Abstract—A method for constructing explicit marching-on-in-time (MOT) schemes to solve the time domain magnetic field volume integral equation (TD-MFVIE) on inhomogeneous dielectric scatterers is proposed. The TD-MFVIE is cast in the form of an ordinary differential equation (ODE) and the unknown magnetic field is expanded using curl conforming spatial basis functions. Inserting this expansion into the TD-MFVIE and spatially testing the resulting equation yield an ODE system with a Gram matrix. This system is integrated in time for the unknown time-dependent expansion coefficients using a linear multistep method. The Gram matrix is sparse and well-conditioned for Galerkin testing and this matrix system at every time step, are more efficient than their implicit counterparts, which call for inversion of a fuller matrix system at every time step. These schemes are not subject to a Courant-Friedrichs-Lewy (CFL) constraint; their time step size is determined only by the maximum frequency of the excitation. For high-frequency excitations, i.e., when the product of the discretization length, the MOT matrix system is sparse and it can be solved efficiently using an iterative method. However, for low-frequency excitations, the MOT matrix system becomes fuller and it cannot be solved efficiently using an iterative method.

Recent research on FD-VIE solvers has mostly focused on spatial discretization techniques, and their effects on the accuracy and conditioning of the resulting matrix systems [14]–[22]. On the other hand, research on TD-VIE solvers has been geared towards developing accurate, efficient, and stable marching-on-in-time (MOT) schemes. TD-VIEs are usually solved using implicit MOT schemes [23]–[26] that call for solution of a matrix system (termed MOT matrix system here) at every time step. These schemes are not subject to a Courant-Friedrichs-Lewy (CFL) constraint; their time step size is determined only by the maximum frequency of the excitation. For high-frequency excitations, i.e., when the product of the speed of light and the time step size is comparable to the discretization length, the MOT matrix system is sparse and it is solved efficiently using an iterative method. However, for low-frequency excitations, the MOT matrix system becomes fuller and it cannot be solved efficiently using an iterative method.

Depending on the spatial and temporal discretization schemes and the time step size, the MOT scheme can also be explicit. Even though classical explicit MOT schemes do not
call for a matrix solution at every time step, they suffer from stability issues [27], [28], which might be remedied using a small time step size at the cost of increased computation time (i.e., they are subject to a CFL constraint).

This paper describes a method for constructing explicit MOT schemes, which do not suffer from these shortcomings, to efficiently and accurately solve the TD-MFVIE. The proposed method casts the TD-MFVIE in the form of an ordinary differential equation (ODE) that relates the unknown magnetic field induced inside the scatterer to its temporal derivative [37]. The magnetic field is expanded using the FLC basis functions [35], [36]; inserting this expansion in the TD-MFVIE and spatially testing the resulting equation yields a time-dependent ODE system. A predictor-corrector algorithm, PE(CE)mn, is used to integrate this system in time for the unknown coefficients of the expansion. To facilitate the computation of the retarded-time integrals, which express the scattered magnetic field in terms of the unknown magnetic field induced inside the scatterer, at discrete time steps as required by the PE(CE)mn, the piecewise Lagrange polynomial interpolation functions [38]–[40] are used. The resulting time marching algorithm calls for the solution of a system with a (spatial) Gram matrix at the evaluation (E) step. When Galerkin testing is used, the Gram matrix is sparse and well-conditioned, and the solution is obtained using an iterative solver. When point testing is used, the Gram matrix consists of four diagonal sub-matrices. Its inverse (which also consists of four diagonal sub-matrices) is computed and stored before the time marching starts. Consequently, the matrix solution required at the evaluation step, is obtained with a simple multiplication of the right-hand side with the inverse of the Gram matrix. The resulting MOT schemes are expected to be more efficient than their implicit counterparts, which call for the inversion of a matrix system that gets fuller as the time step size gets larger with decreasing frequency. Indeed, the numerical results demonstrate that the explicit MOT schemes use the same time step sizes as the implicit MOT schemes without sacrificing from stability, and they are more efficient under low-frequency excitations. Especially, the explicit MOT scheme with point testing is significantly faster than the other three solvers without sacrificing from accuracy.

The rest of the paper is organized as follows: Section II provides the details of the formulation underlying the explicit and implicit MOT schemes with Galerkin and point testing and derives expressions for their computational complexity estimates. Section III compares the efficiency, stability, and accuracy of the explicit MOT schemes and their implicit counterparts for low-frequency excitations via numerical experiments and demonstrates that the explicit scheme with point testing is significantly faster than the other three without sacrificing from accuracy. In Section IV, conclusions and future research directions are drawn.

II. FORMULATION

A. TD-MFVIE

Let V represent the volumetric support of a linear, non-dispersive, non-magnetic, isotropic, and possibly inhomogeneous dielectric scatterer with permittivity $\varepsilon(r)$ and permeability μ_0. The scatterer resides in an unbounded and homogeneous medium with permittivity ε_0 and permeability μ_0. An incident magnetic field $\mathbf{H}^{inc}(r,t)$, which is essentially band limited to f_{max} and vanishingly small $\forall r \in V$ and $t \leq 0$, excites the scatterer. Upon excitation, an equivalent electric current $\mathbf{J}(r,t)$ is induced inside V, which in return generates a scattered magnetic field $\mathbf{H}^{sca}(r,t)$. $\mathbf{H}^{sca}(r,t)$ is expressed in terms of retarded-time magnetic vector potential $\mathbf{A}(r,t)$ as

$$
\mathbf{H}^{sca}(r,t) = \frac{1}{\mu_0} \nabla \times \mathbf{A}(r,t)
$$

$$
= \nabla \times \int_V \frac{\mathbf{J}(r',t - \tau/c_0) d\mathbf{r}'}{4\pi R}.
$$

(1)

Here, $R = |r - r'|$ is the distance between source point r' and observation point r, and $c_0 = 1/\sqrt{\varepsilon_0 \mu_0}$ is the speed of light in the background medium. $\mathbf{J}(r,t)$ is expressed in terms of the total magnetic field $\mathbf{H}(r,t)$ as

$$
\mathbf{J}(r,t) = \kappa(r) \nabla \times \mathbf{H}(r,t)
$$

(2)

where $\kappa(r) = 1 - \varepsilon_0 / \varepsilon(r)$ is the contrast. Substituting (1) and (2) in the temporal derivative of $\mathbf{H}(r,t) = \mathbf{H}^{inc}(r,t) + \mathbf{H}^{sca}(r,t)$ yields the TD-MFVIE:

$$
\frac{\partial}{\partial t} \mathbf{H}^{inc}(r,t) = \nabla \times \frac{\mathbf{J}(r,t) + \frac{1}{4\pi} \int_V \kappa(r') \mathbf{R} \cdot (\mathbf{E}(r',t') - \mathbf{E}(r,t')) \ dv'}{c_0 R}
$$

$$
= \frac{\partial}{\partial t} \mathbf{H}(r,t) - \mathbf{E}(r,t)
$$

(3)

where $\mathbf{R} = (r - r')/R$.

