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A B S T R A C T

Phytoplankton size structure impacts ocean food-web dynamics and biogeochemical cycling, and is thus an
important ecological indicator that can be utilised to quantitatively evaluate the state of marine ecosystems.
Potential alterations to size structure are predicted to occur in tropical regions under future scenarios of climate
change. Therefore, there is an increasing requirement for the synoptic monitoring of phytoplankton size
structure in marine systems. The Red Sea remains a comparatively unexplored tropical marine ecosystem,
particularly with regards to its large-scale biological dynamics. Using an in situ pigment dataset acquired in the
Red Sea, we parameterise a two-component, abundance-based phytoplankton size model and apply it to re-
motely-sensed observations of chlorophyll-a (Chl-a) concentration, to infer Chl-a in two size classes of phyto-
plankton, small cells < 2 μm in size (picophytoplankton) and large cells> 2 μm in size. Satellite-derived esti-
mates of phytoplankton size structure are in good agreement with corresponding in situ measurements and also
capture the spatial variability related to regional mesoscale dynamics. Our analysis reveals that, for the esti-
mation of Chl-a in the two size classes, the model performs comparably or in some cases better, to validations in
other oceanic regions. Our model parameterisation will be useful for future studies on the seasonal and inter-
annual variability of phytoplankton size classes in the Red Sea, which may ultimately be relevant for under-
standing trophic linkages between phytoplankton size structure and fisheries, and the development of marine
management strategies.

1. Introduction

Ecological indicators, which may be defined as quantifiable metrics
that characterise ecosystem structure, composition or function, can be
used to monitor the state of marine ecosystems and their response to
environmental perturbations (Niemi and McDonald, 2004; Platt and
Sathyendranath, 2008; Racault et al. 2014). In the global oceans,
commonly used indicators are typically based on the presence and
distribution of phytoplankton (as indexed by the concentration of
chlorophyll-a [Chl-a]), which form the base of oceanic food webs.
Among the ecological indicators that can be derived from observations
of ocean colour (e.g. primary production and phytoplankton phe-
nology), the size structure of phytoplankton communities is particularly
important as it can influence marine food web structure (Legendre and
Le Fevre, 1991; Moloney and Field, 1991; Parsons and Lalli, 2002),

biogeochemical cycling (Chisholm, 1992), carbon export (Boyd and
Newton, 1999; Briggs et al., 2011; Eppley and Peterson, 1979; Guidi
et al., 2009; Laws et al., 2000; McCave, 1975) and the thermal structure
of the upper-oceanic layer (Sathyendranath and Platt, 2007).

The Red Sea, situated between the African continent and Arabian
Peninsula, is the world's northernmost tropical sea. It hosts coral reef
ecosystems, contains high levels of marine biodiversity, and supports
shipping, fisheries and tourism, making it a vital economic asset to the
region (Berumen et al., 2013; Carvalho et al., 2018; Gladstone et al.,
2013). Over the last decade, the Red Sea has been subject to regional
warming (Chaidez et al., 2017; Krokos et al., 2019; Raitsos et al., 2011),
linked with coral reef bleaching events (Cantin et al., 2010; Monroe
et al., 2018; Osman et al., 2018), and alterations in phytoplankton
abundance and phenology (Gittings et al., 2018; Raitsos et al., 2015).
Consequently, there is a need to monitor the response of the Red Sea
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ecosystem to future climate variability.
Due to limited in situ sampling, knowledge on the spatiotemporal

distribution of phytoplankton size structure in the Red Sea is relatively
sparse. Nevertheless, increased in situ sampling efforts over the last two
decades have enabled researchers to gain insight in localised regions of
the Red Sea, including the Gulf of Aqaba (Shaikh et al., 1986; Sommer
et al., 2002), the central east coast (Al-Najjar et al., 2007; Touliabah
et al., 2010) and the north-western Red Sea (Nassar et al., 2014). More
recently, Pearman et al. (2016) used a molecular approach to assess
phytoplankton community structure in the northern and southern ends
of the Red Sea, and Kheireddine et al. (2017) used a taxonomic, pig-
ment-based approach to investigate community structure along the
central axis of the basin. Both studies revealed that pico-phytoplankton
were the main contributor to the total phytoplankton biomass, although
the relative contributions of pico-, nano- and micro-phytoplankton
varied with environmental conditions and mesoscale features. For ex-
tensive reviews on phytoplankton species composition in the Red Sea,
the reader is referred to the works of Ismael (2015) and Qurban et al.
(2019).

A key method used to observe ecological indicators synoptically and
frequently is ocean-colour remote sensing (Platt and Sathyendranath,
2008, Platt et al., 2009), and several studies have demonstrated the
applicability of satellite remote sensing for investigating the spatio-
temporal distribution of phytoplankton abundance in the Red Sea
(Acker et al., 2008; Brewin et al., 2013, 2015a; Dreano et al., 2016;

