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Abstract

In this paper, we introduce an effective way of limit analysis on the bearing capacity of given
trusses. To illustrate the maximum external forces that a truss can carry on different directions,
we propose the concept of ultimate force boundary (UFB) which is usually a closed polygon for
a 2D truss and a closed polygonal mesh for a 3D truss. We prove that UFB is convex, and we
introduce an efficient algorithm to compute the precise UFB based on its convexity. UFB can be
used as direct visualization of bearing capacity of trusses and also provides insight of reducing
the complexity of continuous boundary condition in truss optimization.
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1 Introduction

Trusses as fundamental structures have been studied in the field of civil engineering for decades.
Recently, more attention has been paid to truss optimization in the community of computer
graphics as the development of digital fabrication and geometric modeling such as research
works in [1, 2, 3]. For a given truss, one of the important concern is the bearing capacity of
truss when external forces are applied. To illustrate the maximum external forces that a truss
can carry along different directions, we propose the concept of ultimate force boundary, UFB
for short. We first set the joint where the external force applied as the origin. The maximum
affordable external force along an arbitrary direction can be represented as a vertex on the
boundary. UFB is a collection of all possible external force vectors which form a closed curve
in 2D and a closed surface in 3D. Because of discreteness of trusses, more precisely, UFB is a
closed polygon for a 2D truss and a closed polygonal mesh for a 3D truss. The region enclosed
by the boundary represents all the affordable forces for a given truss. UFB can be used as a
direct illustration of the bearing capacity of a truss, and more importantly, it provides an easy
way to access the information of the maximum affordable force for any possible external force
direction.
In the following chapters, we will first provide a formulation of finding the maximum external
force along a given direction and provide a rough method of estimating UFB for given trusses.
Then we will analysis the properties of UFB and provide an algorithm which can generate an
exact ultimate force boundary.

Copyright c© 2019 by Caigui Jiang
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2 Plastic Limit Analysis

2.1 A Simple Example

We first look at a simple 2D example, as shown in Fig.1(a), a truss connected by two bars i and
j. Each bar has one end fixed as supporting point (red) and another end connected at the joint
p. The bars can afford compression(-) and tension(+) along axial directions. Assume the limited
compression and tension in bar i is −Fi and Fi, and in bar j is −Fj and Fj . We would like to
know the bearing capacity of the truss when an external force is applied at the pin-joint p. The
truss can afford an external force if the force can be decomposed into two forces along bar i and
j and less than their limits. Then the solution of bearing capacity boundary is simply defined
by a parallelogram with four vertices Fi + Fj , Fi −Fj , −Fi −Fj , and −Fi + Fj . Any external
force within the parallelogram is affordable for the truss in Fig.1(a). Here the affordable force
region bounded by the boundary is shown in yellow. In Fig.1(b), one more supporting bar k is
connected at the joint p and its limited internal force range is −Fk and Fk shown in blue. The
new ultimate force boundary in Fig.1(d) is the outline of region when moving the parallelogram
by vector −Fk and Fk illustrated in Fig.1(c). This simple example provides a basic sense of the
ultimate bearing capacity boundary and a simple way of calculation. However, when the truss
gets complex, the analysis and calculation of the bearing capacity region are not straightforward.

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)
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Figure 1: A simple example of ultimate force boundary.

2.2 LP Formulation

The LP formulation has been used commonly in truss optimization, such as the ground structure
method (GSM) mentioned in [4], and methods used for truss limit analysis such in [5] and [6].
Given an external force direction and detailed information of a truss, such as its joint positions,
connectivity, and cross-sections of bars, we can formulate the problem of finding the maximum
force magnitude along this external force by a linear programming as shown below,

minimize
λ,s

− λ, (1)

subject to BT s = −λf , (1a)

σCai + si ≥ 0, i = 1, . . . , |E| (1b)