B. Spatial Basis Functions and Temporal Interpolation

To numerically solve the TD-MFVIE (3), V is divided into a mesh of tetrahedrons. Assume that this mesh has N edges. $\mathbf{H}(r,t)$ is approximated in terms of the FLC basis functions [35], [36], each of which is defined along one of these edges as

$$
\mathbf{H}(r,t) = \sum_{n=1}^{N} \{\mathbf{H}^1(t)\}_n f_1^n(r) + \sum_{n=1}^{N} \{\mathbf{H}^2(t)\}_n f_2^n(r).
$$

(4)

Note that this expansion follows the description in [36], where the FLC basis functions are separated to solenoidal and irrotational edge basis functions. In (4), $f_1^n(r)$ and $f_2^n(r)$ are the first-order irrotational edge basis functions [36] and the lowest mixed-order solenoidal edge basis functions [34], and $\{\mathbf{H}^1(t)\}_n$ and $\{\mathbf{H}^2(t)\}_n$ are their unknown time-dependent coefficients, respectively. $f_1^n(r)$, $f_2^n(r)$, $s \in \{1, 2\}$ are expressed as

$$
f_1^n(r) = \begin{cases} \lambda_n^d(r) \nabla \lambda_n^d(r) & r \in S_n, \\ 0, & r \notin S_n \end{cases}
$$

$$
f_2^n(r) = \begin{cases} \lambda_n^d(r) \nabla \lambda_n^d(r) + \lambda_n^d(r) \nabla \lambda_n^d(r) & r \in S_n, \\ 0, & r \notin S_n \end{cases}
$$

(5)

where “+” and “-” signs should be selected for $s = 1$ and $s = 2$, respectively, $S_n = \cup_{q=1}^{Q_n} S_{n,q}$ is the combined support of all Q_n tetrahedrons sharing edge n, d_n^1 and d_n^2 represent the two nodes of this edge, and $\lambda_n^d(r)$, $d \in \{d_1, d_2\}$, are the barycentric coordinate functions that change linearly from 1 at d to 0 at the face opposite to d. Note that one can easily show $\nabla \times f_1^n(r) = 0$ and $\nabla \times f_2^n(r) \neq 0$.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.
To facilitate the discretization and computation of the retarded-time integral in the right-hand side of (3), \{H^t(t)\}_n, s \in \{1, 2\} are approximated using (shifted) Lagrange interpolation functions as

\[\{H^t(t)\}_n = \sum_{i=1}^{N_t} \{H^t_i\}_n T(t - i\Delta t). \]

(6)

Here, \(N_t\) is the number of time steps, \(\Delta t\) is the time step size, \(T(t)\) is a piecewise polynomial Lagrange interpolation function [38–40], and \(H^t_i\) is the sample of \(H^t(t)\) at \(t = i\Delta t\), i.e., \(H^t_i = H^t(i\Delta t)\).

C. Explicit MOT Scheme

Inserting (4) in (3) and testing the resulting equation with functions \(t^n_m(r)\) and \(t^n_m(r)\), \(m = 1, \ldots, N\), yield an ODE matrix system of dimension \(2N\times 2N\), which relates unknown vectors \(H^t(t)\) to their temporal derivatives \(H^t(t) = \partial_t H^t(t), s \in \{1, 2\}\):

\[
\begin{bmatrix} G^{11} & G^{12} \\ G^{21} & G^{22} \end{bmatrix} \begin{bmatrix} H^1(t) \\ H^2(t) \end{bmatrix} = \begin{bmatrix} H^{inc,1}(t) \\ H^{inc,2}(t) \end{bmatrix} + \begin{bmatrix} H^{sca,1}(t) \\ H^{sca,2}(t) \end{bmatrix}. \]

(7)

Here, \(G^{ps}, p \in \{1, 2\}\) are \(N\times N\) blocks of the Gram matrix \(G\). Their elements are given by

\[\{G^{ps}\}_{m,n} = \int_{P^m_n} t^n_m(r) \cdot f^n_p(r) dv \]

(8)

where \(P^m_n\) is the support of \(t^n_m(r), p \in \{1, 2\}\). Two sets of choices are considered for \(t^n_m(r)\) and \(t^n_m(r)\), which result in Galerkin and point testing, respectively. The specific choice of the testing scheme changes the sparseness structure of \(G\) and consequently affects the efficiency and accuracy of the time marching scheme (Section II-E).

In (7), \(H^{inc,p}(t)\) and \(H^{sca,p}(t)\), \(p \in \{1, 2\}\) are vectors of spatially tested incident and scattered magnetic fields, respectively. Their entries are given by

\[\{H^{inc,p}(t)\}_m = \int_{P^m_n} t^n_m(r) \cdot \partial_t H^{inc}(r, t) dv \]

(9)

\[\{H^{sca,p}(t)\}_m = \frac{1}{4\pi} \sum_{n=1}^{N} \int_{P^m_n} t^n_m(r) \cdot \sum_{q=1}^{Q_n} \phi^q \int_{S^m_n} \hat{R} \times f^q_n(r') \]

\[\nabla' \times f^q_n(r') \left(\frac{\partial^2 v}{c_0 R} \left[H^{2}(t') \right]_n + \frac{\partial v}{R^2} \left[H^{2}(t') \right]_n \right)_{t'=t-R/c_0} dv'dv'. \]

(10)

In (10), \(\kappa(r)\) is assumed to be constant in \(S^m_n\), i.e., \(\kappa^q = \kappa(\phi^q_n)\), where \(\phi^q_n\) is the center of the tetrahedron \(S^m_n\). Also note that since \(\nabla' \times f^q_n(r) = 0\), the only contribution to \(H^{sca,p}(t)\) comes from \(\nabla' \times f^q_n(r)\).

The samples of the unknown coefficient vectors \(H_j^s = H^s(j\Delta t), s \in \{1, 2\}\) are obtained by integrating the system of ODEs in (7) in time using a PE(CE)\(m\)-type linear k-step scheme. This approach calls for sampling (7) in time:

\[
\begin{bmatrix} G^{11} & G^{12} \\ G^{21} & G^{22} \end{bmatrix} \begin{bmatrix} H^1_j \\ H^2_j \end{bmatrix} = \begin{bmatrix} H^{inc,1}_j \\ H^{inc,2}_j \end{bmatrix} + \begin{bmatrix} H^{sca,1}_j \\ H^{sca,2}_j \end{bmatrix} \]

(11)

where \(j = 1, \ldots, N_t\), \(H^s_j = H^s(j\Delta t), s \in \{1, 2\}\), \(H^{inc,p}_j = H^{inc,p}(j\Delta t)\), and \(H^{sca,p}_j = H^{sca,p}(j\Delta t), p \in \{1, 2\}\). \(H^{inc,p}_j\) are computed using (9), where \(\partial_t H^{inc}(r, t)\) is known. To compute \(H^{sca,p}_j\), one has to account for the time retardation in (10); this is done by using temporal interpolation on samples of \(H^2(t)\). Inserting (6) with \(s = 2\) in (10) and evaluating the resulting expression at \(j\Delta t\) yield:

\[H^{sca,p}_j = \sum_{i=0}^{j} M^{p}_{j-i} H^2_i, p \in \{1, 2\} \]

(12)

where the elements of the MOT matrices \(M^p_{j-i}\) are given by

\[\{M^p_{j-i}\}_{m,n} = \frac{1}{4\pi} \int_{P^m_n} t^n_m(r) \cdot \sum_{q=1}^{Q_n} \int_{S^m_n} \hat{R} \times \nabla' \times f^q_n(r') \]

\[\frac{\partial^2 v}{c_0 R} \left[H^2(t') \right]_n + \frac{\partial v}{R^2} \left[H^2(t') \right]_n \right)_{t'=t-R/c_0} dv'dv'. \]

(13)

Substituting (12) into (11) yields:

\[
\begin{bmatrix} G^{11} & G^{12} \\ G^{21} & G^{22} \end{bmatrix} \begin{bmatrix} H^1_j \\ H^2_j \end{bmatrix} = \begin{bmatrix} H^{inc,1}_j \\ H^{inc,2}_j \end{bmatrix} + \sum_{i=0}^{j} \begin{bmatrix} 0 \\ M^{1}_{j-i} \end{bmatrix} H^2_i + \begin{bmatrix} M^{2}_{j-i} \\ 0 \end{bmatrix} H^2_i. \]

(14)

Note that to have a more compact notation, (14) is rewritten as:

\[G H_j = H^{inc}_j + \sum_{i=0}^{j} M^{exp}_{j-i} H_i. \]

(15)

The matrix system (15) is integrated in time using a PE(CE)\(m\)-type linear k-step method (similar to the one used in [37] to solve the time domain magnetic field surface integral equation). Therefore, it requires the values of \(H_i\) and \(\hat{H}_i\), \(i = j-k, \ldots, j-1\) to compute \(H_j\). Assuming \(H_0\) and \(\hat{H}_0\), \(i = 0, \ldots, k-1\) are known, the steps of the resulting explicit MOT scheme are detailed below.