Gittings et al., 2018, 2019; Papadopoulos et al., 2015; Racault et al.,
2015; Raitsos et al., 2013, 2015, 2017; Triantafyllou et al., 2014). Ex-
isting remote-sensing methodologies for deriving phytoplankton size
classes (PSCs) can be broadly categorised into abundance-based
(Brewin et al., 2010, 2011; Hirata et al., 2011; Uitz et al., 2006) and
spectral-based (Devred et al., 2011; Kostadinov et al., 2009) ap-
proaches. A detailed review of these different methods can be found in
Sathyendranath et al. (2014), Bracher et al. (2017) and Mouw et al.
(2017). Recent inter-comparisons have revealed that abundance-based
approaches, which exploit the ubiquitous relationship between phyto-
plankton biomass and cell size (lower biomass equates to smaller cell
size and vice versa, (Chisholm, 1992)), performs well at retrieving PSCs
(Hu et al., 2018; Liu et al., 2018). Specifically, the three-component PSC
model of Brewin et al. (2010), which builds upon the work of
Sathyendranath et al. (2001) and Devred et al. (2006), was shown to
perform well in these inter-comparisons, and has been successfully re-
parameterised and validated in many other oceanic regions, including:
the Atlantic Ocean (Brewin et al., 2010; Brotas et al., 2013), the Indian
Ocean (Brewin et al., 2012a), the South China Sea (Lin et al., 2014), the
continental shelf seas of China (Sun et al., 2018), the Western Iberian
coastline (Brito et al., 2015), the Mediterranean Sea (Sammartino et al.,
2015), Southern Africa (Lamont et al., 2018), Chile (Corredor-Acosta
et al., 2018) and the global ocean (Brewin et al., 2015b; Ward, 2015).

Recently, Brewin et al. (2015a) applied this model to derive pico-
(< 2 μm) and combined nano/micro- (> 2 μm) phytoplankton size

Fig. 1. Map displaying the bathymetry of the Red Sea and the locations of the cruise sampling stations. Markers in red and black represent the data used for the
validation and training of the phytoplankton size class model respectively. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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classes in the Red Sea. However, due to the paucity of in situ data on
these two size classes within the region, at the time, their study utilised
model parameters obtained from other oceanic regions (see Brotas
et al., 2013), justified through analysis of particulate absorption data
collected in the Red Sea. Since then, in situ datasets have become
available, enabling the characterisation of phytoplankton size structure
in the Red Sea over large spatial scales (Kheireddine et al., 2017,
2018a). In this study, we utilise these newly available datasets to test
and subsequently re-parameterise the PSC model of Brewin et al.
(2015a) for the first time in the Red Sea. We then apply this model to
ocean-colour observations and provide a series of examples demon-
strating the improved performance of the updated approach.

2. Data and methodology

2.1. Oceanographic cruises and sampling

Seawater samples were acquired during five research cruises con-
ducted across the Red Sea between October 2014 and January 2016
aboard the R/V Thuwal (Kheireddine et al., 2017, 2018a) (Fig. 1,
Table 1). Collectively, these cruises spanned the majority of the Red Sea
(latitudinal range of ~ 15°N – 27°N) and, for convenience, can be se-
parated into the following biogeographical regions: the Northern Red
Sea (NRS), Central Red Sea (CRS) and Southern Red Sea (SRS).

A total of 49 stations were sampled over the Red Sea, although we
note that two of these stations were repeated locations sampled on
different days. The biogeographic region and temporal period asso-
ciated with each of the cruises is presented in Table 1 and described in
further detail by Kheireddine et al. (2018a).

2.2. Phytoplankton pigment database

Briefly, at each sampling station, seawater samples (volume ranging
from 2.4 to 2.8 L) were collected within the upper 200m of the water
column and filtered through 25mm diameter Whatman GF/F filters
(porosity of 0.7 μm). The filters were flash frozen and stored in liquid
nitrogen throughout the cruise, then transferred to an −80 °C freezer in
the laboratory prior to analysis. Samples were extracted in 3mL of
100% methanol, disturbed with glass pearls on a cooled vibratory
homogenizer, centrifuged, and filtered 2 h later using a Teflon syringe
filter (0.2 μm). Within 24 h, the sample extracts were analysed by High
Performance Liquid Chromatography (HPLC) using a complete 1260
Agilent Technologies system. Measurements of photosynthetic phyto-
plankton pigments were acquired in accordance with the HPLC analy-
tical procedure followed by Ras et al. (2008) and as described by
Kheireddine et al. (2017, 2018a). Only samples within the upper 20m
of the water column for each station were selected for the analysis, as
satellite sensors acquire measurements approximately within the first
optical depth (typically around 20m in the Red Sea (Raitsos et al.,
2013)). Uncertainties associated with the determination of pigment
concentrations were calculated using the principles of uncertainty
propagation and are provided in Kheireddine et al. (2017).

2.3. Estimation of phytoplankton size structure from HPLC data

For estimating phytoplankton size fractions from HPLC data, we
used the method of Brewin et al. (2015b), adapted from Claustre
(1994), Vidussi et al. (2001), Uitz et al. (2006), Brewin et al. (2010) and
Devred et al. (2011). First, the total Chl-a concentration (C) was com-
puted from the weighted sum of seven diagnostic phytoplankton pig-
ments (henceforth referred to as Cw), according to.