σTai − si ≥ 0, i = 1, . . . , |E| (1c)

where BT is the nodal equilibrium matrix, built from the directional cosines of the bars. ai is
the cross-section area of the i-th bar, and si is its internal force. s is a vector with the internal
forces for all bars and |E| is the number of bars. f is a unit vector of the external force. Here
we assume there is only one external force, and λ is its magnitude. The problem formulation
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used in this paper is based on the plastic analysis. σC and σT are stress limits in tension and
compression, which are constant values when the material of bars is determined. The limited
force the i-th bar can afford is σCai in compression and σTai in tension. As formulated in the
constraints, the internal forces of each bar should be within its limit. Solving this LP problem,
we can easily find the maximum affordable external force for any given direction.
This formulation as a building block itself doesn’t provide a direct computation of the bearing
capacity boundary. This means for each given external force direction, to find its maximum
bearing force, we need to solve this LP problem once. It may be not efficient because the number
of possible directions could be infinitely many. However, we can still use this formulation to
estimated a rough bearing capacity boundary when we sample a limited number of external
force directions. For instance, we sample the external force directions along a unit circle for
the 2D case and along a unit sphere for the 3D case. One example is shown in Fig. 2. The
upper row is for a 2D truss, and the lower one is for a 3D truss. From left to right, (a1) and
(a2) show the input trusses with given joint positions, topologies and cross-sections of bars, the
trusses are supported at the red joints and external forces are applied at the blue joints, (b1)
and (b2) illustrate different sampled external force directions, (c1) and (c2) show the maximum
magnitude of external forces that the given trusses can afford, and (d1) and (d2) show the color
coding of the magnitude, here the magnitude increases from blue to red. Note that the boundary
curve of 2D shape in (d1) and the surface of 3D shape in (d2) are the so-called ultimate bearing
capacity curve and surface which are convex polygon and polygonal mesh respectively. However,
the results from this kind of sampling method only provide a limited number of vertices on UFB
which is a rough limit analysis.

(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1) (b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1) (c1)(c1)(c1)(c1)(c1)(c1)(c1)(c1)(c1)(c1)(c1)(c1)(c1)(c1)(c1)(c1)(c1) (d1)(d1)(d1)(d1)(d1)(d1)(d1)(d1)(d1)(d1)(d1)(d1)(d1)(d1)(d1)(d1)(d1)

(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2) (b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2) (c2)(c2)(c2)(c2)(c2)(c2)(c2)(c2)(c2)(c2)(c2)(c2)(c2)(c2)(c2)(c2)(c2) (d2)(d2)(d2)(d2)(d2)(d2)(d2)(d2)(d2)(d2)(d2)(d2)(d2)(d2)(d2)(d2)(d2)

Figure 2: A rough limit analysis of given trusses.

To estimate the exact bearing capacity boundary, in the next chapters, we will first analyze the
properties of the boundary and provide an efficient algorithm of computing the bearing capacity
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boundary using the properties and the basic formulation in Eq. 1.

3 Properties of UFB

In the following, we first provide some properties of the ultimate force boundary and prove
these properties briefly. These properties can be used to find the exact force bearing capacity
boundary for 2D and 3D trusses.
Property I Ultimate force boundary is convex.
This property can also be described as if a truss can bear the external forces F1 and F2, it can
always bear an external force F3 = δF1 + (1 − δ)F2, where 0 ≤ δ ≤ 1. Assume F1 = λ1f1 and
F2 = λ2f2, where f1, f2 are unit vectors and λ1, λ2 are force magnitudes as shown in Fig. 3 left.
To prove the convexity of ultimate force boundary, we take a look at the constraint part of Eq.
1. As F1 and F2 are affordable external forces, we can always obtain the internal forces s1 and
s2, such that the following constraints are satisfied.

BT s1 = −λ1f1 = −F1,

−σCa ≤ s1 ≤ σTa.
and

BT s2 = −λ2f2 = −F2,

−σCa ≤ s2 ≤ σTa.

Then, we have
BT (δs1 + (1− δ)s2) = −(δF1 + (1− δ)F2)) = −F3,

−σCa ≤ (δs1 + (1− δ)s2) ≤ σTa.

