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Phytoplankton biomass and size structure are recognized askey ecological indicators.
With the aim to quantify the relationship between these two ecological indicators in
tropical waters and understand controlling factors, we analyzed the total chlorophyll-a
concentration, a measure of phytoplankton biomass, and itspartitioning into three
size classes of phytoplankton, using a series of observations collected at coastal
sites in the central Red Sea. Over a period of 4 years, measurements of �ow
cytometry, size-fractionated chlorophyll-a concentration, and physical-chemical variables
were collected near Thuwal in Saudi Arabia. We �tted a three-component model
to the size-fractionated chlorophyll-a data to quantify the relationship between
total chlorophyll and that in three size classes of phytoplankton [pico- (< 2 � m),
nano- (2–20� m) and micro-phytoplankton (> 20 � m)]. The model has an advantage over
other more empirical methods in that its parameters are interpretable, expressed as
the maximum chlorophyll-a concentration of small phytoplankton (pico- and combined
pico-nanophytoplankton, Cm

p and Cm
p,n, respectively) and the fractional contribution of

these two size classes to total chlorophyll-a as it tends to zero (Dp and Dp,n). Residuals
between the model and the data (model minus data) were compared with a range of
other environmental variables available in the dataset. Residuals in pico- and combined
pico-nanophytoplankton fractions of total chlorophyll-a were signi�cantly correlated with
water temperature (positively) and picoeukaryote cell number (negatively). We conducted
a running �t of the model with increasing temperature and found a negative relationship
between temperature and parametersCm

p and Cm
p,n and a positive relationship between

temperature and parametersDp and Dp,n. By harnessing the relative red �uorescence
of the �ow cytometric data, we show that picoeukaryotes, which are higher in cell
number in winter (cold) than summer (warm), contain higher chlorophyll per cell than other
picophytoplankton and are slightly larger in size, possibly explaining the temperature
shift in model parameters, though further evidence is needed to substantiate this
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�nding. Our results emphasize the importance of knowing thewater temperature and
taxonomic composition of phytoplankton within each size class when understanding their
relative contribution to total chlorophyll. Furthermore,our results have implications for the
development of algorithms for inferring size-fractionated chlorophyll from satellite data,
and for how the partitioning of total chlorophyll into the three size classes may change in
a future ocean.

Keywords: phytoplankton, size, chlorophyll, Red Sea, tempe rature

1. INTRODUCTION

Phytoplankton are a critical component of the Earth's system.
Absorbing incoming solar radiation, CO2 and synthesizing
organic matter, they are responsible for half of the planetary
primary production (Longhurst et al., 1995; Field et al., 1998),
modulate oceanic carbon, and provide energy for the majority
of marine life. Light absorption by phytoplankton in the ocean
is dependent on its biomass. Most of the light absorbed by
phytoplankton is lost as heat, thus variations in phytoplankton
biomass modulate solar heating in the ocean (Sathyendranath
et al., 1991). A small component of absorbed light is used
by phytoplankton in photosynthesis, making phytoplankton
biomass critical for marine primary production and for energy
transfer to higher trophic levels, impacting global �sheriescatch
(Chassot et al., 2010).

A second important characteristic of phytoplankton is its size
structure. A suite of phytoplankton biochemical functions are
controlled by size, including: metabolic rate, growth and nutrient
uptake (Platt and Jassby, 1976; Platt and Denman, 1977, 1978;
Maloney and Field, 1991; Chisholm, 1992; Marañón, 2009, 2015;
Finkel et al., 2010). The absorption of light by an assemblage
of phytoplankton of known biomass varies with size structure
(Morel and Bricaud, 1981; Prieur and Sathyendranath, 1981;
Bricaud et al., 2004; Devred et al., 2006; Brewin et al., 2011).
Therefore, phytoplankton size also in�uences photosyntheticrate
and ocean heating (Sathyendranath and Platt, 2007; Uitz et al.,
2008; Brewin et al., 2017b). The sinking rates of phytoplankton
are impacted by size, with large-celled phytoplankton thought
to be responsible for a large fraction of export production and
small-celled phytoplankton for recycled production (Eppley and
Peterson, 1979; Michaels and Silver, 1988; Boyd and Newton,
1999; Laws et al., 2000; Guidi et al., 2009; Briggs et al., 2011;
Mouw et al., 2016), at the same time acknowledging small-celled
phytoplankton carbon export can also be signi�cant (Mouw
et al., 2016; Richardson, 2019). The size of phytoplankton is
also thought to in�uence the structure of the marine food chain
(Legendre and Le Fevre, 1991; Maloney and Field, 1991). These
are some of the reasons why phytoplankton biomass and size
structure are considered as two key ecological indicators in the
marine environment (Platt and Sathyendranath, 2008).

A common measure of phytoplankton biomass is the total
chlorophyll-a concentration (representing the sum of mono-
and divinyl chlorophyll-a, chlorophyllide-a, and the allomeric
and epimeric forms of chlorophyll-a, hereafter referred to
collectively as total chlorophyll), the major photosynthetic

pigment in marine phytoplankton. Unlike phytoplankton
carbon, which is more di�cult to measure, total chlorophyll
can be routinely estimatedin situ (e.g., �uorometrically or using
High Performance Liquid Chromatography, HPLC) or through
satellite remote-sensing of ocean color (O'Reilly et al., 1998).
Conventionally, phytoplankton size structure is quanti�ed by
partitioning biomass (total chlorophyll) into three size classes
[pico- (< 2� m), nano- (2–20� m) and micro-phytoplankton
(> 20� m); Sieburth et al., 1978], with the role of each
thought to di�er in the cycling of key elements such as
carbon, with taxonomic composition, nutrient concentrations
and environmental conditions in�uencing the composition ofthe
three size classes (IOCCG, 2014).