∑= =C W Pw
i

i i
1

7

(1)

where W represents the weights and P corresponds to the followingTa
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seven diagnostic pigments: fucoxanthin, peridinin, 19′-hexanoylox-
yfucoxanthin, 19′-butanoyloxyfucoxanthin, alloxanthin, total chlor-
ophyll-b and zeaxanthin. We estimated W by applying a multi-linear
regression on the 133 samples collected during the five cruises. We then
compared our weights with previous studies conducted in other regions
of the global oceans (Table 2). The computed weights are in reasonable
agreement with other datasets, with the exception of notable differ-
ences observed for the weights attributed to peridinin and alloxanthin.
We speculate that the differences in these particular pigments were
related to their very low concentrations during sampling. As only a
small number of samples (133) were used to compute the weights,
when compared with other published studies (e.g. Uitz et al., 2006;
Brewin et al., 2015b), and considering the potentially erroneous values
obtained with the re-parameterisation, we also tested weights derived
from multiple studies across different regions (Table 2). Excluding our
own re-parameterised weights, the weights computed by Brewin et al.
(2014a) gave the overall best statistical performance with regards to the
relationship between Cw and total Chl-a (C) (Supplementary Fig. 1).
Accordingly, we used these weights in our analysis.

Next, based on the previously reported finding that two optically-
distinct assemblages of particles dominate the Red Sea, and that Chl-a
in the Red Sea is generally lower than 1mgm−3 (Brewin et al., 2015a),
we computed fractions of the total Chl-a concentration for two size
classes: pico-phytoplankton (cell size< 2 μm) and combined nano/
micro-phytoplankton (cell size> 2 μm). Due to a low contribution of
micro-phytoplankton to total Chl-a in our dataset (figure not shown), a
two-component model was selected for our study as a more parsimo-
nious solution to the original three-component model put forth by
Brewin et al. (2010). However, we do not rule out the future use of a
three-component model in the region, should datasets become available
that span a higher range of chlorophyll (e.g. in coastal waters). Fol-
lowing Eq. (2), the fraction of pico-phytoplankton (Fp) was computed
using zeaxanthin, total chlorophyll-b and by apportioning some of 19-
hexanoyloxyfucoxanthin to the pico-phytoplankton pool at total Chl-a
concentrations< 0.08mgm−3 (Brewin et al., 2010, 2015b)

= ⎧
⎨⎪⎪
⎩⎪⎪

− + + ∑ ≤
∑ ≥

= −
= −F

C W P
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W P
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W P
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p

w
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w
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3

6
7

3
(2)

The fraction of Chl-a attributed to the combined nano/micro phy-
toplankton assemblage (Fn,m) was then computed as= −F F1n m p, (3)

After deriving the fractions of the picophytoplankton (Fp) and
combined nano/micro (Fn,m) phytoplankton populations relative to
total Chl-a, the Chl-a concentration attributed to the two size classes
was calculated as=C F Cp p (4)

and =C F Cn m n m, , (5)

where Cp and Cn,m correspond to the size-specific Chl-a concentration of
pico-phytoplankton and the combined nano/micro-phytoplankton re-
spectively, and C refers to the total Chl-a concentration.

2.4. Datasets and data partitioning for training, satellite validation and
visualisation

The in situ samples were matched with estimates of satellite-derived
remote sensing reflectance (Rrs) from version 3.1 of the European Space
Agency's Ocean Colour Climate Change Initiative product (OC-CCI). For
the period spanning 2015–2017, the OC-CCI product consists of merged
and bias-corrected data from the Moderate Resolution Imaging
Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer
Suite (VIIRS) satellite sensors. Level 3, daily, mapped data were ac-
quired at a spatial resolution of 4 km from http://www.esa-
oceancolour-cci.org for the time periods corresponding to each of the
cruises (Table 1). For further information, the reader is referred to
previous literature regarding the OC-CCI product (Sathyendranath
et al., 2012, 2016) and its previous applications in the Red Sea and
adjacent Arabian Sea (Racault et al., 2015; Brewin et al., 2015a; Dreano
et al., 2016; Gittings et al., 2017). In addition, we refer the reader to the
OC-CCI Product User Guide at http://www.esa-oceancolour-cci.org/?
q=webfm_send/318 for a more extensive overview of processing,
sensor merging and uncertainty quantification. Each sample was mat-
ched to an individual satellite pixel temporally (same day) and spatially
(nearest pixel based on longitude and latitude). Of the total 49 stations,
we retrieved 14 satellite matchups. The corresponding sample stations
for the matchups were set aside for the independent validation of sa-
tellite-derived total Chl-a, size fractions and size-specific Chl-a (Fig. 1).
The in situ samples at each of the matchup stations were averaged
within the top 20m (approximately the first optical depth). The re-
maining 35 in situ sampling stations were used for the development and
re-parameterisation of the phytoplankton size model. We note that the
remaining 35 sampling stations are representative of samples acquired
at multiple depths (up to 20m). Thus, a total of 89 samples (corre-
sponding to the remaining 35 stations) were used for the model re-
parameterisation.

We utilised three different empirical, satellite ocean-colour algo-
rithms in our analysis: the standard OC-CCI algorithm (which is a
blended combination of the OC5 (Gohin et al., 2002) and the OC4v6 –
OCI (Hu et al., 2012) algorithms) and the OC4 and OCI algorithms (Hu
et al., 2012; O'Reilly et al., 2000) that have been regionally tuned for
the Red Sea by Brewin et al. (2015a) (hereafter referred to as OC4-RG
and OCI-RG respectively, Fig. 2). For further illustrative and qualitative
validation of the phytoplankton size model, daily images of satellite-
derived phytoplankton size fractions from the OC-CCI product were
also extracted for periods coinciding with the timing of in situ sample
collection during the cruise programs (Table 1).