At each time step \(j = k, \ldots, N_t\):

- **Step 1:** The components of the right-hand side of (15), which are not updated within the time step \(j\), are computed:

\[H^{fixed}_j = H^{inc}_j + H^{exp}_j \]

\[= H^{inc}_j + \sum_{i=0}^{j-1} M^{exp}_{j-i} H_i. \]

(16)

Note that \(H^{exp}_j\) does not include the contributions from \(H_i\), i.e., the matrix-vector product \(M^{exp}_{0} H_j\).

- **Step 2:** Predictor (P) step. \(H_j\) is predicted using \(k\) past (known) values of \(H_i\) and \(\hat{H}_i\), \(i = j-k, \ldots, j-1\), respectively:

\[H_j = \sum_{l=1}^{k} \left(\{p\}_{l} H_{j-l+i-k} + \{q\}_{j+l} \hat{H}_{j-l+i-k} \right). \]

(17)

Here, \(p\) is a vector of dimension \(2k\), which stores the predictor coefficients.
• **Step 3:** Evaluation (E) step. First compute the right-hand side using the predicted \(\hat{H}_j \):

\[
R_j = M_0^{\text{exp}} H_j + \hat{H}_j^{\text{fixed}}. \tag{18}
\]

Then, compute \(\hat{H}_j \) by solving

\[
G H_j = R_j. \tag{19}
\]

• **Step 4:** Set \(\hat{H}_j^{(0)} = \hat{H}_j \). Repeat Steps 4.1 and 4.2 until convergence \((m = 1, \ldots, m_{\text{max}})\):

- **Step 4.1:** Corrector (C) step. \(\hat{H}_j^{(m)} \) corrected/updated using \(k \) past values of \(H_i \) and \(\hat{H}_i \), \(i = j - k, \ldots, j - 1 \), and \(\hat{H}_j^{(m-1)} \):

\[
\hat{H}_j^{(m)} = \sum_{l=1}^{k} \left[\{c\}_l H_{j-l} + \{c\}_{k+l} \hat{H}_{j-l} \right] + \{c\}_{2k+1} \hat{H}_j^{(m-1)}. \tag{20}
\]

Here, \(c \) is a vector of dimension \(2k + 1 \), which stores the corrector coefficients.

- **Step 4.2:** Evaluation (E) step. First compute the right-hand side using the corrected \(\hat{H}_j^{(m)} \):

\[
R_j^{(m)} = M_0^{\text{exp}} H_j^{(m)} + \hat{H}_j^{\text{fixed}}. \tag{21}
\]

Then, compute \(\hat{H}_j^{(m)} \) by solving

\[
G \hat{H}_j^{(m)} = R_j^{(m)}. \tag{22}
\]

• **Step 5:** Once convergence is reached, solutions are stored to be used at the next time step: \(H_j = H_j^{(m)} \) and \(\hat{H}_j = \hat{H}_j^{(m)} \).

The predictor and corrector coefficients, \(p \) and \(c \) used in the above scheme can be obtained by polynomial interpolation between time samples (resulting in well-known schemes such as Adam-Moulton, Adam-Bashfort, or backward difference methods [41]) or numerically under the assumption that the solution can be represented in terms of decaying and oscillating exponentials [42]. In this work, \(p \) and \(c \) obtained through polynomial interpolation are preferred since \(k \) associated with these coefficients is much smaller resulting in a more time- and memory-efficient scheme.

At the beginning of time marching, it is assumed that \(H_i = 0 \) and \(\hat{H}_i = 0 \), \(i = 0, \ldots, k - 1 \). This assumption does not introduce any significant error since \(H^\text{inc}(r, t) \) is vanishingly small \(\forall r \in V \) and \(t \leq 0 \). For other types of excitations, the Euler method or spectral-deferred correction type methods can be used to initialize \(H_i \) and \(\hat{H}_i \), \(i = 0, \ldots, k - 1 \) [43], [44].

The method used for solving (19) and (22) is selected based on the sparsity structure of \(G \), which depends on type of spatial testing used as detailed in Section II-E.

D. Implicit MOT Scheme

Inserting (4) and (6) in (3) and testing the resulting equation with functions \(t_m^l(r) \) and \(t_m^i(r) \), \(m = 1, \ldots, N \), yield a linear system of equations:

\[
M_0^{\text{imp}} H_j = \hat{H}_j^{\text{inc}} - \hat{H}_j^{\text{imp}} \quad j = 0, \ldots, N - 1 \tag{23}
\]

Here, \(H_j \) and \(\hat{H}_j^{\text{inc}} \) are same as those in (14), and \(M_l^{\text{imp}} \), \(l = j - i \) can be expressed in terms of \(M_i^{\text{exp}} \) and \(G \) as

\[
M_l^{\text{imp}} = G \frac{\partial^2 T(t)}{\partial \tau^2}(t) \quad l = j - i \tag{24}
\]

The implicit MOT scheme operates as briefly described next. For \(j = 1 \), \(H_1 \) is found by solving (23) with right-hand side \(H_1^{\text{inc}} \). For \(j = 2 \), \(H_2 \) is used to compute the matrix-vector product \(M_1^{\text{imp}} H_1 \), which is subtracted from \(H_2^{\text{inc}} \) to yield the complete right-hand side. \(H_2 \) is found by solving (23) with this right-hand side. For \(j = 3 \), \(H_3 \) and \(H_2 \) are used to compute the summation \(M_2^{\text{imp}} H_1 + M_1^{\text{exp}} H_2 \), which is subtracted from \(H_3^{\text{inc}} \) to yield the complete right-hand side. This permits the computation of \(H_3 \) and so on.

Unlike the explicit MOT scheme, the method used for solving (23) at every time step of the implicit MOT scheme does not depend on the sparsity structure of \(G \). The solution of this matrix equation is always obtained using an iterative solver.

E. Spatial Testing Functions

Two different approaches are used to spatially test the TD-MFVIE: Point and Galerkin testing schemes [36]. The choice of testing functions \(t_m^p(r), p \in \{1, 2\} \), changes the sparsity structure of \(G \) in (8) as explained next.

1) **Point testing:** For point testing, \(t_m^p(r) = \delta^p(r - r_m^p) \), \(p \in \{1, 2\} \), where \(\delta^m \) is a unit vector that points from node \(d_m^1 \) to \(d_m^2 \) (along edge \(m \)) and \(r_m^p \) are selected from Gaussian quadrature points defined on edge \(m \). Inserting the expressions for \(t_m^p(r) \) into (8) and using the facts that, on edge \(n \), the tangential component of \(f_n^l(r) \) linearly increases from \(-1\) to 1 and the tangential component of \(f_n^2(r) \) stays constant at 1, yield

\[
G_{12}^2 = G_{22}^2 = 1 \tag{25}
\]

\[
G_{11}^2 = -G_{21}^2 = -\frac{1}{\sqrt{3}} I.
\]

The inverse of \(G \) can be expressed as:

\[
G^{-1} = \frac{1}{2} \begin{bmatrix} I & I \\ \sqrt{3} I & -\sqrt{3} I \end{bmatrix}. \tag{26}
\]

\(G^{-1} \) is stored using \(O(N) \) memory before the time marching starts. Using the pre-computed \(G^{-1} \), the solution of (19) and (22) is obtained only in \(O(N) \) operations. This makes the explicit MOT scheme with point testing significantly faster than the other explicit and implicit MOT schemes under
low-frequency excitations (for large Δt) as shown by the computational complexity analysis carried out in Section II-G (as also demonstrated by the numerical results presented in Section III).