The above formulation means we can always find the internal forces s3 = δs1 + (1− δ)s2 which
satisfy the constrain in Eq. 1 when the external force is F3 = δF1 + (1− δ)F2. Assume f3 and
λ3 are the unit direction and magnitude of F3. When the external force direction f = f3, the
above formulation also means (λ3, s3) is in the feasible region of the LP formulation with f3 as
the external force. Then solving the LP problem can always lead to an optima λ∗3 ≥ λ3. This
means the maximum external force along f3 is

F∗3 = λ∗3f3 ≥ λ3f3 = F3 = δF1 + (1− δ)F2 (2)
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f3f3f3f3f3f3f3f3f3f3f3f3f3f3f3f3f3

f2f2f2f2f2f2f2f2f2f2f2f2f2f2f2f2f2

F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1

F2F2F2F2F2F2F2F2F2F2F2F2F2F2F2F2F2

Figure 3: Convexity of UFB.

Similarly in 3D, we can prove if a truss can afford external forces F1, F2 and F3, the truss can
always afford an external forces which is the linear interpolation of these three vertices.
According to the definition of ultimate force boundary and observations in Fig. 1 and 2. UFB
is a polygon in 2D and a polygonal mesh in 3D which is enclosed by a limited number of lines or
planes. We call such lines and planes as cutting lines and cutting planes. The following property
can be used as a tool to find the cutting lines and planes.
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Property II For a 2D truss, if three vertices F1, F2 and F3 are on the ultimate force boundary
and lie on a common line, then this line is a cutting line of the ultimate force boundary.
This property also means the affordable force region is bounded by the line connected by F1 and
F2, or the line segment F1F2 is a part of the ultimate force boundary. As show in Fig. 4, the
maximum affordable forces F1, F2 and F3 are collinear. For an arbitrary direction f4 between
force vectors F1 and F2, its maximum affordable force F4 can only be the case in Fig.4 (c). For
the other cases, we can simply find the concavity of F1F3F4 in Fig. 4(a) and F3F4F2 in Fig.
4(b) is conflict with Property I.

F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1

F3F3F3F3F3F3F3F3F3F3F3F3F3F3F3F3F3

F2F2F2F2F2F2F2F2F2F2F2F2F2F2F2F2F2F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4

f4f4f4f4f4f4f4f4f4f4f4f4f4f4f4f4f4 f4f4f4f4f4f4f4f4f4f4f4f4f4f4f4f4f4 f4f4f4f4f4f4f4f4f4f4f4f4f4f4f4f4f4

F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1

F3F3F3F3F3F3F3F3F3F3F3F3F3F3F3F3F3

F2F2F2F2F2F2F2F2F2F2F2F2F2F2F2F2F2

F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4

F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1

F3F3F3F3F3F3F3F3F3F3F3F3F3F3F3F3F3

F2F2F2F2F2F2F2F2F2F2F2F2F2F2F2F2F2
F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4F4

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)

Figure 4: Cutting line for finding UFB of 2D trusses.

F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1

F3F3F3F3F3F3F3F3F3F3F3F3F3F3F3F3F3

F2F2F2F2F2F2F2F2F2F2F2F2F2F2F2F2F2

FiFiFiFiFiFiFiFiFiFiFiFiFiFiFiFiFi

Figure 5: Cutting plane for
finding UFB of 3D trusses.

Similarly for 3D trusses, if a linear interpolation of three vertices
F1, F2, and F3 on the ultimate force boundary is also on the
boundary, the plane defined by F1, F2, and F3 is a cutting plane
of ultimate force boundary as shown in Fig. 5.

4 Our Algorithm

Based on the properties mentioned in the last chapter. We pro-
pose an efficient algorithm of computing the bearing capacity
boundary for given trusses.

4.1 Calculating of Cutting Line and Plane

Given an external force direction fi, the formulation in Section 2.2
tells us how to compute its maximum affordable force Fi. After
that, we would like to know how to calculate the boundary line
or plane (3D) passing through Fi, here we also call them cutting
line or plane. To calculate the cutting line or plane, we estimate
the maximum external forces of its several neighboring directions
such as the ones with an angle of θ between fi for the 2D case shown in Fig. 6 (a). Then we
check whether the neighboring maximum external forces are collinear. If the case is at least
three neighboring maximum external forces lie on a common line, as shown in Fig. 6 (a), then
this common line (cyan) is the cutting line. Otherwise, in the case shown in Fig. 6 (b), we need
to narrow down the neighboring searching directions further and check whether the cutting line
or plane can be found. Usually, a cutting line or plane can be achieved within a few iterations as
shown in Fig. 6 (c) and (d). Similar idea of cutting plane has been investigated in the solutions
of mixed integer programming such as in [7].
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FiFiFiFiFiFiFiFiFiFiFiFiFiFiFiFiFi
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(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure 6: Procedure of finding cutting line.