In addition, to provide an example highlighting the potential of new
remote-sensing technologies and their application for mapping PSCs,
we used a Chl-a dataset acquired from the Ocean and Land Colour
Instrument (OLCI) on-board the recently launched Sentinel-3a satellite
of the European Space Agency. An 8-day composite image for the

Table 2
Phytoplankton pigments and a comparison of the weights (W), computed for Eq. (1) using the 133 HPLC data samples collected in this study, with weights derived
from other studies.

Pigment This study Brewin et al. (2014a) Brewin et al. (2015b) Brewin et al. (2017a) Uitz et al. (2006) Uitz et al. (2008) Soppa et al. (2014)

Fucoxanthin 1.18 (± 0.51) 1.72 1.51 1.65 1.41 1.65 1.55
Peridinin 6.45 (± 2.60) 1.27 1.35 1.04 1.41 1.3 0.41
19′ - Hexanoyloxyfucoxanthin 0.57 (± 0.61) 0.68 0.95 0.78 1.27 0.83 0.86
19′ - Butanoyloxyfucoxanthin 3.15 (± 1.51) 1.42 0.85 1.19 0.35 0.78 1.17
Alloxanthin 7.70 (± 3.37) 4.96 2.71 3.14 0.6 0.73 2.39
Total chlorophyll-b 1.66 (± 0.57) 0.81 1.27 1.38 1.01 0.77 1.06
Zeaxanthin 0.72 (± 0.13) 1.28 0.93 1.02 0.86 1.29 2.04

J.A. Gittings, et al.



period 28th February 2017–7th March 2017 was downloaded from the
European Space Agency Copernicus Open Access Hub. This dataset has
a spatial resolution of 300m and was processed for the Red Sea using
the regionally tuned algorithm developed by Brewin et al. (2015a).

2.5. Two-component phytoplankton size class model

Following Brewin et al. (2015a), we used a two-component size
class model to characterise the pico-phytoplankton and combined
nano/micro-phytoplankton assemblages in the Red Sea. The model
assumes small phytoplankton cells (picophytoplankton) are incapable
of growing beyond a specific Chl-a concentration, and the addition of
extra Chl-a into the system beyond this concentration can be attributed
to the addition of larger phytoplankton cells (Chisholm, 1992;
Raimbault, 1988). The model is based on the exponential equation
originally put forth by Sathyendranath et al. (2001) and used by Brewin
et al. (2010) to relate the concentration of Chl-a in pico-phytoplankton
(Cp, cells< 2 μm) to the total Chl-a according to.

⎜ ⎟= ⎡⎣⎢ − ⎛⎝− ⎞⎠⎤⎦⎥C C exp
D
C

C1p p
m p

p
m

(6)

The parameter Cp
m represents the asymptotic maximum value of

Chl-a associated with the pico-phytoplankton size class, whilst Dp de-
termines the fraction of total Chl-a for the picophytoplankton assem-
blage as total Chl-a (C) tends to zero. The size-specific Chl-a con-
centration of the combined nano/micro-phytoplankton assemblage
(Cn,m) can subsequently be derived according to.= −C C Cn m p, (7)

The model parameters Cp
m and Dp were estimated by fitting Eq. (6)

to the parameters Cp and C, which were computed using the HPLC
dataset. We used a non-linear, least squares fitting procedure (Trust-
Region-Reflective algorithm, MATLAB Optimisation Toolbox, function
‘LSQCURVEFIT’), in conjunction with bootstrapping (Efron, 1979), to
compute the model parameters and their associated uncertainties
(Table 3). Bootstrapping was implemented by randomly sub-sampling
the dataset (1000 iterations) and re-fitting Eq. (6) for each sub-sample.
The median and 95% confidence intervals were then computed from
the resulting parameter distribution. The parameter Dp was constrained
to be less than or equal to 1, as size-fractionated Chl-a cannot exceed
the total Chl-a concentration. The model parameters are presented in
Table 3 and generally appear to lie within the range of values that have

been computed for different regions of the global oceans.

2.6. Statistical tests

For the assessment of satellite ocean-colour data and the validation
of the re-parameterised model, we primarily used the Pearson linear
correlation coefficient (r), mean absolute difference (MAD (M)) and
bias (δ) as performance metrics to compare in situ and modelled values
of total Chl-a, size fractions and size-specific Chl-a. The MAD is sug-
gested to be less sensitive to different dataset distributions and the
presence of outliers, and provides a natural and unambiguous char-
acterisation of model uncertainty (Willmott and Matsuura, 2005). The
MAD has been extensively utilised in other studies that involve com-
parisons between in situ and satellite estimates of chlorophyll (e.g.
Moses et al., 2012; O'Reilly and Werdell, 2019) and phytoplankton size
structure (e.g. Brewin et al., 2012a; Corredor-Acosta et al., 2018). The
root-mean-square-difference (RMSD, ψ) is also presented in order to
allow comparisons of the model performance with previous studies. We
note that the linear correlation coefficient and RMSD have previously
been utilised to compare in situ and modelled data (Brewin et al., 2015c;
Brewin et al., 2016; Doney et al., 2009; Friedrichs et al., 2009). Sta-
tistical tests based on Chl-a concentrations were conducted in log10
space, as Chl-a tends to be log-normally distributed in the open ocean
(Campbell, 1995). The MAD (M) was computed according to.