2) Galerkin testing: For Galerkin testing, $t_1^m(r) = f_1^m(r)$ and $t_2^m(r) = f_2^m(r)$. Inserting the expressions for $t_1^m(r)$ and $t_2^m(r)$ into (8), one obtains a summation of integrals, each of which has a second-order polynomial integrand from a tetrahedron. These integrals are evaluated exactly using a Gaussian quadrature rule specifically designed for tetrahedrons [45], [46]. Analytical expressions can be derived for these integrals but evaluating those would be more computationally expensive than using a quadrature rule.

When Galerkin testing is used, G is sparse and well-conditioned regardless of Δt. Therefore the solution of (19) and (22) is obtained very efficiently using an iterative scheme. The resulting MOT scheme with Galerkin testing is faster than its implicit counterpart under low-frequency excitations (for large Δt). This is because M^0 and M^2 become fuller (see Section II-F) as Δt increases and the computational cost of solving (23) increases. Implicit and explicit schemes have similar computational costs under high-frequency excitations (for small Δt). These are shown by the computational complexity analysis carried out in Section II-G (also by the numerical results presented in Section III).

F. Comments

1) In (3), temporal derivative of $H(r,t) = H^{inc}(r,t) + H^{sc}(r,t)$ is used. This additional derivative is needed to cast the TD-MFVI in the form of an ODE. In this form, the derivative of the unknown $\partial_t H(r,t)$ has to be set equal to a function of $H(r,t)$. Here, this function is $\partial_t H^{inc}(r,t) + \partial_t H^{sc}(r,t)$ and is integrated in time by the explicit MOT scheme to yield $H(r,t)$.

The effect of the additional temporal derivative has been studied in the context of the MOT solution of the time domain electric field surface integral equation [47]. When the derivative of a time domain integral equation is solved by an MOT scheme, a DC component is often observed in the solution even if the zero initial condition is enforced at the beginning of time marching. The reason for this DC component is stable with a small amplitude and this amplitude can be reduced by increasing the accuracy of the matrix solution and/or correction updates.

The resulting MOT scheme with Galerkin testing is faster than that using a quadrature rule. Analytical expressions can be derived for these integrals but evaluating those would be more computationally expensive than using a quadrature rule.

2) Temporal interpolation function $T(t)$ is discretely causal: $T(t) = 0$ for $t \leq -\Delta t$. This means that, during the time marching (as executed by both the explicit and implicit MOT schemes), $H_i, i > j$ [‘future’ samples of $H(t)$] are not required to compute H_j. Additionally, $T(t)$ is of finite duration: $T(t) = 0$ for $t > t_{\text{max}}$, where t_{max} is the order of the polynomial interpolation.

Note that $T(t)$ can be a non-causal interpolation function. For example one can use the approximate prolate spheroidal wave functions (APSWFs) [48], [49] since they can interpolate bandlimited functions with exponentially increasing accuracy and they have continuous derivatives everywhere along their support. A non-causal $T(t)$ means that $M^0_{j-i} \neq 0, i > j$ and consequently the time marching requires $H_i, i > j$ to be able to compute H_j. The causality of the time marching can be restored using various extrapolation schemes that estimate $H_i, i > j$ using $H_i, i \leq j$ [26], [49].

3) The MOT matrices $M^p_{j-i} = 0$ for $j - i > D_{\text{max}}/(c_0 \Delta t) + t_{\text{max}}$, where D_{max} is the maximum distance between any two points in V. Consequently, as Δt increases (for low-frequency excitations), the number of non-zero M^p_{j-i} decreases. However, these non-zero matrices become fuller. For example, for M^p_{j-i} to be completely full, $t_{\text{max}} > j - i > D_{\text{max}}/(c_0 \Delta t) - 1$, which can only be satisfied when $D_{\text{max}} < c_0 \Delta t$ since $j \geq i$.

4) A closer look at (24) reveals that G contributes to M^imp only when its entries are non-zero [see (8)] and when $\partial_i T(t)/|t| \neq 1$. Note that the second condition is satisfied only for $l \in \{0,1,...,t_{\text{max}}\}$. Addition of G to M^0 and M^2, respectively, does not affect the sparsity structure of M^imp. On the other hand, inclusion of G^1 and G^2 to M^0 reduces its sparsity level however this difference can be ignored in the computational complexity analysis as Δt gets larger for low-frequency excitations since M^0 and M^2 become fuller while G^1 and G^2 stay sparse.

Note that inclusion of G^1 and G^2 in M^imp makes the cost of computing H^imp [see (24)] higher than that of H^exp [see (16)]. However, since $t_{\text{max}} \ll D_{\text{max}}/(c_0 \Delta t)$ for small Δt (under high-frequency excitations) and G^1 and G^2 are sparser than M^0 and M^2 for large Δt (under low-frequency excitations), this difference can be ignored in the computational complexity analysis.

G. Computational Complexity

In this section, computational complexity of the explicit MOT scheme described in Section II-C is analyzed in detail and compared to that of its implicit counterpart described in Section II-D. Let the computational costs of explicit schemes with point and Galerkin testing and the implicit scheme be represented by $C^\text{exp}_I N_{t} + C$, $C^\text{exp}_G N_{t} + C$, and $C^\text{imp} N_{t} + C$, respectively. Note that the implicit MOT scheme can also be implemented using Galerkin or point testing, but the expressions for these implementations’ computational complexity would be the same. That is why C^imp does not distinguish between these two implementations.

Here, C represents the total cost of computing H^fixed for all time steps $j = 1,...,N_t$ and is dominated by the cost of computing H^exp. As explained in Section II-F, cost of computing H^exp (by the explicit MOT schemes) is same as that of H^imp (by the implicit MOT schemes). Therefore, C is assumed same for all schemes. Note that this computation could be accelerated using the time-domain adaptive integral method [40], [50]–[54] or (multilevel) plane wave time-domain algorithm [24], [25], [28], [39], [55], [56].
The differences between the explicit schemes and their implicit counterparts are the other operations executed at a given time step. The computational costs of these operations are represented by $C^{\text{exp}}_{\text{PT}}, C^{\text{exp}}_{\text{GT}},$ and C^{imp} for explicit schemes with point and Galerkin testing and the implicit scheme, respectively. The estimates for $C^{\text{exp}}_{\text{PT}}$ and $C^{\text{exp}}_{\text{GT}}$ are obtained by following (17)-(22) step by step.

The k-step predictor update in (17) and the k-step corrector update in (20) require $O(2k[2N])$ and $O(m_{\text{max}}[2k + 1][2N])$ operations, respectively. Updating the right-hand sides of (18) and (21) requires the computation of $\mathbf{M}^{\text{exp}}_j \mathbf{H}_j$ once and $\mathbf{M}^{\text{exp}}_j \mathbf{H}_j^{(m)}$ m_{max} times. Assuming γ represents the sparseness factor of \mathbf{M}_0^C and \mathbf{M}_0^G, these updates require $O([m_{\text{max}} + 1][2N])$ operations in total for predictor and corrector steps. Solution of (19) and (22) has two different complexities depending on the testing procedure used. For point testing, computing the solution requires multiplying the right-hand side with pre-computed sparse \mathbf{G}^{-1} (Section II-E) resulting in $O([m_{\text{max}} + 1][4N])$ operations in total for predictor and corrector steps. For Galerkin testing \mathbf{G} is sparse without a specific structure (Section II-E) and the solution is obtained using an iterative solver. This results in $O([m_{\text{max}} + 1]N_{\text{iter}}F_{\text{iter}}^2[2N])$ operations in total for predictor and corrector steps. Here, N_{iter} is the number of iterations, F_{iter} is the number of matrix-vector multiplications required at each iteration, and δ is the sparseness factor of \mathbf{G}.