The relationship between total chlorophyll and that contained
in each of the three size classes has been studied thoroughly
in some regions (Raimbault et al., 1988; Chisholm, 1992;
Goericke, 2011; Marañón et al., 2012; López-Urrutia and Morán,
2015), with picophytoplankton known to contribute most to
total chlorophyll at low concentrations, nanophytoplankton at
intermediate concentrations, and microphytoplankton at high
concentrations (IOCCG, 2014). This relationship has been
quanti�ed statistically (Uitz et al., 2006), empirically (Hirata
et al., 2011) and more mechanistically (Brewin et al., 2010;
Devred et al., 2011), at local and global scales (IOCCG, 2014).
One approach to modeling this relationship, that has proven to
be a popular choice (e.g.,Brotas et al., 2013; Lin et al., 2014;
Sammartino et al., 2015; Sahay et al., 2017; Hu et al., 2018;
Lamont et al., 2018; Liu et al., 2018; Sun et al., 2018), is the
three-component model ofBrewin et al. (2010). The model is
based on two exponential functions (Sathyendranath et al., 2001;
Devred et al., 2006) that relate the fraction of total chlorophyll
by combined pico- and nanophytoplankton (Fp,n, cells <20� m)
and picophytoplankton (Fp, cells <2� m) to total chlorophyll
concentration (C) according to

Fp,n D
Cm

p,n[1 � exp(�
Dp,n
Cm

p,n
C)]

C
, (1)

and

Fp D
Cm

p [1 � exp(�
Dp
Cm

p
C)]

C
. (2)

Model parameters are relatively easy to interpret, withCm
p,n

and Cm
p representing the asymptotic maximum chlorophyll

concentrations for the associated size classes (<20� m and
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TABLE 1 | Symbols and de�nitions.

Symbol De�nition

C Total chlorophyll concentration (mg m� 3)

Cp Chlorophyll concentration for picoplankton (cells< 2 � m) (mg m� 3)

Cp,n Chlorophyll concentration for combined nano-picoplankton (cells< 20 � m) (mg m� 3)

Cn Chlorophyll concentration for nanoplankton (cells 2� 20 � m) (mg m� 3)

Cm Chlorophyll concentration for microplankton (cells> 20 � m) (mg m� 3)

Cm
p,n Asymptotic maximum value ofCp,n (cells <20� m) (mg m� 3)

Cm
p Asymptotic maximum value ofCp (cells <2� m) (mg m� 3)

DOC Dissolved organic carbon (� mol L� 1)

Dp,n Fraction of total chlorophyll in combined nano-picoplankton (cells< 20 � m) as total chlorophyll tends to zero

Dp Fraction of total chlorophyll in picoplankton (cells< 2 � m) as total chlorophyll tends to zero

Fp Fraction of total chlorophyll for picoplankton (cells< 2 � m)

Fp,n Fraction of total chlorophyll for combined nano- picoplankton (cells< 20 � m)

Fn Fraction of total chlorophyll for nanoplankton (cells 2� 20 � m)

Fm Fraction of total chlorophyll for microplankton (cells> 20 � m)

G1 Parameter of Equation (5) controlling lower and/or upper bound in Cm
p,n

G2 Parameter of Equation (5) controlling slope of change inCm
p,n with T

G3 Parameter of Equation (5) controlling theT mid-point of G2

G4 Parameter of Equation (5) controlling lower and/or upper bound in Cm
p,n

H1 Parameter of Equation (6) controlling lower and/or upper bound in Cm
p

H2 Parameter of Equation (6) controlling slope of change inCm
p with T

H3 Parameter of Equation (6) controlling theT mid-point of H2

H4 Parameter of Equation (6) controlling lower and/or upper bound in Cm
p

J1 Parameter of Equation (7) controlling lower and/or upper bound in Dp,n

J2 Parameter of Equation (7) controlling slope of change inDp,n with T

J3 Parameter of Equation (7) controlling theT mid-point of J2

J4 Parameter of Equation (7) controlling lower and/or upper bound in Dp,n

K1 Parameter of Equation (8) controlling lower and/or upper bound in Dp

K2 Parameter of Equation (8) controlling slope of change inDp with T

K3 Parameter of Equation (8) controlling theT mid-point of K2

K4 Parameter of Equation (8) controlling lower and/or upper bound in Dp

MAD Median absolute difference between estimated and measureddata

r Pearson correlation coef�cient

RFU Relative red �uorescence

RMSD Root mean square difference between estimated and measureddata

T Water temperature (� C)

TDN Total dissolved nitrogen (� mol L� 1)

<2� m, respectively), andDp,n and Dp representing the fraction
of each size-class relative to total chlorophyll as total chlorophyll
tends to zero. Once suitable parameters are obtained, and
Fp,n and Fp derived, the fractions of nano- (Fn) and micro-
phytoplankton (Fm) can be computed asFn D Fp,n � Fp and
Fm D 1 � Fp,n. The chlorophyll concentration in each size class
(Cp, Cn, and Cm) can be calculated simply by multiplying the
fractions (Fp, Fn, andFm) by total chlorophyll (C). Table 1de�nes
variables, parameters and abbreviations used in the manuscript.

Although such models have proven successful at capturing the
relationship between total chlorophyll and chlorophyll contained
in each size class, it has been recognized that such relationships
may be perturbed by climate variability (Brewin et al., 2012;
Racault et al., 2014; Agirbas et al., 2015), potentially impacting
how the marine ecosystem functions (Sathyendranath et al.,
2017). Furthermore, relationships have been shown to di�er

with changes in environmental conditions, for example, with
changes in water temperature and light availability (Brewin
et al., 2015b, 2017a; Ward, 2015). To predict the response of
the marine ecosystem to �uctuations in climate, it is critical to
improve our understanding of how the relationships between
these two key ecological indicators may change with changing
environmental conditions. Among the warmest and most saline
waters on the planet (Longhurst, 2007; Belkin, 2009; Raitsos et al.,
2011; Yao et al., 2014a,b), and believed to re�ect environmental
conditions predicted in other marine regions decades from
now (Christensen et al., 2007), the Red Sea is an interesting
location to explore relationships between these indicators and
environmental variability.