= ∑ −=M
X X

N
| |i

N
i
E

i
M

1
(8)

where N is the number of data points, X is the variable (total Chl-a
concentration, size fraction or size-specific Chl-a) and the superscripts E
and M correspond to the estimated variable from the model and the
measured variable, respectively. The value of δ was calculated ac-
cording to

∑= ⎡⎣⎢ − ⎤⎦⎥=δ
N

X X1 ( )
i

N

i
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i
M

1 (9)

and ψ was expressed as
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1

2
1/2

(10)

Fig. 2. Satellite validation of total Chl-a concentration from three different empirical ocean colour algorithms; the standard OC-CCI algorithm and the regionally
tuned OCI-RG and OC4-RG algorithms developed by Brewin et al. (2015a). r is the Pearson correlation coefficient, M is the mean absolute difference, δ is the bias and
ψ is the root-mean-square-difference. Statistical tests were computed in log10 space. Per-pixel uncertainties for the matchups obtained using the standard OC-CCI
algorithm are provided as RMSD error bars. Overall, the in situ Chl-a matchups are within the uncertainty limits of the OC-CCI data. We also present the fixed RMSD
uncertainties for OCI-RG and OC4-RG, which are based on a previous validation of those algorithms using OC-CCI data (see Fig. 7 of Brewin et al., 2015a).
Uncertainties associated with in situ Chl-a concentrations are expressed as percentages (~±4.6%) and are represented by the black horizontal error bars.
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3. Results and discussion

3.1. Satellite validation of total Chl-a

To determine the best input of Chl-a for the phytoplankton size
model, we first evaluate the performance of three different ocean colour
algorithms (Fig. 2, Table 4). Irrespective of the type of algorithm, in situ
values of Chl-a concentration are in good agreement with the satellite
matchups and the relationships are characterised by high correlation
coefficients (r > 0.88) and low mean absolute differences (M < 0.2).
Using the correlation coefficient and RMSD (ψ) as a basis for compar-
ison with previous studies, the model performance is similar, or in some
cases better, to what has been previously observed in the Red Sea
(Brewin et al., 2013, 2015a; Racault et al., 2015) and other regions of
the global ocean (e.g. Bailey and Werdell, 2006; Brewin et al., 2015b;
Siegel et al., 2013) (Table 4).

Although the three algorithms exhibit a statistically similar perfor-
mance (e.g. statistically similar values for the MAD (M) and RMSD (ψ)
(95% confidence intervals overlap) and a statistically similar correla-
tion coefficient (z-test)), the standard OC-CCI algorithm overestimates
Chl-a concentration (δ=0.08). This is analogous with the results of
Brewin et al. (2015a) who found that the standard NASA OC4 and OCI
algorithms systematically overestimate Chl-a in the Red Sea. They at-
tributed this overestimation to increased chromophoric dissolved or-
ganic matter (CDOM) absorption per unit Chl-a. This hypothesis was
recently corroborated by Kheireddine et al. (2018b), who analysed the
spatial distribution of the absorption coefficient of CDOM (aCDOM),
using in situmeasurements acquired during several cruises conducted in
the Red Sea. Kheireddine et al. (2018b) observed that values of aCDOM
for a specific Chl-a concentration were substantially higher in the Red
Sea in comparison to the adjacent Mediterranean Sea (20–550%)
(Organelli et al., 2014). The authors also revealed that CDOM con-
centrations were higher than what has been observed in other oligo-
trophic regions, such as the southeast Pacific and Mediterranean Sea
(Bricaud et al., 2010; Morel and Gentili, 2009).

The regionally tuned OCI-RG and OC4-RG algorithms are associated
with negative biases (δ=−0.19 and− 0.12 respectively), particularly
the OCI-RG algorithm, which displays a consistent underestimation of
Chl-a (Fig. 2). However, considering the improved performance of the
regionally-tuned Red Sea algorithms previously obtained using a larger
match-up dataset (Brewin et al., 2015a), and it's slightly higher statis-
tical performance in comparison to OCI-RG, we opted to use the OC4-
RG algorithm for input to the PSC model. On-going research is required
to monitor the performance of all these algorithms, as and when more
data become available in the Red Sea.

3.2. Re-parameterisation of the two-component phytoplankton size model

The re-parameterised size model was fitted to the Red Sea HPLC
dataset (Fig. 3, black line), and for comparison, was plotted alongside
the previous two-component model of Brewin et al. (2015a) (Fig. 3, red
line). Overall, the re-parameterised model adequately captures the
general trends in in situ derived size-specific Chl-a (Cp, Cn,m) as a
function of total Chl-a (r > 0.9, M < 0.1). The contribution of Chl-a
from the pico-phytoplankton assemblage is higher at low Chl-a con-
centrations and the model parameter Dp is representative of the increase
in pico-phytoplankton as the total Chl-a concentration tends to zero
(Dp=0.92). Above an asymptotic Chl-a concentration of ~
0.19mgm−3 for pico-phytoplankton (Cp), additional Chl-a in the
system can be attributed to increases in Chl-a within the nano/micro-
phytoplankton assemblage (Cn,m). The model also captures the general
trends observed for the phytoplankton size fractions (Fp, Fn,m), where
the fraction of small (larger) cells decreases (increases) with the total
Chl-a concentration.