The implicit MOT scheme always uses an iterative method to solve (24), which results in $C^{\text{imp}} \sim O(N_{\text{iter}}F_{\text{iter}}^2[(\gamma + \delta)N])$. Here, N_{iter} is the number of iterations and F_{iter} is the number of matrix-vector multiplications required at a given iteration (it is assumed that the explicit and implicit schemes use the same iterative solver).

In the complexity estimates above, k depends on the order/type of the PE($\text{CE})^m$ therefore it is considered as a user-defined input. Also, N_{iter} is always small since \mathbf{G} is well-conditioned and sparse regardless of Δt. Assuming m_{max} is the same for explicit schemes with point and Galerkin testing, the former scheme is faster since $4 \ll N_{\text{iter}}F_{\text{iter}}^2k$. Numerical results in Section III show that value of m_{max} averaged over all time steps is similar for both of the schemes.

Under high-frequency excitations when $c_0\Delta t$ is comparable to the spatial discretization length, $\gamma \ll N$ and a direct comparison of $C^{\text{exp}}_{\text{PT}}$ and $C^{\text{exp}}_{\text{GT}}$ to C^{imp} becomes challenging since it is difficult to accurately estimate which contributions discussed above are dominant.

Under low-frequency excitations when $c_0\Delta t$ is comparable to or larger than the size of the scatterer, $\gamma \sim N$, which means that \mathbf{M}_0^C and \mathbf{M}_0^G become fuller. Consequently, $C^{\text{imp}} \sim O(N_{\text{iter}}F_{\text{iter}}N^2)$ (assuming $\gamma \sim N \gg \delta$), $C^{\text{exp}}_{\text{PT}} \sim O(m_{\text{max}}N^2)$ (assuming $\gamma \sim N \gg k$) and $C^{\text{exp}}_{\text{GT}} \sim O(m_{\text{max}}N^2)$ (assuming $\gamma \sim N \gg k$ and $\gamma \sim N \gg N_{\text{iter}}^G F_{\text{iter}}^2k$). This means that the explicit schemes are faster than their implicit counterparts as long as $m_{\text{max}} \ll N_{\text{iter}}^G F_{\text{iter}}$.

Numerical results presented in Section III show that this condition is indeed satisfied.

Note that one can use the low-frequency extension of the time-domain adaptive integral method [57] to accelerate the matrix-vector multiplication $\mathbf{M}^{\text{exp}}_0 \mathbf{H}_j$ required by the iterative method to solve (23). However, the same extension can also be used to accelerate the computation of the matrix-vector multiplication $\mathbf{M}^{\text{exp}}_0 \mathbf{H}_j$ required by the explicit scheme during the predictor updates. Therefore, the conclusions drawn above are still applicable even when acceleration methods are used.

III. Numerical Results

This section presents numerical examples to demonstrate the advantages of the proposed explicit MOT schemes. In all examples, the scatterer is illuminated by a plane wave traveling in the \hat{z} direction with a \hat{y}-directed magnetic field:

$$\mathbf{H}^{\text{inc}}(r, t) = \hat{y}H_0G(t - r \cdot \hat{z}/c_0)$$

where $H_0 = \sqrt{c_0/\mu_0\varepsilon_0}m$ is the amplitude and $G(t) = \cos[2\pi f_0(t - t_p)]e^{-(t - t_p)^2/(2\sigma^2)}$ is the modulated Gaussian pulse. Here, $\sigma = 3/(2\pi f_{\text{low}})$ is the effective bandwidth, f_0 is the center frequency, and $f_{\text{max}} = f_0 + f_{\text{low}}$ is the maximum frequency of the pulse. It is assumed that the scatterer resides in free space. In all examples, the order of the piecewise polynomial Lagrange interpolation function $T(t)$ $t_{\text{max}} = 4$ [40], and the volume integrals in present in the entries of the matrices in (8) and (13), and the vector in (9) are computed using the third-order Gauss-Legendre quadrature rule [45, 46].

The accuracy, efficiency, and stability of four MOT schemes are compared: The implicit scheme with point testing, the explicit scheme with point testing, the implicit scheme with Galerkin testing, and the explicit scheme with Galerkin testing. For the sake of brevity, in the rest of this section, these schemes are referred to using the notations $[\text{MOT}]^{\text{PT}}, [\text{MOT}]^{\text{GT}}, [\text{MOT}]^{\text{exp}}_{\text{PT}},$ and $[\text{MOT}]^{\text{exp}}_{\text{GT}}$, respectively.

$[\text{MOT}]^{\text{PT}}, [\text{MOT}]^{\text{GT}},$ and $[\text{MOT}]^{\text{GT}}$ use the transpose-free quasi-minimal residual (TFQMR) method [58] to iteratively solve the relevant matrix equations. All TFQMR iterations are diagonally preconditioned. $[\text{MOT}]^{\text{exp}}_{\text{PT}}$ and $[\text{MOT}]^{\text{exp}}_{\text{GT}}$ start the TFQMR iterations at time step t with initial guess $\mathbf{H}_t = 2\mathbf{H}_{t-1} - \mathbf{H}_{t-2}$. The TFQMR iterations and the correction updates of the $[\text{MOT}]^{\text{exp}}_{\text{PT}}$ and $[\text{MOT}]^{\text{exp}}_{\text{GT}}$ are terminated when the following stopping criterion is satisfied:

$$\|\mathbf{I}^{\text{PF}}_l - \mathbf{I}^{\text{PF}}_{l-1}\| < \chi \|\mathbf{I}^{\text{PF}}_{l-1}\|$$

Here, \mathbf{I}^{PF}_l represents the solution vector at the lth time step and the lth TFQMR iteration or at the lth time step and the lth correction update, and χ is the convergence threshold, $\chi = 10^{-6}$ unless specified otherwise. The PE($\text{CE})^m$ scheme uses the fourth-order Adam-Bashowdh and backward difference coefficients at the prediction and correction steps, respectively [41].

After the time domain simulations are completed, the solutions are Fourier transformed and divided by the Fourier transform of $G(t)$ to yield the time harmonic magnetic field, $\mathbf{H}(r, f)$. Time harmonic electric field $\mathbf{E}(r, f)$ and the time harmonic current density $\mathbf{J}(r, f)$ are computed by taking the curl of (4). The radar cross-section (RCS) is computed using $\mathbf{J}(r, f)$. Let $\sigma^{\text{exp}}_{\text{PT}}(\theta, \phi, f)$, $\sigma^{\text{exp}}_{\text{GT}}(\theta, \phi, f)$, $\sigma^{\text{GT}}(\theta, \phi, f)$, and $\sigma^{\text{exp}}_{\text{GT}}(\theta, \phi, f)$ represent the RCS obtained from $\mathbf{J}(r, f)$ computed by the $[\text{MOT}]^{\text{exp}}_{\text{PT}}$, $[\text{MOT}]^{\text{exp}}_{\text{GT}}$, and $[\text{MOT}]^{\text{exp}}_{\text{GT}}$.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.
respectively, along the direction defined by θ and ϕ. To compare the accuracy of $[\text{MOT}]_{\text{GT}}^{\text{imp}}$, $[\text{MOT}]_{\text{PT}}^{\text{imp}}$, $[\text{MOT}]_{\text{GT}}^{\text{exp}}$, and $[\text{MOT}]_{\text{GT}}^{\text{exp}}$, L_2-norm error in RCS, which is defined as

$$
er_{\text{RCS}} = \sqrt{\frac{\sum_{n=0}^{360} |\sigma_{\text{ref}}(n\Delta\theta, \phi, f) - \sigma_{\text{test}}^{\text{type}}(n\Delta\theta, \phi, f)|^2}{\sum_{n=0}^{360} |\sigma_{\text{ref}}(n\Delta\theta, \phi, f)|^2}}$$

(29)

is used. Here, $\text{type} \in \{\text{imp}, \text{exp}\}$, $\text{test} \in \{\text{GT}, \text{PT}\}$, $\text{ref} \in \{\text{Mie, FD}\}$, $\Delta\theta = 0.5^\circ$, and $\phi = 0^\circ$. In (29), $\sigma_{\text{Mie}}(\theta, \phi, f)$ and $\sigma_{\text{FD}}(\theta, \phi, f)$ refer to the RCS obtained from the Mie series solution or $\tilde{J}(r, f)$ computed by an FD-EFVIE solver. The FD-EFVIE solver uses the same mesh as the MOT schemes but discretizes the electric flux density using SWG basis and testing functions [33]. The entries of the resulting method of moments (MoM) matrix are computed using the third-order Gauss-Legendre quadrature rule [45], [46]. The MoM system is solved using the TFQMR method. The iterations are truncated when $\|\tilde{Z}^u - \tilde{Z}^{u-1}\| < 10^{-6}$ $\|\tilde{V}^{\text{inc}}\|$, where \tilde{I}^u, \tilde{Z}, and \tilde{V}^{inc} represent the solution at the uth iteration, the MoM matrix, and the right-hand side vector, respectively.