In this study, we make use of a dataset collected in coastal
waters of the central Red Sea over a 4-year period, consisting of
measurements of total chlorophyll, size-fractionated chlorophyll,
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FIGURE 1 | Study site. (A) Location of the study site with respect to the broader Red Sea. (B) Study site near the coastal waters of Thuwal in the Kingdom ofSaudi
Arabia and the locations of the three datasets used in the study. KAEC refers to the King Abdullah Economic City and KAUST to the King Abdullah University for
Science and Technology.

picophytoplankton (abundance and cell properties by �ow
cytometry) and nutrient concentrations. We use these data,
together with the three-component model ofBrewin et al. (2010),
with the aim to quantify the relationship between total and
size-fractionated chlorophyll in tropical waters and improveour
understanding on what controls this relationship. Speci�cally, we
aim to address the following two research questions: (1) Is the
relationship between total and size-fractionated chlorophyll in
coastal waters of the Red Sea consistent with that observed in
other ocean basins? (2) What factors in�uence the relationship
between total and size-fractionated chlorophyll?

2. METHODS

2.1. Study Area: Coastal Waters of the Red
Sea
The chosen study site was located in the central Red
Sea (Figure 1A) in the coastal waters near Thuwal in the
Kingdom of Saudi Arabia (Figure 1B). We made use of water
samples collected by King Abdullah University for Science and
Technology (KAUST) at three locations: (1) in KAUST harbor
(22.3065� N, 39.1029� E;Silva et al., 2019), where weekly sampling
of surface waters was conducted between 2015 and 2017 and
monthly sampling of surface waters during 2018; (2) near King
Abdullah Economic City (KAEC, 22.4712� N, 39.0345� E,� 700 m
depth; Calleja et al., 2018), where surface waters (5 m depth)
were sampled around midday covering the seasonal variability
between 2015 and 2017, on board of KAUST R.V. Thuwal and
KAUST R.V. Explorer; and (3) near Abushusha reef, just o�shore
from KAUST (22.321� N, 39.027� E; seeFigure 1B), at the surface
of a � 70 m depth station, sampled on a monthly basis during
2018 on board the KAUST Durrat Al-Bahr Almar 1 and 5 vessels.
All water samples were collected during daylight hours (08:30–
14:30 local time) using a pre-clean (acid-washed) polycarbonate

9 L carboy (KAUST Harbor and Abushusha reef) or Niskin
bottles (the rest of the sampling).

2.2. Size-Fractionated Filtration (SFF) Data
The size-fractionated �ltration (SFF) method for determining
the chlorophyll concentration in each size class involves �ltering
water through �lters of di�erent pore sizes. For each water sample
collected, 200 ml of sea water were �ltered sequentially through
20, 2, and 0.2� m polycarbonate �lters. Following �ltration,
the �lters were stored at� 80� C for at least 24 h. Pigment
extraction was made by submerging the �lters in 90 % acetone
for 24 h at 4� C. Samples were then analyzed using a Triology
Fluorometer (Turner Designs), pre- and post-calibrated using
pure chlorophyll-a as a standard (Anacustis nidulans, Sigma
Aldrich). The total chlorophyll concentration was taken as the
sum of the size fractions for each sample. The concentration
of chlorophyll passing through the 2� m �lter and retained
on the 0.2� m �lter was designated as picophytoplankton
chlorophyll (Cp), that passing through the 20� m �lter was
designated as pico- and nano-phytoplankton chlorophyll (Cp,n),
the chlorophyll retained on the 20� m �lter was designated as
microphytoplankton chlorophyll (Cm), and the concentration of
chlorophyll retained on the 2� m �lter, having passed through the
20� m �lter, was designated as nanophytoplankton chlorophyll
(Cn). The fractions of each size class relative to total chlorophyll
(Fp, Fp,n, Fn, andFm) were computed by dividing the chlorophyll
concentration in each size class (Cp, Cp,n, Cn, andCm) by total
chlorophyll concentration (C). In total, 136 SFF samples were
available, 8 from KAEC, 116 from KAUST harbor and 12 from
Abushusha reef.

2.3. Model Parameterization
Model parameters (Cm

p,n, Cm
p , Dp,n, and Dp) for the three-

component model ofBrewin et al. (2010)were derived by
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TABLE 2 | Parameter values for Equations (1) and (2) compared with parameters derived using the size-fractionated �ltration (SFF) method in other regions.

Study Parameters for Equations (1) and (2) Location N#

Cp,n
m �

Cp
m �

Dp,n Dp

This Study$ 1.23 (0.83$ 2.78) 0.43 (0.33$ 0.68) 0.94 (0.86$ 1.0) 0.66 (0.58$ 0.73) Red Sea 136

Brewin et al., 2014b$ 2.61 (1.82$ 4.09) 0.73 (0.54$ 1.11) 0.95 (0.92$ 0.98) 0.76 (0.71$ 0.82) Atlantic Ocean 408

Corredor-Acosta et al., 2018$ 2.12 (1.75$ 2.54) 0.19 (0.11$ 0.27) 0.92 (0.88$ 0.96) 0.21 (0.16$ 0.33) Central-southern Chile 182

Ward, 2015 0.79 0.16 0.98 0.85 Global Ocean 620

$ Model parameters are computed as the median of the bootstrap parameter distributionand bracket parameter values refer to the 2.5% and 97.5% con�dence intervals onthe
distribution.
# N, Number of samples used for model parameterization.
� denotes units in mg m� 3.

�tting Equations (1) and (2) using a standard, nonlinear least-
squared �tting procedure (Levenberg-Marquardt, IDL Routine
MPFITFUN, Moré, 1978; Markwardt, 2008) using theFp, Fp,n
and C SFF data as input. The parametersDp,n and Dp were
constrained to be less than or equal to one, since size-fractionated
chlorophyll cannot exceed total chlorophyll. The method of
bootstrapping (Efron, 1979; Brewin et al., 2015b) was used to
randomly resample (utilizing IDL Routine RANDOMU) with
replacement the dataset and re-�t equations for each iteration
(1,000 iterations). Median values and 95% con�dence intervals
were taken from the resulting parameter distributions (see
Table 2). Model parameters are compared with other model �ts
using SFF data in other ocean basins (Table 2).

