In the test set, this happens for
28% of the matches. None of these substitutions are spot-
ted by our model, which thus degrades the performances
during the �rst minutes of play in the second halves of the
matches. However, they merely represent5% of all the
substitutions, and removing them from the evaluation only
boosts our Average-mAP by0:7%(from 62:5%to 63:2%).

Results as function of action vicinity. We investigate
whether actions are harder to spot when they are close to
each other. We bin the ground-truth actions based on the
distance that separates them from the previous (or next, de-
pending on which is the closest) ground-truth action, re-
gardless of their classes. Then, we compute the Average-
mAP for each bin. The results are represented in Figure 5.

We observe that the actions are more dif�cult to spot