Although the model of Brewin et al. (2015a) displays the same
general trend, it underestimates Cp and Fp, and overestimates Cn,m and
Fn,m, for a given total Chl-a concentration (Fig. 3). We note that these
differences are apparent regardless of the choice of regression coeffi-
cients for Eq. (2) (Supplementary Fig. 2). Prior to the re-tuning of the
size model, Brewin et al. (2015a) had set the value of the model

Table 3
Model parameters derived from Eq. (6) and comparisons with different studies.

Study Model parameters Location N Method

Cp
m (mg m−3) Dp

This study 0.19 (0.16–0.23) 0.92 (0.85–1.0) Red Sea 89 HPLC
Brewin et al. (2012a) 0.17 0.82 Indian Ocean 686 HPLC
Brewin et al. (2011) 0.15 0.75 Global 256 HPLC
Brewin et al. (2015b) 0.13 (0.12–0.14) 0.80 (0.78–0.82) Global 5841 HPLC
Brewin et al. (2010) 0.11 0.73 Atlantic Ocean 1935 HPLC
Brotas et al. (2013) 0.06 0.99 NE Atlantic Ocean 1100 HPLC
Brewin et al. (2017a) 0.13 (0.12–0.13) 0.73 (0.71–0.76) N Atlantic Ocean 2239 HPLC/SFF

Table 4
Statistical results for the three ocean colour algorithms used in this study, and some comparisons with previous studies.

Study Satellite dataset Algorithm r Ψ M N Region

This study OC-CCI V3.1 OC5/OC4v6-OCI 0.88 0.14 0.12 14 Red Sea
This study OC-CCI V3.1 OCI-RG 0.89 0.22 0.19 14 Red Sea
This study OC-CCI V3.1 OC4-RG 0.88 0.17 0.13 14 Red Sea
Brewin et al. (2013) MODIS-Aqua OC3 0.69 0.2 – 85 Red Sea
Brewin et al. (2013) MODIS-Aqua OCI 0.56 0.13 – 85 Red Sea
Brewin et al. (2015a) OC-CCI V1 OCI-RG 0.87 0.16 – 410 Red Sea
Brewin et al. (2015a) OC-CCI V1 OC4-RG 0.83 0.17 – 410 Red Sea
Racault et al. (2015) OC-CCI V1 OC4 0.84 0.29 – 392 Red Sea
Brewin et al. (2012a) SeaWiFS OC4 0.89 – 0.06 26 Indian Ocean
Lamont et al. (2018) MODIS-Aqua OCI 0.98 0.14 – 33 Southern Africa
Bailey and Werdell (2006) SeaWiFS OC4 0.91 0.41 – 271 Global
Siegel et al. (2013) SeaWiFS GSM 0.88 0.36 – 1380 Global
Siegel et al. (2013) SeaWiFS OC4 0.89 0.31 – 1543 Global
Brewin et al. (2015b) OC-CCI V1 OC4 0.88 0.25 – 598 Global
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parameter Cp
m (the maximum Chl-a concentration reached by the pico-

phytoplankton population) at 0.06mgm−3 (Table 3). Considering the
updated model parameter in this study (Cp

m=0.19mgm−3), the pre-
vious value of Cp

m utilised by Brewin et al. (2015a), which was derived
using HPLC datasets collected in the eastern North Atlantic Ocean (see
Brotas et al., 2013), probably under-represents the contribution of the
pico-phytoplankton population. Indeed, Brewin et al. (2015a) and
Kheireddine et al. (2017) revealed that pico-phytoplankton constituted
the dominant size class in the Red Sea, although in the case of the latter
study, community structure was found to be fairly heterogeneous due to
the mesoscale variability of the region.

3.3. Satellite validation of size-specific Chl-a concentrations and size
fractions

Satellite-derived observations of Chl-a concentration from the in-
dependent matchup dataset were used as input to the re-parameterised
two-component size class model, and accordingly, size-specific Chl-a
and size fractions were derived. The resultant relationships between the
satellite and in situ data are presented in Fig. 4. Generally, satellite
estimates of size-specific Chl-a concentration match the in situ ob-
servations well. For both Cp and Cn,m, high r values (r > 0.80) and low
MAD (M < 0.2) are obtained. A slight negative bias occurs for both
size classes (−0.11), which is most likely related to the

underestimation of total Chl-a from the OC4-RG algorithm (Fig. 2). To
further assess the performance of the re-parameterised model, we pre-
sent the results of statistical tests computed for matchups obtained
using the previous model parameters of Brewin et al. (2015a) (Fig. 4).
Overall, following model re-parameterisation, the bias is closer to zero,
the MAD is smaller and the RMSD is approximately halved (excluding
the RMSD associated with the size-specific Chl-a concentration of the
combined nano-micro assemblage [Cn,m]). In addition, the RMSD of Cp

presented here (ψ=0.13) is lower than what has been observed in the
global ocean (Brewin et al., 2015b), the North Atlantic (Brewin et al.,
2017a) the waters off Central-Southern Chile (Corredor-Acosta et al.,
2018) and South Africa (Lamont et al., 2018). Satellite-derived size
fractions (Fp and Fn,m) are also in good agreement with the in situ ob-
servations (r=0.67) and the relationships are characterised by low
MAD (M=0.09) and low biases (δ= ±0.02). We note that as Fn,m=1
- Fp (see Eq. (3)), the statistical parameters computed for the matchups
of Fp and Fn,m are identical (although characterised by a change of sign
for the case of δ).