A. Accuracy of the FLC and Nedelec Basis Functions

In this example, the scatterer is a sphere with radius 2 m and permittivity ε_0. Since $\varepsilon(r) = 0$, $\hat{H}^{\text{sc}}(r, t) = 0$ and $\hat{H}(r, t) = \hat{H}^{\text{inc}}(r, t)$, i.e. the solution should match the incident field. The excitation parameters $f_0 = 10$ MHz and $f_{bw} = 5$ MHz. Six different meshes are used. The average edge length of these meshes, l_{av}, changes from 134.37 cm ($\lambda_0/22.32$) to 38.58 cm ($\lambda_0/77.75$). Here, $\lambda_0 = c_0 / f_0$ is the free-space wavelength at f_0. Three different Δt are considered: 0.667 ns ($0.1/\text{f}_{\text{max}}$), 10 ns ($0.15/\text{f}_{\text{max}}$), and 13.333 ns ($0.2/\text{f}_{\text{max}}$). Two sets of simulations are carried out using the $[\text{MOT}]_{\text{GT}}^{\text{exp}}$ for every combination of l_{av} and Δt. In the first set, $\hat{H}(r, t)$ is expanded using the Nedelec functions [only $f_2(r)$ in (4)] while in the second set, FLC basis functions are used [both $f_2(r)$ and $f_3(r)$ in (4)]. To compare the accuracy of the simulations, L_2-norm errors in $\hat{E}(r, f)$ and $\hat{H}(r, f)$, which are defined as

$$
er_{\text{E}} = \sqrt{\frac{\sum_{k=1}^{N_e} |\hat{E}(r_k, f) - \hat{E}^{\text{inc}}(r_k, f)|^2}{\sum_{k=1}^{N_e} |\hat{E}^{\text{inc}}(r_k, f)|^2}}$$

(30)

$$
er_{\text{H}} = \sqrt{\frac{\sum_{k=1}^{N_e} |\hat{H}(r_k, f) - \hat{H}^{\text{inc}}(r_k, f)|^2}{\sum_{k=1}^{N_e} |\hat{H}^{\text{inc}}(r_k, f)|^2}}$$

(31)

are used. Here, r_k represent the centers of the tetrahedrons and N_e is their number. $\{\hat{E}^{\text{inc}}(r, f), \hat{H}^{\text{inc}}(r, f)\}$ are the time harmonic incident electric and magnetic fields, and $f = f_0$. Figs. 1(a) and (b) plot er_{E} versus λ_0/l_{av}, respectively, for the simulations with only $f_2(r)$ executed for three different Δt. Figures show that er_{H} decreases with increasing mesh density and decreasing Δt while er_{E} remains high even for the densest mesh and the smallest Δt. Figs. 1(c) and (d)
do the same comparison for simulations with f_0^1 and f_0^2. Both err^H and err^E decrease with increasing mesh density and decreasing Δt. These figures clearly show that using only f_0^2 results in an inaccurate representation of $E(r,t)$ while using f_0^1 renders $E(r,t)$ as accurate as $H(r,t)$. In other words, f_0^2 accurately represents the solution, but the curl of the resulting solution is not accurate. When $\chi(r) \neq 0$, the curl of the solution is needed to compute $H_n^{\text{total}}, p \in \{1, 2\}$ [see for example (10)]. This means that using only f_0^2 makes the MOT solution inaccurate (and consequently unstable). The results and the discussion presented in this section clearly justify why f_0^1 and f_0^2 are used by the MOT schemes developed in this work.

Figs. 1(c) and (d) also show that err^H and err^E decrease with a rate roughly between $(l_{av})^{-1}$ (for large Δt) and $(l_{av})^{-2}$ (for small Δt) for $\lambda_0/32 > l_{av} > \lambda_0/45$ and with a rate around $(l_{av})^{-1}$ for $l_{av} < \lambda_0/45$. This decrease in the convergence rate can be explained by the fact that for small l_{av}, the dominant error comes from the temporal discretization. This is demonstrated in the figures; for smaller Δt, the “flattening” of err^H and err^E curves starts at smaller l_{av}. In other words, for small l_{av}, the accuracy can further be increased by reducing Δt.

B. Late Time Stability

For this example, scattering from a sphere with radius 1 m and permittivity $10\varepsilon_0$ is analyzed for different values of the convergence threshold χ. The sphere is discretized using 5350 tetrahedrons resulting in $N = 13494$ unknowns. The excitation parameters $f_0 = 10$ MHz and $f_{bw} = 5$ MHz. The average, minimum, and maximum edge length of the mesh are $l_{av} = \lambda_{min}/33.28$, $l_{min} = \lambda_{min}/62.0$, and $l_{max} = \lambda_{min}/19.76$, respectively. Here, $\lambda_{min} = c_0/(\sqrt{10} f_{max})$ is the wavelength at f_{max} inside the scatterer. All four MOT schemes are executed for $N_t = 1200$ with $\Delta t = 6.667$ ns ($0.1/f_{max}$) and three different $\chi \in \{10^{-6}, 10^{-8}, 10^{-10}\}$. Figs. 2(a)-(c) plot $H(r,t)$ computed by these schemes at point $r = (0.51, -0.64, 0.12)$ m for $\chi = 10^{-6}$, $\chi = 10^{-8}$, and $\chi = 10^{-10}$, respectively. The figures show that all four schemes provide stable results with a very small DC component and that the amplitude of the DC component can be further reduced by decreasing χ.

C. Unit Sphere

In this section, the efficiency and accuracy of $[\text{MOT}]^{\text{exp}}_{\text{PT}}, [\text{MOT}]^{\text{exp}}_{\text{GT}}, \text{MOT}^{\text{imp}}_{\text{PT}},$ and $\text{MOT}^{\text{imp}}_{\text{GT}}$ are compared. To this end, scattering from a sphere with radius 1 m is analyzed. First, the permittivity of the sphere is set to $10\varepsilon_0$. The sphere is discretized using 5350 tetrahedrons resulting in $N = 13494$ unknowns. The excitation parameters $f_0 = 10$ MHz and $f_{bw} = 5$ MHz. The average, minimum, and maximum edge length of the mesh are $l_{av} = \lambda_{min}/33.28$, $l_{min} = \lambda_{min}/62.0$, and $l_{max} = \lambda_{min}/19.76$, respectively. Here, $\lambda_{min} = c_0/(\sqrt{10} f_{max})$ is the wavelength at f_{max} inside the scatterer. All four schemes are executed three times for $N_t = 210$ with $\Delta t = 6.667$ ns ($0.1/f_{max}$), $N_t = 140$ with $\Delta t = 10$ ns ($0.15/f_{max}$), and $N_t = 105$ with $\Delta t = 13.333$ ns ($0.2/f_{max}$). For all simulations, the sparseness factor of M_0^1 and M_0^2 is $\gamma = N$ and the sparseness factor of G is $\delta = 0.0031N$.