2.4. Flow Cytometry, Nutrient Sampling
and Physical Variables
For the 136 samples with SFF data, measurements of �ow
cytometry, nutrients, dissolved organic carbon (DOC) and total
dissolved nitrogen (TDN) were also collected. The abundances of
three picophytoplankton groups,Prochlorococcus, Synechococcus
and picoeukaryotes, were obtained from each water sample using
BD FACSCanto �ow cytometer, applying the methodology as
detailed in Gasol and Morán (2015). We measured the red
�uorescence as a proxy for the chlorophyll content and the right
angle light scatter or side scatter (SSC) as a proxy of cell size,
followingCalvo-Díaz and Morán (2006). These values were made
relative to those of the 1� m latex �uorescent beads added to each
sample as internal standard (Molecular Probes, ref. F-13081).
The empirical calibration between relative SSC and cell diameter
described inCalvo-Díaz and Morán (2006)was used to estimate
the cell size of each of the three picophytoplankton groups.

Nutrients were measured by �ltering seawater through pre-
combusted (450� C, 4.5 h) GF/F �lters. The samples were
subsequently frozen and stored at� 20� C until analysis. Nitrate,
nitrite, silicate, and phosphate were analyzed using a segmented
�ow analyzer from Seal Analytical, with standards prepared in
acid-washed glassware using a nutrient-free arti�cial seawater
matrix (Silva et al., 2019). Samples for DOC and TDN analysis
were passed through an online acid-cleaned polycarbonate �lter
cartridge, holding a pre-combusted (450� C, 4.5 h) GF/F �lter,
attached directly to the Niskin bottle, and collected into acid
cleaned and pre-combusted glass vials. Samples were acidi�ed

with H3PO4 until a pH of 1-2, and kept in the dark at 4� C
until analysis at the laboratory by high temperature catalytic
oxidation (HTCO) using a Shimadzu TOC-L (Calleja et al.,
2019). The accuracy of the estimates were monitored using
reference material of deep-sea carbon water (42–45� mol C L� 1

and 31–33� mol N L� 1) and low carbon water (1–2� mol C L� 1)
provided by D. A. Hansell (Univ. of Miami).

Water temperature and salinity measurements were collected
for each sample. In KAUST harbor and at Abushusha reef,
this was conducted immediately prior to sampling with an
environmental probe (YSI probe;Silva et al., 2019). At KAEC,
water temperature and salinity measurements were obtained
using a SBE 9 (Sea-Bird Electronics) Conductivity-Temperature-
Depth (CTD) probe. All data used in this study can be accessed
in theSupplementary Material.

2.5. Statistical Tests
To evaluate the model performance, the Pearson linear
correlation coe�cient (r, IDL Routine CORRELATE) and the
median absolute di�erence (MAD) were used. The signi�cance
(p) of the correlation coe�cient (r) was computed using the t-
statistic and applying a two-sidedt-test (utilizing IDL Routine
T_PDF). The correlation was deemed signi�cant ifp < 0.05 and
highly signi�cant if p < 0.001. The MAD was computed as

MAD D median(jXi,E � Xi,M j), (3)

where X is the variable, subscripti denotes the index in
the data series, from 1 toN where N is the length of the
series, the subscriptM denotes the measured variable and
E the estimated variable from the model. Considering that
the chlorophyll concentration is approximately log-normally
distributed (Campbell, 1995), statistical tests were performed
in log10 space when using chlorophyll as the variable (unless
explicitly stated), and in linear space when using the fraction
of total chlorophyll in each size class as the variable. The MAD
was used as it is robust to non-Gaussian distributions and
outliers. For comparison with results from other studies, wealso
computed the root mean square di�erence (RMSD), according to

RMSDD

"
1
N

NX

iD1

(Xi,E � Xi,M )2

#1=2

. (4)
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FIGURE 2 | Fits of the three-component model to size-fractionated �ltration (SFF) data collected in the study. Top row shows the absolute chlorophyll concentrations
(Cm, Cp,n, Cn, and Cp) and bottom row the fractions (Fm, Fp,n, Fn, and Fp) plotted as a function of total chlorophyll (C), with the tuned three-component model
(parameters fromTable 2) overlain. Gray shading represents a model ensemble varying parameters between their con�dence intervals (Table 2 ).

3. RESULTS AND DISCUSSION

3.1. Fit of Three-Component Model to SFF
Data
The three-component model was seen to capture the general
changes in size-fractionated chlorophyll (Cp, Cn, Cp,n, and
Cm) and fractions of total chlorophyll (Fp, Fn, Fp,n, and Fm)
when plotted as a function of total chlorophyll (Figure 2
and Table 3). Statistical performance indicates that the three-
component model �ts the SFF data well (Table 3), with
comparable or lower RMSD values when compared with
model �ts in other regions using SFF measurements. Model
parameters also compare favorably with other model �ts using
SFF data in other ocean basins (Table 2). The conceptual
framework of the three-component model is seen to hold in
coastal Red Sea waters, with the abundance of small cells
increasing to a given chlorophyll concentration, beyond which
chlorophyll increases through the addition of larger size classes
of phytoplankton (Raimbault et al., 1988; Chisholm, 1992;
Goericke, 2011). This upper bound for small cells increases
with increasing size (Brewin et al., 2014b), with assemblages of
phytoplankton <20� m in size having a signi�cantly higher upper
bound (Cm

p,n) than assemblages of phytoplankton <2� m in size
(Cm

p , seeTable 2). In agreement with other studies (IOCCG,
2014), picophytoplankton contribution to total chlorophyll
is highest at low total chlorophyll, nanophytoplankton at
intermediate total chlorophyll, and microphytoplankton at high
total chlorophyll (Figure 2).