To investigate spatial gradients in satellite estimates of phyto-
plankton size structure, we present an 8-day composite image of the
pico- and nano/micro-phytoplankton fractions in the CRS region, as
well as total Chl-a concentration (Fig. 5). The composite image re-
presents the period 1st - 9th April 2015, corresponding approximately
to the sampling dates of the NC2 cruise conducted in the CRS (3rd – 9th

Fig. 3. The two-component phytoplankton size model fitted alongside the Red Sea HPLC pigment data. The black and red lines represent the re-parameterised model
and the original model of Brewin et al. (2015a) respectively. The top row shows the relationship between total Chl-a concentration and size-specific Chl-a, whilst the
bottom row shows the relationship between total Chl-a and the fraction of total Chl-a from the two size classes. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Satellite validation of size-specific Chl-a concentrations (top row) and the fractional contribution of Chl-a to total Chl-a (bottom row) for the two size classes.
Statistical tests were computed in log10 space for size-specific Chl-a concentrations and in linear space for the size fractions. The statistical parameters are the same as
those described in Fig. 2. For comparison, statistical tests are also presented (in red text) for matchups computed using the previous Red Sea model parameterisation
of Brewin et al. (2015a). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. 8-day climatology (1st – 9th April 2015) of total Chl-a (computed using the OC4-RG algorithm), and the fractional contributions of pico- and the combined
nano/micro- phytoplankton assemblages generated using the updated model parameters. In situ data points from the NC2 cruise, conducted during this 8-day period
(Table 1), are overlaid on the satellite imagery and are represented by the white circles. The in situ samples are plotted with the same colour scale as the satellite
image.
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April 2015, Table 1). For comparison, the in situ size fractions of the
pico- and nano/micro- phytoplankton assemblage from the NC2 sam-
pling stations are overlaid on the satellite image (Fig. 5, white circles).

The satellite data effectively capture the spatial variability of in situ
size fractions. Lower fractions of nano/micro- phytoplankton
(~20–25% of the total population) are apparent in the northern region
of the CRS (22–24°N), coinciding with reduced Chl-a concentrations
and a higher fraction of pico-phytoplankton (75–80%). The fraction of
nano/micro- phytoplankton increases to ~35% between 21 and 22°N,
and this is observed by the most southerly in situ sampling station at
~21.75°N. This region of larger cells is characterised by higher Chl-a
concentrations and extends from the eastern coast towards the western
coastline. We speculate that this feature may be representative of a
mesoscale anticylonic eddy that is a capable of transporting water
masses across the basin. Large eddies are known to occur frequently in
the CRS (~18–24°N) (Zhan et al., 2014, 2019) and previous research
has demonstrated how these eddies transfer waters rich in Chl-a be-
tween the east and west coastlines of the Red Sea (Raitsos et al., 2017).
Coral reefs contain elevated concentrations of nutrients from processes
such as grazing, sediment re-suspension and bacterial respiration
(Acker et al., 2008; Erez, 1990; Rasheed et al., 2002) and instances of
higher nutrient availability are known to correlate with larger phyto-
plankton cells (Marañón, 2015). Indeed, total Chl-a concentration and
the fraction of larger cells is notably higher along the coastlines of the
CRS, constituting 40–60% of the total phytoplankton population. The
eddy may advect larger cells further offshore between 21 and 22°N at its
periphery, whilst simultaneously driving a decrease in total Chl-a
concentration, and an increase in the contribution of pico-phyto-
plankton at its core (~22.5°N), as a result of downwelling and enhanced
oligotrophy.

3.4. Potential caveats

3.4.1. In situ estimates of phytoplankton size structure
We utilised a Red Sea HPLC dataset, in conjunction with a diag-

nostic pigment approach, to derive in situ measurements of size-specific
Chl-a concentration that would be used for the re-parameterisation of
the two-component size class model of Brewin et al. (2015a). We note
that some diagnostic pigments may be shared by several phytoplankton
groups that span a broad range of sizes, and thus may not always be
precise biomarkers that enable the definitive differentiation between
size classes. In consideration of this, refinements have been made to
infer size fractionated Chl-a from the HPLC data using the diagnostic
pigment approach. Specifically, we followed the approach of Brewin
et al. (2010) to compute in situ values of the pico-phytoplankton size
fraction (Fp). This involved apportioning some of the 19′-hexanoylox-
yfucoxanthin pigment to pico-phytoplankton at lower Chl-a con-
centrations, as some pico-eukaryotes contain this pigment. Considering
that a two-component model was used to derive pico-phytoplankton
and the combined nano/micro-phytoplankton assemblages, it was not
necessary to implement further adjustments that have been previously
used to account for the partitioning of pigments between micro-phy-
toplankton and nano-phytoplankton (e.g. Devred et al., 2011). Although
we did not compare HPLC-derived estimates of size-fractioned Chl-a
with those derived using other methods (e.g. size-fractionated filtration,
flow cytometry or molecular analysis), systematic differences in size-
fractionated Chl-a between HPLC and other methods have been ob-
served (e.g. Brewin et al., 2014a). Future efforts should focus on col-
lecting concurrent data on size-fractioned Chl-a in the Red Sea using
multiple methods, for a more complete and accurate diagnosis of
phytoplankton size classes (Nair et al., 2008). Until such datasets be-
come available, the HPLC approach is our only in situ resource, and it
has been shown to capture trends in phytoplankton size structure in
other oceanic regions (Organelli et al., 2013; Uitz et al., 2008, 2015).
Furthermore, the conceptual framework of the two-component model
used here has been supported by multiple in situ methods, including:

size-fractionated filtration measurements (Brewin et al., 2014b; Gin
et al., 2000; Marañón et al., 2012), measurements from flow cytometry
and microscopy (Brotas et al., 2013), and measurements of spectral
absorption by phytoplankton and particle backscattering (Brewin et al.,
2011; Brewin et al., 2012b; Devred et al., 2006, 2011).

3.4.2. Abundance-based phytoplankton size model
The abundance-based, three-component model conceptualised by

Brewin et al. (2010), and adapted for the Red Sea by Brewin et al.
(2015a), has been applied and validated both globally, and for in-
dividual oceanic regions (e.g. Brewin et al., 2010, 2012a, 2014a, 2015a,
2015b; Hu et al., 2018; Lamont et al., 2018; Lin et al., 2014). However,
abundance-based algorithms infer phytoplankton size structure based
on relationships between the total Chl-a concentration and size-frac-
tionated Chl-a, and thus do not directly detect the presence of different
phytoplankton size classes. Although these relationships have been
shown to hold across the global oceans, deviations from these re-
lationships occur (e.g. Goericke, 2011). Furthermore, for applications of
the model to satellite data in optically-complex waters, satellite re-
trievals of Chl-a may be impacted by the presence of CDOM and non-
algal particles (Hirata et al., 2011; Mouw et al., 2017). Modifications to
ecosystem structure as a result of climate change may alter relation-
ships between phytoplankton size structure and total Chl-a (Agirbas
et al., 2015; Racault et al., 2014; Sathyendranath et al., 2017). Thus, as
well as a need for increased in situ sampling efforts in the Red Sea, re-
calibration of abundance-based algorithms may be necessary in the
future, and may require tying model parameters (Cp

m and Dp) to other
environmental variables amenable from space (see Brewin et al.,
2015b, 2017a; Ward, 2015).

Abundance-based algorithms use total Chl-a from satellite remote
sensing as input. Thus, the accuracy of satellite Chl-a observations is
critical for the derivation of accurate size-fractionated Chl-a data. Per-
pixel uncertainties in satellite size-fractionated Chl-a data can be de-
rived in two ways: 1) by propagating errors in the input total Chl-a
through to the output size-fractionated Chl-a, accounting for un-
certainties in model parameters (Brewin et al., 2017b); or 2) through
comparison of satellite size-fractionated Chl-a with in situ data (vali-
dation), by matching the two estimates in time and space (Brewin et al.,
2017a). Each approach has its advantages and disadvantages. Model
error propagation requires good knowledge of errors in model para-
meters and model input, and assumes the model is conceptually accu-
rate. Validation generally assumes the in situ data are correct, when in
reality the in situ measurements have their own uncertainties that
should be considered in the analysis, but are difficult to estimate
(Brewin et al., 2014b, 2017a; Nair et al., 2008). In addition, when
comparing satellite data with concurrent in situ data, the scales of the
observations differ by orders of magnitude (e.g. 1 L HPLC sample and
4 km satellite pixel), which can cause additional uncertainties. In our
study we report the uncertainties based on validation (see Fig. 4). It is
envisaged that future work could improve on this, perhaps making use
of optical water type classification methods (e.g. Brewin et al., 2017a),
and by characterising uncertainties in the in situ data, through the
collection of concurrent in situ size-fractioned Chl-a data using multiple
methods.

4. Conclusions

We re-parameterised the two-component phytoplankton size model
of Brewin et al. (2015a) using HPLC pigment data collected in the Red
Sea. The updated model effectively captures the relationships between
in situ measurements of total Chl-a concentration and the Chl-a con-
centrations of the pico- and combined nano/micro- phytoplankton size
classes, and was subsequently applied to remotely-sensed ocean colour
observations. Overall, satellite estimates of phytoplankton size struc-
ture correlate well with concurrent in situ measurements and also
capture the spatial variability in phytoplankton size structure related to
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an anticyclonic eddy.
To our knowledge, this analysis provides the first in situ validation

of satellite-derived estimates of phytoplankton size structure in the Red
Sea and paves the way for further investigation on the seasonality, in-
terannual variability and phenology of different PSCs. This is likely to
be paramount for developing a better understanding of trophic re-
lationships and fisheries dynamics in the region, contributing to the
development and implementation of marine ecosystem management
schemes. Finally, with the advent of more advanced remote-sensing
capabilities, including the launch of next-generation satellite sensors
such as OLCI on-board the Sentinel-3a spacecraft (European Space
Agency), the large-scale spatiotemporal distribution of ecological in-
dicators, as well as their linkages to mesoscale variability, can be re-
solved at much finer temporal scales (Fig. 6).
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