Fig. 3(a) plots $H(r,t)$ computed by all four schemes at point $r = (0.51, -0.64, 0.12)$ m for the set of simulations with $\Delta t = 6.667$ ns. The figure shows that all four schemes provide practically the same result. For the same set of simulations, Fig. 3(b) plots the number of correction updates n_{max} required by the $[\text{MOT}]^{\text{imp}}_{\text{PT}}$ and $[\text{MOT}]^{\text{imp}}_{\text{GT}}$ as well as the
number of TFQMR iterations N_{iter} required by the [MOT]_{\text{PT}}^{\text{imp}} and [MOT]_{\text{GT}}^{\text{imp}} to achieve the convergence criterion in (28) at every time step. For [MOT]_{\text{PT}}^{\text{imp}} and [MOT]_{\text{GT}}^{\text{imp}}, N_{iter} reaches roughly 1500 and 50, respectively. For [MOT]_{\text{PT}}^{\text{exp}} and [MOT]_{\text{GT}}^{\text{exp}}, m_{max} reaches roughly 40. The number of iterations required to solve (19) and (22) is $N_{\text{iter}} = 22$.

Inserting these values in the computational complexity estimates described in Section II-G shows that [MOT]_{\text{PT}}^{\text{exp}} is faster than [MOT]_{\text{GT}}^{\text{exp}}, which is faster than both [MOT]_{\text{PT}}^{\text{imp}} and [MOT]_{\text{GT}}^{\text{imp}}. Indeed, measured computation times, which are presented in Table I’s first group of rows, verify this result. Note that in Table I, the fourth column T_{fill} is the time required to compute all relevant matrices, the fifth column T_{tot} refers to $C_{\text{PT}}^{\text{exp}}N_{t} + C_{\text{GT}}^{\text{exp}}N_{t} + C_{\text{GT}}^{\text{imp}}$, or $C_{\text{PT}}^{\text{imp}}N_{t} + C_{\text{GT}}^{\text{imp}}$ (Section II-G) depending the scheme used, and the sixth column T_{tot} is the sum of the previous two.

For the same set of simulations with $\Delta t = 6.667$ ns, Fig. 3(c) compares $\sigma_{\text{PT}}^{\text{imp}}(\theta, \phi, f)$, $\sigma_{\text{PT}}^{\text{exp}}(\theta, \phi, f)$, $\sigma_{\text{GT}}^{\text{imp}}(\theta, \phi, f)$, and $\sigma_{\text{GT}}^{\text{exp}}(\theta, \phi, f)$ to $\sigma_{\text{Mie}}^{\text{exp}}(\theta, \phi, f)$, all of which are computed for $0^\circ < \theta < 180^\circ$ and $\phi = 0^\circ$ at $f = f_0$. The figure shows that all four MOT schemes practically have the same accuracy. Additionally, the last column of the first group of rows in Table I provides err_{RCS} computed using (29) for this set of simulations and confirms that all four MOT schemes have the same level of accuracy.

Table I’s second and third groups of rows compares the efficiency and accuracy of the MOT schemes for the sets of simulations with $\Delta t = 10$ ns and $\Delta t = 13.333$ ns. Same
conclusions can be drawn: All four MOT schemes have the same level of accuracy and $\text{MOT}^{\exp}_{\text{PT}}$ is significantly faster than the other three. Table I also shows that the accuracy of all schemes increases with decreasing Δt.

Next, the permittivity of the sphere is set to $50\varepsilon_0$. The sphere is discretized using 11097 tetrahedrons resulting in $N = 28970$ unknowns. The average, minimum, and maximum edge length of the mesh are $l_{av} = \lambda_{\min}/19.51$, $l_{\min} = \lambda_{\min}/39.34$, and $l_{\max} = \lambda_{\min}/11.55$, respectively. Here, $\lambda_{\min} = c_0/(\sqrt{50}f_{\text{max}})$ is the wavelength at f_{max} inside the scatterer. $\text{MOT}^{\exp}_{\text{GT}}$ is executed three times for $N_t = 600$ with $\Delta t = 6.667 \text{ ns}$ (0.1/f_{max}), $N_t = 400$ with $\Delta t = 10 \text{ ns}$ (0.15/f_{max}), and $N_t = 300$ with $\Delta t = 13.333 \text{ ns}$ (0.2/f_{max}).

Fig. 4(a) plots $\mathbf{H} (r, t)$ computed at point $r = (0.51, -0.64, 0.12) \text{ m}$ for the simulation with $\Delta t = 6.667 \text{ ns}$. Note that for this problem, the other three schemes do not produce stable results. For the same simulation, Fig. 4(c) compares $\sigma^{\exp}_{\text{GT}} (\theta, \phi, f)$ to $\sigma^{\text{Mie}} (\theta, \phi, f)$, both of which are computed for $0^\circ < \theta < 180^\circ$ and $\phi = 0^\circ$ at $f = f_0$. Results agree very well. Table II provides the computation times and accuracy of $\text{MOT}^{\exp}_{\text{GT}}$ for all three simulations. It shows that the accuracy increases with decreasing Δt.

D. Piecwise Slab

In the last example, scattering from a piecewise dielectric slab is analyzed. The slab consists of two equal volumes with permittivities $3\varepsilon_0$ and $9\varepsilon_0$ [as shown in the inset of Fig. 5(a)]. The slab is discretized using 7905 tetrahedrons resulting in $N = 20570$ unknowns. The excitation parameters $f_0 = 10 \text{ MHz}$ and $f_{bw} = 5 \text{ MHz}$. The average, minimum, and maximum edge length of the mesh are $l_{av} = \lambda_{\min}/31.7$, $l_{\min} = \lambda_{\min}/66.6$, and $l_{\max} = \lambda_{\min}/19$, respectively. Here, $\lambda_{\min} = c_0/(\sqrt{5}f_{\text{max}})$ is the wavelength at f_{max} inside the right side of the slab. All four schemes are executed three times for $N_t = 210$ with $\Delta t = 6.667 \text{ ns}$ (0.1/f_{max}), $N_t = 140$ with $\Delta t = 10 \text{ ns}$ (0.15/f_{max}), and $N_t = 105$ with $\Delta t = 13.333 \text{ ns}$ (0.2/f_{max}). For all simulations, the sparseness factor of \mathbf{M}_0^1 and \mathbf{M}_0^2 is $\gamma = N$ and the sparseness factor of \mathbf{G} is $\delta = 0.0033N$.

Fig. 5(a) plots $\mathbf{H} (r, t)$ computed by all four schemes at point $r = (0.23, 0.14, 0.57) \text{ m}$ for the set of simulations with $\Delta t = 6.667 \text{ ns}$. The results agree very well. For the same set of simulations, Fig. 5(b) plots the number of correction updates n_{max} required by the $\text{MOT}^{\exp}_{\text{PT}}$ and $\text{MOT}^{\exp}_{\text{GT}}$ as well as the number of TFQMR iterations $N_{\text{iter}}^{\text{imp}}$ required by the $\text{MOT}^{\text{imp}}_{\text{PT}}$ and $\text{MOT}^{\text{imp}}_{\text{GT}}$ to achieve the convergence criterion in (28) at every time step. The number of iterations required to solve (19) and (22) ($N_{\text{iter}}^{\text{G}}$) is 21. Inserting these values and the ones provided in Fig. 5(b) in the computational complexity estimates described in Section II-G shows that the $\text{MOT}^{\exp}_{\text{PT}}$ is faster than the $\text{MOT}^{\exp}_{\text{GT}}$, which is faster than both the $\text{MOT}^{\text{imp}}_{\text{GT}}$ and $\text{MOT}^{\text{imp}}_{\text{PT}}$. This result is verified by the computation times provided in Table III’s first group of rows.