3.2. Relationship Between Model Residuals
and Other Variables
Although the model �ts the data reasonably well, it is by no means
perfect (Table 3, Figure 2). Di�erences between the model and
data can be related either to uncertainties in the measurements
(Brewin et al., 2014a), or simply to inability of the model to

account for real variability surrounding the general relationship
between size-fractionated chlorophyll and total chlorophyll.

Whereas the SFF method has an advantage in that the sizes
of phytoplankton are explicitly partitioned, in comparison with
other methods of determining size-fractionated chlorophyll (e.g.,
by High Performance Liquid Chromatography pigment analysis;
Vidussi et al., 2001; Uitz et al., 2006; Brewin et al., 2010;
Devred et al., 2011; Kheireddine et al., 2017), there are still
uncertainties in the measurements. The �lters can retain particles
smaller than the nominal pore size, which is dependent on the
morphology of the particles, cohesiveness of the particles, volume
�ltered and on the �lter types used (Sheldon, 1972; Logan, 1993;
Logan et al., 1994; Chavez et al., 1995; Gasol and Morán, 1999;
Knefelkamp et al., 2007; Dall'Olmo et al., 2009). On the other
hand, a certain portion of particles larger than the nominal
pore size can also pass through the �lter (e.g., from overlapping
holes), and be accounted for in smaller-size fractions. This is
dependent on whether the phytoplankton break apart during the
�ltration process, on the morphology of the particles, and on their
orientation as they pass through the �lter. The impact of these
factors on measurement uncertainties is di�cult to quantify,
though it has been suggested that the clogging of �lters and
the inability to de�ne accurately the pore size of �lters, aretwo
key issues (Droppo, 2000). Simultaneous measurements made by
multiple types ofin situ methods are needed to make an accurate
diagnosis of uncertainty in the SFF technique (Nair et al., 2008;
Brewin et al., 2014a). Though beyond the scope of this study,
future e�orts are needed in this direction.

While acknowledging that the measurements have
uncertainties, to explore how the relationship between total
and size-fractionated chlorophyll could be in�uenced by other
ecological factors and consequently how the three-component
model could be improved, we investigated whether the residuals
(model minus measurement) were correlated with other variables
in the dataset. We focused on the di�erences between model and
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measurement forFp,n and Fp, considering that these fractions
were used to parametrize the model (Equations 1 and 2).

Table 4 shows correlations between residuals inFp,n and Fp
and other variables in the dataset. As anticipated, there is no
correlation between residuals and total chlorophyll, highlighting
that the model �t captured the variation inFp,n and Fp as a
function of total chlorophyll. ForFp,n, highly signi�cant (p <
0.001) correlations were observed with temperature (positive),
and signi�cant correlations (p < 0.05) with picoeukaryote cell
abundance (negative) and salinity (positive). ForFp, signi�cant
(p < 0.05) correlations were observed with temperature, TDN,
silicate, nitrite (all positive) and picoeukaryote cell abundance
(negative). Of all the variables,Fp,n andFp were both signi�cantly
correlated with temperature and picoeukaryote cell number.
These two variables were inversely correlated (r D � 0.40,p <
0.001) in the dataset, with higher picoeukaryote cell numbersin
the winter and lower picoeukaryote cell numbers in summer.

Residuals between the three-component model and �tted
data have previously been shown to vary with temperature in
polar waters and in the North Atlantic (Ward, 2015; Brewin
et al., 2017a), but not in tropical seas with temperatures
consistently exceeding 22� C, suggesting seasonality may also
play an important role in tropical waters. To investigate the
impact of temperature on the parameters of the three-component
model we followed a similar approach toBrewin et al. (2017a).
This involved sorting the dataset by increasing temperatureand
conducted a running �t of the model (Equations 1 and 2) as
a function of temperature using a bin size of 60 samples. This
involved sliding the bin from low to high temperature and �tting
Equations (1) and (2) each time the bin slides (increments of1
sample). For each �t, we used the method of bootstrapping (1,000
iterations), and derived 13.6 and 86.4 % con�dence intervals (1
standard deviation), as well as 2.5 and 97.5 % con�dence intervals
(2 standard deviation), for each parameter distribution in each
bin (Figure 3), and assessed the relationship between the median
parameters and average temperature of the bins.

We observed a positive relationship betweenDp,n (fraction of
cells <20� m to C asC tends to zero) and temperature (r D 0.80,
p < 0.001) andDp (fraction of cells <2� m to C asC tends to
zero) and temperature (r D 0.63,p < 0.001,Figure 3), and an
inverse relationship betweenCm

p,n and temperature (r D � 0.51,
p < 0.001) andCm

p and temperature (r D � 0.89,p < 0.001).
To capture these relationships, we �tted logistic functions to
the data following the approach ofBrewin et al. (2017a). The
quantitiesCm

p,n andCm
p were modeled as functions of temperature

(T) according to

Cm
p,n D 1 � f

G1

1 C exp[� G2(T � G3)]
C G4g, (5)

and

Cm
p D 1 � f

H1

1 C exp[� H2(T � H3)]
C H4g, (6)

whereG1 andG4 represent the upper and lower bounds ofCm
p,n,

G2 the slope of change inCm
p,n with T, andG3 the T mid-point

of the slope betweenCm
p,n andT. ForCm

p , Hi , wherei D 1 to 4, is
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TABLE 4 | Correlations between model residuals (model minus measurements) in the fraction of total chlorophyll by combined pico- and nano-phytoplankton (Fp,n) and
picophytoplankton (Fp , cells <2� m) and other variables collected in the dataset.