4.2 Calculating of UFB

The calculating of cutting line or cutting plane in the previous sub-section is the basic building
block. Here we illustrate the workflow of our algorithm in the 2D case shown in Fig.7, the
calculating of boundary for 3D is similar. As shown in Fig.7 (a), we initially calculate the
maximum external forces along with axis directions and estimate their cutting lines using the
method described before. Then we obtain intersections (red) of neighboring cutting lines shown
in Fig.7 (b). For each intersection vertex, we can use the formulation in Section 2.2 to check
whether this vertex is located on the ultimate force boundary. If it’s true, we mark this vertex
as blue and continue the checkup of the next intersection vertex. If it’s false, we calculate the
maximum affordable force along the direction pointed to this vertex from the origin, and also
its cutting line as shown in Fig.7 (c). New intersection vertices will be added to the checking
list as the new cutting line intersects with the region enclosed by the previous cutting lines.
The procedure continues until all the intersection vertices are marked as blue. The resulting
polygon is the ultimate force boundary. For 3D truss, the basic idea is the same. We first sample
some direction and estimate the maximum affordable force and their cutting planes. Further,
the region is refined by finding possible cutting planes related to the directions pointed to the
intersection vertices.

......
F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1

Figure 7: Basic workflow of the algorithm.

5 Applications

Our method provides an efficient way of calculating the exact ultimate force boundary which
can be used as direct visualization of the bearing capacity of given trusses. For example, for
the supporting truss for a dome shown in Fig.8 (a), we calculate its exact UFB when external
forces applied at the top vertex of the truss using the algorithm introduced in the last chapter.
The UFB is shown in Fig. 8 (b). Here, we assume σC = σT and all the bars have the same
cross-sections.
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(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

Figure 8: Left is a supporting truss. Right is the ultimate force boundary when external force applied at
the top vertex (blue) of the truss.

Further, the idea used in our paper could also be used in other scenarios, such as truss optimiza-
tion for dynamic external forces. For example, as shown in Fig. 9, the external forces from a
hanging pendulum at the top joint change dynamically. It’s challenging to incorporate infinitely
many external forces in the truss optimization such as minimizing the total material consump-
tion of truss using the traditional method such as GSM. Instead, we can consider the maximum
affordable forces of several directions because of the convexity of the ultimate force boundary.
For example, if the truss can afford the three external force shown in Fig.9 (c), it can always
afford any external force from the pendulum shown in Fig.9 (b) because the possible external
force region (gray) is covered by the affordable force region formed by three external forces. In
this example, the boundary condition of external forces could be simplified dramatically. The
truss optimization can be formulated as a linear programming problem as

minimize
ai,ski

|E|∑
i=1

liai,

subject to BT s1 = −F1,

σCai + s1
i ≥ 0, i = 1, . . . , |E|

σTai − s1
i ≥ 0, i = 1, . . . , |E|

BT s2 = −F2,

σCai + s2
i ≥ 0, i = 1, . . . , |E|

σTai − s2
i ≥ 0, i = 1, . . . , |E|

BT s3 = −F3,

σCai + s3
i ≥ 0, i = 1, . . . , |E|

σTai − s3
i ≥ 0, i = 1, . . . , |E|
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(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1F1

F2F2F2F2F2F2F2F2F2F2F2F2F2F2F2F2F2

F3F3F3F3F3F3F3F3F3F3F3F3F3F3F3F3F3

Figure 9: Dynamic external forces from a pendulum.

6 Conclusions and Future Work

We present an efficient approach to calculate the ultimate force boundary for 2D and 3D trusses.
We prove that UFB is convex, and this convexity is useful for truss optimization when the
external forces are continuous and dynamic. In the future, we would like to incorporate the
other aspects of truss optimization such as geometry and topology, which may provide more
degree of freedom for lightweight truss design. We also interested in the cases of multiple
external forces applied simultaneously.
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