For the same set of simulations with $\Delta t = 6.667 \text{ ns}$, Fig. 5(c) compares $\sigma^{\text{imp}}_{\text{PT}} (\theta, \phi, f)$, $\sigma^{\exp}_{\text{pt}} (\theta, \phi, f)$, $\sigma^{\exp}_{\text{GT}} (\theta, \phi, f)$, and $\sigma^{\text{imp}}_{\text{GT}} (\theta, \phi, f)$ to $\sigma^{\text{FD}} (\theta, \phi, f)$, all of which are computed for $0^\circ < \theta < 180^\circ$ and $\phi = 0^\circ$ at $f = f_0$. Results agree very well. Additionally, the last column of the first group of rows in Table III provides err_{RCS} computed using (29) for this set of simulations and confirms that all four MOT schemes have the same level of accuracy.

Table III’s second and third groups of rows compares the efficiency and accuracy of the MOT schemes for the sets of...
TABLE I

<table>
<thead>
<tr>
<th>Δt (ns)</th>
<th>Nt</th>
<th>MOT</th>
<th>Tfill (s)</th>
<th>T_MOT (s)</th>
<th>T_tot (s)</th>
<th>Σm⁰ / Σm_max</th>
<th>ε suk_RCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.667</td>
<td>210</td>
<td>[MOT]ₚₚ</td>
<td>55</td>
<td>12847</td>
<td>12902</td>
<td>258121</td>
<td>0.0152</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[MOT]ₚₑ</td>
<td>57</td>
<td>297</td>
<td>354</td>
<td>6152</td>
<td>0.0152</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[MOT]ₑₑ</td>
<td>965</td>
<td>499</td>
<td>1464</td>
<td>8277</td>
<td>0.0114</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[MOT]ₑₚ</td>
<td>966</td>
<td>253</td>
<td>1219</td>
<td>6089</td>
<td>0.0114</td>
</tr>
<tr>
<td>10</td>
<td>140</td>
<td>[MOT]ₚₚ</td>
<td>55</td>
<td>9274</td>
<td>9328</td>
<td>185833</td>
<td>0.0357</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[MOT]ₚₑ</td>
<td>57</td>
<td>206</td>
<td>263</td>
<td>6476</td>
<td>0.0357</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[MOT]ₑₑ</td>
<td>963</td>
<td>295</td>
<td>1258</td>
<td>6888</td>
<td>0.0364</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[MOT]ₑₚ</td>
<td>964</td>
<td>248</td>
<td>1211</td>
<td>6383</td>
<td>0.0364</td>
</tr>
<tr>
<td>13.333</td>
<td>105</td>
<td>[MOT]ₚₚ</td>
<td>55</td>
<td>6636</td>
<td>6691</td>
<td>145932</td>
<td>0.109</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[MOT]ₚₑ</td>
<td>57</td>
<td>200</td>
<td>257</td>
<td>6637</td>
<td>0.109</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[MOT]ₑₑ</td>
<td>962</td>
<td>256</td>
<td>1218</td>
<td>4926</td>
<td>0.110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[MOT]ₑₚ</td>
<td>963</td>
<td>238</td>
<td>1201</td>
<td>4517</td>
<td>0.110</td>
</tr>
</tbody>
</table>

TABLE II

<table>
<thead>
<tr>
<th>Δt (ns)</th>
<th>Nt</th>
<th>MOT</th>
<th>Tfill (s)</th>
<th>T_MOT (s)</th>
<th>T_tot (s)</th>
<th>Σm_max</th>
<th>ε suk_RCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.667</td>
<td>600</td>
<td>[MOT]ₚₑ</td>
<td>3623</td>
<td>7387</td>
<td>11009</td>
<td>42322</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>[MOT]ₑₑ</td>
<td>3623</td>
<td>7120</td>
<td>10743</td>
<td>42378</td>
<td>0.051</td>
</tr>
<tr>
<td></td>
<td>13.33</td>
<td>[MOT]ₑₑ</td>
<td>3625</td>
<td>6343</td>
<td>9968</td>
<td>38671</td>
<td>0.129</td>
</tr>
</tbody>
</table>

TABLE III

<table>
<thead>
<tr>
<th>Δt (ns)</th>
<th>Nt</th>
<th>MOT</th>
<th>Tfill (s)</th>
<th>T_MOT (s)</th>
<th>T_tot (s)</th>
<th>Σm_max</th>
<th>ε suk_RCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.667</td>
<td>210</td>
<td>[MOT]ₚₚ</td>
<td>108</td>
<td>23003</td>
<td>23111</td>
<td>204307</td>
<td>0.0113</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[MOT]ₚₑ</td>
<td>111</td>
<td>346</td>
<td>457</td>
<td>5179</td>
<td>0.0113</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[MOT]ₑₑ</td>
<td>1730</td>
<td>917</td>
<td>2647</td>
<td>7390</td>
<td>0.0123</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[MOT]ₑₚ</td>
<td>1734</td>
<td>493</td>
<td>2227</td>
<td>5170</td>
<td>0.0123</td>
</tr>
<tr>
<td>10</td>
<td>140</td>
<td>[MOT]ₚₚ</td>
<td>1730</td>
<td>18380</td>
<td>18487</td>
<td>162433</td>
<td>0.0458</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[MOT]ₚₑ</td>
<td>111</td>
<td>340</td>
<td>451</td>
<td>5292</td>
<td>0.0458</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[MOT]ₑₑ</td>
<td>1730</td>
<td>642</td>
<td>2372</td>
<td>5171</td>
<td>0.0465</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[MOT]ₑₚ</td>
<td>1735</td>
<td>441</td>
<td>2176</td>
<td>5223</td>
<td>0.0465</td>
</tr>
<tr>
<td>13.333</td>
<td>105</td>
<td>[MOT]ₚₚ</td>
<td>107</td>
<td>14314</td>
<td>14421</td>
<td>127842</td>
<td>0.117</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[MOT]ₚₑ</td>
<td>111</td>
<td>345</td>
<td>456</td>
<td>5559</td>
<td>0.117</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[MOT]ₑₑ</td>
<td>1728</td>
<td>522</td>
<td>2250</td>
<td>4377</td>
<td>0.118</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[MOT]ₑₚ</td>
<td>1729</td>
<td>431</td>
<td>2160</td>
<td>5128</td>
<td>0.118</td>
</tr>
</tbody>
</table>

simulations with Δt = 10 ns and Δt = 13.333 ns. The results show that all four MOT schemes have the same level of accuracy and [MOT]ₑₑ is significantly faster than the other three. Also, as expected, the accuracy of all schemes increases with decreasing Δt.

IV. CONCLUSION

A method for constructing explicit MOT schemes to solve the TD-MFVIE enforced on dielectric scatterers is developed. The TD-MFVIE is first cast in the form of an ODE and the unknown magnetic field is expanded using the FLC basis functions. The expansion is inserted into the TD-MFVIE and the resulting equation is Galerkin or point tested in space. This yields an ODE matrix system, which is integrated in time using a PE(CE)ⁿ scheme for the (unknown) expansion coefficients. The resulting MOT scheme calls for the solution of a Gram matrix system at the evaluation (E) steps of every time step. This can be done very efficiently since the Gram matrix is always well-conditioned and sparse (for Galerkin testing) or consists of only four diagonal blocks (for point testing). Numerical results demonstrate that the explicit MOT scheme with point testing is significantly faster without sacrificing accuracy for low-frequency problems.

An extension of the proposed MOT scheme to enable the analysis of electromagnetic scattering from nonlinear dielectric objects is underway.
ACKNOWLEDGMENT

This publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No 2016-CRG5-2953. The authors would like to thank the KAUST Supercomputing Laboratory (KSL) for providing the required computational resources.

REFERENCES