Variable Fp,n Fp

r p N r p N

Total chlorophyll (C) 0.00 0.962 136 � 0.03 0.740 136

Temperature 0.34 0.000 134 0.26 0.002 134

Salinity 0.23 0.008 133 � 0.07 0.398 133

DOC 0.16 0.073 132 0.03 0.737 132

TDN 0.16 0.072 133 0.17 0.045 133

Silicate 0.05 0.590 122 0.18 0.046 122

Nitrite 0.12 0.193 122 0.26 0.004 122

Nitrate 0.06 0.533 122 0.15 0.090 122

Phosphate � 0.09 0.322 121 0.07 0.464 121

Picoeukaryotes cells� –0.18 0.040 131 –0.20 0.022 131

Synechococcus cells� � 0.04 0.638 131 � 0.13 0.127 131

Prochlorococcus cells � � 0.26 0.187 27 � 0.25 0.212 27

Bold indicates signi�cant correlations (p< 0.05).
� Cell numbers were log10 transformed when running the correlations.

analogous toGi for Cm
p,n. Similarly,Dp,n andDp were modeled as

a function of temperature (T) according to

Dp,n D
J1

1 C exp[� J2(T � J3)]
C J4, (7)

and

Dp D
K1

1 C exp[� K2(T � K3)]
C K4, (8)

whereJ1 andJ4 represent the upper and lower bounds ofDp,n, J2
the slope of change inDp,n with respect toT, andJ3 the T mid-
point of the slope betweenDp,n and T. For Dp, Ki is analogous
to Ji for Dp,n. The parameters for Equations (5)–(8) were derived
by �tting the equations to the median parameter values for each
bin and average temperature of each bin, using a nonlinear
least-squared �tting procedure with bootstrapping (utilizing IDL
Routines described in Section 2.3), and by constraining inputto
plausible values (0 to 10 forCm

p,n andCm
p and <1 forDp,n andDp).

Parameter values for Equations (5)–(8) are provided inTable 5.
The functions are seen to capture the general relationships
observed in the dataset (Figure 3). Nonetheless, as this analysis
is based on a relatively small dataset (136 samples), we recognize
additional data is required to substantiate the relationship
between model parameters and temperature observed here.

After Equations (5)–(8) were incorporated into the model,
residuals between the temperature-dependent model and data
were no longer signi�cantly correlated with water temperature
or picoeukaryote cell number (p > 0.05 for bothFp,n and Fp
for these correlations), con�rming that the new parameterization
accounted for the relationships originally observed between
the residuals and model output (Table 4). Furthermore, model
performance was seen to improve using the temperature-
dependent model, with lower MAD values for all size classes
and higher correlation coe�cients and lower RMSD for most

size classes (Table 3). Figure 4 illustrates how the relationship
between size-fractionated chlorophyll and total chlorophyll
changes with temperature, when incorporating Equations (5)–(8)
into the model.

Figure 5A shows a time-series of water temperature and
total chlorophyll at KAUST harbor between 2016 and 2019.
Clear seasonal cycles are seen in temperature, but not for
total chlorophyll, with sporadic variations occurring at di�erent
times. Figures 5B–Dshow chlorophyll for micro-, nano- and
picophytoplankton from in situ data (black) and estimates
from the model (red), driven by total chlorophyll and water
temperature (Figure 5A, Equations 1, 2, 5, 6, 7, and 8). In
a highly-complex coastal environment, the three-component
model is seen to explain around 50 % of the variance in size-
fractionated chlorophyll (r � 0.7 correlation in linear space,
Figure 5). Considering that both water temperature (sea-surface
temperature) and chlorophyll are accessible through satellite
visible and thermal radiometry, the approach o�ers the potential
for estimating size-fractionated chlorophyll from satellite data in
the central Red Sea.

3.3. In�uence of Changes in Taxonomic
Composition of Picophytoplankton on
Model Parameters
Our understanding of how model parameters change with
temperature can be guided by analysing the �ow cytometry
data. Figure 6 shows the relationship between temperature
and cell abundance for the two dominant picophytoplankton,
Synechococcusand picoeukaryotes, as determined by �ow
cytometry. For the three sites sampled, with di�ering conditions
(depth and picophytoplankton community composition), there
is a clear shift in the composition of picophytoplankton with
temperature,Synechococcusbeing positively correlated with
temperature and picoeukaryotes inversely correlated (Figure 6).
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FIGURE 3 | Relationship between the parameters of the three-component
model and water temperature derived from sorting the dataset and conducted
a running �t of the model (bin size 60 measurements) with increasing
temperature. Average water temperature of each bin is on theabscissa and
13.6 and 86.4 % (darker shading) and 2.5 % and 97.5 % (lighter shading)
con�dence intervals of the parameters from a bootstrap �t (1,000 iterations) on
the ordinate (con�dence intervals are constrained to realistic values, 0 to 10 for
Cm

p,n and Cm
p and <1 for Dp,n and Dp). (A) Shows the relationship between

temperature and the parametersDp,n and Dp . Solid black line is the model of
Brewin et al. (2017b)tuned to the data (Equation 8) for cells <2� m and
dashed line for cells <20� m (Equation 7).(B) Shows the relationship between
temperature and the parametersCm

p,n and Cm
p . Solid black line is the model of

Brewin et al. (2017b)tuned to the data (Equation 6) for cells <2� m and
dashed line (Equation 5) for cells <20� m.

Table 6 lists the average relative red �uorescence and cell
size for each community of picophytoplankton derived from the
�ow cytometry data. Picoeukaryotes, as expected, were found
to be larger in size and to have higher relative red �uorescence
than the cyanobacteria (Table 6), consistent with studies in other
regions (Blanchot et al., 2001; Calvo-Díaz et al., 2008). Relative
red �uorescence has been used as a proxy of per cell chlorophyll
concentration (Olson et al., 1983; Li et al., 1993; Veldhuis et al.,
1997; Veldhuis and Kraay, 2000; Calvo-Díaz and Morán, 2006;
Calvo-Díaz et al., 2008; Álvarez et al., 2017), acknowledging that
there are natural variations in �uorescence per unit of chlorophyll
among species (Sosik et al., 1989), size (Veldhuis et al., 1997), and

with changes in phytoplankton physiology (Veldhuis and Kraay,
1993). Other factors can also impact �uorescence measured by a
�ow cytometer (Neale et al., 1989). If we multiply the relative red
�uorescence for all picophytoplankton groups by their respective
abundances, sum them up, then compare withCp derived from
SFF measurements, we obtain a reasonable positive correlation
(r D 0.38,p < 0.001,N D 131), con�rming the use of relative
�uorescence as proxy of per cell chlorophyll concentration in our
dataset. The increase inCm

p with decreasing temperature could
therefore be associated with increasing picoeukaryotes numbers
at lower temperature. This group of picophytoplankton is larger
in size (1.31� m for picoeukaryotes compared with 0.89� m for
Synechococcusand 0.76� m for Prochlorococcus, seeTable 6) and
can store higher concentrations of chlorophyll per cell (Table 6),
and may consequently result in higherCm

p values. Similarly,
consideringCp constitutes the dominant portion ofCp,n in our
dataset (Figure 2), that picoeukaryote red �uorescence was found
to be correlated withCn (r D 0.38,p < 0.001,N D 131) and
Cp,n (r D 0.33,p < 0.001,N D 131), and that the presense
of picoeukaryotes is often associated with the presense of larger
nanoeukaryotes (Tarran et al., 2006; Tarran and Bruun, 2015),
similarly links could be made with increases in the parameter
Cm

p,n at low temperature. Nonetheless, additional evidence (e.g.,
taxonomic composition of the larger size classes) is needed to
substantiate these linkages.

With regards to parametersDp andDp,n, it is worth recalling
that these parameters re�ect the fraction of each size-classrelative
to total chlorophyll as total chlorophyll tends to zero (i.e.,
ultra-oligotrophic waters). Picophytoplankton are thought to
dominate in oligotrophic conditions, owing to their competitive
advantage over larger cells in low nutrient conditions, a result
that is consistent with our model parameterization over the
entire temperature range (Dp > 0.6, Figure 4). However, we
see marginally higherDp andDp,n parameters in warmer waters
(summer, higherSynechococcuscell numbers) than cooler waters
(winter, higher picoeukaryote cell numbers). A decrease inDp
and Dp,n with temperature has also been observed in other
regions, over a di�erent temperature range (Brewin et al., 2017a).
There may be some direct e�ect of temperature on growth rates
of the di�erent picophytoplankton communities (Eppley, 1972;
Chen et al., 2014) and their grazers (Steinberg and Landry, 2017),
that cause these di�erences and allow for an increasing presence
of larger cells (nano- and micro) in cooler oligotrophic waters.
However, it is worth noting that, as most of the dataset is very
coastal, chlorophyll concentrations rarely fall below 0.1 mgm� 3

(Figure 2) making it di�cult to interpret variations in Dp and
Dp,n in this dataset. Future e�orts to sample more oligotrophic
regions of the Red Sea may shed further light on variations in
these two parameters.

3.4. Understanding the Relationship
Between Phytoplankton Biomass and Size
Structure in a Future Ocean
Two key ecological indicators, phytoplankton biomass and
size structure, are seen to covary in a predictable manner
in coastal waters of the Red Sea (Figure 2), with small cells
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TABLE 5 | Parameter values for Equations (5)–(8).

Model parameter Equation Parameters for Equations (5) and (8) $

Cm
p,n

� 5 G1 D –3.56 (� 1.33) G2 D –1.47 (� 0.86) G3 D 28.34 (� 0.87) G4 D 0.00 (� 0.171)

Cm
p

� 6 H1 D 1.20 (� 0.30) H2 D 2.58 (� 2.23) H3 D 27.28 (� 0.60) H4 D –0.61 (� 0.58)

Dp,n 7 J1 D 0.058 (� 0.010) J2 D 5.86 (� 4.87) J3 D 28.01 (� 0.31) J4 D 0.88 (� 0.01)

Dp 8 K1 D 0.097 (� 0.019) K2 D 5.34 (� 4.49) K3 D 27.82 (� 0.21) K4 D 0.60 (� 0.02)

$ Model parameters are computed as the median of the bootstrap parameter distributionand bracket parameter values refer to median absolute deviation on the distribution.
� Denotes units in mg m� 3.

FIGURE 4 | In�uence of temperature on the relationship between size-fractionated chlorophyll and total chlorophyll, when incorporating Equations (5)–(8) into the
three-component model. Top row shows the size-fractions ofchlorophyll and bottom row the fractions of total chlorophyll in each size class, all plotted as a function of
total chlorophyll. Dashed black lines refer to the model using a single set of parameters (Table 2 ).

dominant at low chlorophyll concentrations and large cells at
high concentrations, consistent with studies in other regions
(Raimbault et al., 1988; Chisholm, 1992; Uitz et al., 2006; Brewin
et al., 2010). These predictable relationships have been exploited
for the development of ocean-color algorithms (IOCCG, 2014),
and for the validation of, and assimilation of data into, marine
ecosystem models (Ward et al., 2012; Hirata et al., 2013;
Holt et al., 2014; de Mora et al., 2016; Ciavatta et al., 2018;
Skákala et al., 2018). However, it has been recognized that
such relationships might be perturbed by changes in climate
(Sathyendranath et al., 2017).

The size-structure of the phytoplankton a�ects export of
large aggregates (Boyd and Newton, 1999), with large cells
thought to contribute more to the �ux of carbon at depth
than smaller phytoplankton, at similar levels of total chlorophyll
(Guidi et al., 2009), acknowledging small-celled carbon export
can be signi�cant (Richardson, 2019). The photosynthetic rate
of phytoplankton, for a given concentration of total chlorophyll,
has been shown to depend on size-structure (Platt and Jassby,
1976; Fernández et al., 2003; Morán et al., 2004; Uitz et al., 2008;
Álvarez et al., 2016; Brewin et al., 2017b; Curran et al., 2018;
Robinson et al., 2018a,b). Biological heating by phytoplankton

is in�uenced by the chlorophyll-speci�c absorption coe�cient,
which changes with size (Bricaud et al., 2004; Devred et al., 2006;
Uitz et al., 2008; Brewin et al., 2011). The structure of the marine
food web has also been found to depend on size composition
of phytoplankton (Maloney and Field, 1991). Models that tie
primary production and total chlorophyll, export production and
total chlorophyll, predict energy �ow and biological heatingusing
total chlorophyll, are all vulnerable to shifts in the relationship
between total and size-fractionated chlorophyll.

Standard, empirical algorithms used by space agencies
for estimating total chlorophyll from blue-green re�ectance
ratios, derived from satellite measurements of ocean color,
have been shown to incorporate implicitly a �xed relationship
between size-fractionated chlorophyll and total chlorophyll
(IOCCG, 2014), with low total chlorophyll concentrations
represented by the optical properties of small cells and high
concentrations by large cells (Dierssen, 2010; Sathyendranath
et al., 2017). These algorithms are also vulnerable to shifts
in the relationship between total and size-fractionated
chlorophyll, with implications for using ocean-color data
to detect climate variability (Sathyendranath et al., 2017). Tying
the relationship between total and size-fractionated chlorophyll
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FIGURE 5 | Time-series of data collected at KAUST harbor in Thuwal between 2016 and 2019. (A) time-series of water temperature and total chlorophyll (C), (B)
microphytoplankton chlorophyll (Cm), (C) nanophytoplankton chlorophyll (Cn), and (D) picophytoplankton chlorophyll (Cp). r represents the correlation coef�cient
between measurements and model (conducted in linear space).

to other environmental factors (e.g., temperature) could aid in
ocean-color algorithm development.

Results from this study indicate that, in the coastal waters
of the Red Sea, changes in the taxonomic composition of the
phytoplankton within a size class may a�ect the chlorophyll
in that size class. Therefore, to predict future changes in
size-fractionated chlorophyll, we need to understand how
phytoplankton taxonomic composition is likely to change. In
the coastal waters of the Red Sea, we found temperature to
correlate with taxonomic composition of picophytoplankton
and the partitioning of total chlorophyll into the three size
classes. Other studies in the Red Sea, using di�erent methods,
have con�rmed the in�uence of temperature on phytoplankton
taxonomic composition (Pearman et al., 2017). Temperature has

been shown as a key variable for predicting changes in taxonomic
composition in tropical oceans (Flombaum et al., 2013; Lange
et al., 2018; Agusti et al., 2019), temperate regions (Morán et al.,
2010; Flombaum et al., 2013; Brewin et al., 2017a), and in polar
waters (Li et al., 2009; Ward, 2015). Furthermore, as temperature
is a variable that is routinely measured from space, its integration
into models of ocean color could lead to improved estimates of
size-fractionated chlorophyll (Raitsos et al., 2008; Ward, 2015;
Brewin et al., 2017a), as well as other regional ocean-color
products used in ecological studies (Brewin et al., 2013, 2015a;
Raitsos et al., 2013, 2015, 2017; Racault et al., 2015; Gittings
et al., 2018; Kheireddine et al., 2018), putting us in a better
position to harness ocean-color data for detecting shifts in marine
ecosystems in the Red Sea.

Frontiers in Microbiology | www.frontiersin.org 11 September 2019 | Volume 10 | Article 1964



Brewin et al. Total and Size-Fractionated Chlorophyll-a in the Red Sea

FIGURE 6 | Relationship between temperature and picophytoplankton cell
counts. (A) Synechococcus vs. temperature and(B) Picoeukaryotes vs.
temperature. Solid line is a linear regression and symbols follow those of
Figures 1 , 2.

TABLE 6 | Average relative red �uorescence and cell size for each community of
picophytoplankton derived from the �ow cytometry data.

Variable Picoeukaryotes � Synechococcus � Prochlorococcus �

(N D 131) (N D 131) (N D 27)

Relative red
�uorescence (RFU)

0.89 (� 0.22) 0.031 (� 0.008) 0.004 (� 0.001)

Cell diameter (� m) 1.31 (� 0.05) 0.89 (� 0.02) 0.76 (� 0.01)

� Bracketed values� represent the median absolute deviation of the data.

4. SUMMARY

Using datasets of size-fractionated chlorophyll, �ow cytometry,
physical variables and nutrient concentrations, collectedover
a 4-year period in the coastal waters of the central Red Sea,
we analyzed the relationship between total chlorophyll and its
partitioning into three size classes of phytoplankton (pico-, nano-
and micro-phytoplankton) to address two research questions:
(1) Is the relationship between total and size-fractionated
chlorophyll in coastal waters of the Red Sea consistent with that
observed in other ocean basins? and (2) What factors in�uence
the relationship between total and size-fractionated chlorophyll?
A conceptual, three-component model was �tted to the data, that
describes the relationship between total chlorophyll and those

in the three size classes. Model �ts and model parameters were
comparable to studies �tting the model to datasets in other ocean
basins, demonstrating, in answer to research question (1), that
the relationship between total and size-fractionated chlorophyll
in the coastal waters of the Red Sea is consistent with that
observed in other ocean basins. We found the residuals in the �ts
to be signi�cantly correlated with water temperature (positively)
and picoeukaryote cell abundance (negatively), demonstrating, in
answer to research question (2), that temperature and taxonomic
composition are key factors in�uencing the relationship between
total and size-fractionated chlorophyll in the coastal waters of the
Red Sea.

We introduced a temperature-dependency on model
parameters that was subsequently found to improve
performance. Temperature was inversely related with
picoeukaryote cell abundance, with higher picoeukaryote
cell abundances in winter (cold) than summer (warm).
Picoeukaryotes are known to contain higher chlorophyll per
cell than picophytoplanktonic cyanobacteria and be larger
in size, possibly explaining a decrease in the maximum
chlorophyll concentration of small cells in the model (Cm

p
and Cm

p,n) with increasing temperature. This was supported
by additional analysis using the relative red �uorescence
and cell size estimates from �ow cytometer data. However,
we recognize additional evidence is needed to substantiate
the link between the temperature dependence of model
parameters and changes in the taxonomic composition of
phytoplankton. Our results highlight the importance of
temperature and taxonomic composition of phytoplankton
within each size class when exploring the relationship between
size-fractionated and total chlorophyll. This has implications
for the development of satellite ocean-color algorithms and
for predicting how ecosystem functioning may change in a
future ocean.
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