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Phytoplankton biomass and size structure are recognized as key ecological indicators.

With the aim to quantify the relationship between these two ecological indicators in

tropical waters and understand controlling factors, we analyzed the total chlorophyll-a

concentration, a measure of phytoplankton biomass, and its partitioning into three

size classes of phytoplankton, using a series of observations collected at coastal

sites in the central Red Sea. Over a period of 4 years, measurements of flow

cytometry, size-fractionated chlorophyll-a concentration, and physical-chemical variables

were collected near Thuwal in Saudi Arabia. We fitted a three-component model

to the size-fractionated chlorophyll-a data to quantify the relationship between

total chlorophyll and that in three size classes of phytoplankton [pico- (<2µm),

nano- (2–20µm) and micro-phytoplankton (>20µm)]. The model has an advantage over

other more empirical methods in that its parameters are interpretable, expressed as

the maximum chlorophyll-a concentration of small phytoplankton (pico- and combined

pico-nanophytoplankton, Cm
p and Cm

p,n, respectively) and the fractional contribution of

these two size classes to total chlorophyll-a as it tends to zero (Dp and Dp,n). Residuals

between the model and the data (model minus data) were compared with a range of

other environmental variables available in the dataset. Residuals in pico- and combined

pico-nanophytoplankton fractions of total chlorophyll-a were significantly correlated with

water temperature (positively) and picoeukaryote cell number (negatively). We conducted

a running fit of the model with increasing temperature and found a negative relationship

between temperature and parameters Cm
p and Cm

p,n and a positive relationship between

temperature and parameters Dp and Dp,n. By harnessing the relative red fluorescence

of the flow cytometric data, we show that picoeukaryotes, which are higher in cell

number in winter (cold) than summer (warm), contain higher chlorophyll per cell than other

picophytoplankton and are slightly larger in size, possibly explaining the temperature

shift in model parameters, though further evidence is needed to substantiate this
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finding. Our results emphasize the importance of knowing the water temperature and

taxonomic composition of phytoplankton within each size class when understanding their

relative contribution to total chlorophyll. Furthermore, our results have implications for the

development of algorithms for inferring size-fractionated chlorophyll from satellite data,

and for how the partitioning of total chlorophyll into the three size classes may change in

a future ocean.

Keywords: phytoplankton, size, chlorophyll, Red Sea, temperature

1. INTRODUCTION

Phytoplankton are a critical component of the Earth’s system.
Absorbing incoming solar radiation, CO2 and synthesizing
organic matter, they are responsible for half of the planetary
primary production (Longhurst et al., 1995; Field et al., 1998),
modulate oceanic carbon, and provide energy for the majority
of marine life. Light absorption by phytoplankton in the ocean
is dependent on its biomass. Most of the light absorbed by
phytoplankton is lost as heat, thus variations in phytoplankton
biomass modulate solar heating in the ocean (Sathyendranath
et al., 1991). A small component of absorbed light is used
by phytoplankton in photosynthesis, making phytoplankton
biomass critical for marine primary production and for energy
transfer to higher trophic levels, impacting global fisheries catch
(Chassot et al., 2010).

A second important characteristic of phytoplankton is its size
structure. A suite of phytoplankton biochemical functions are
controlled by size, including: metabolic rate, growth and nutrient
uptake (Platt and Jassby, 1976; Platt and Denman, 1977, 1978;
Maloney and Field, 1991; Chisholm, 1992; Marañón, 2009, 2015;
Finkel et al., 2010). The absorption of light by an assemblage
of phytoplankton of known biomass varies with size structure
(Morel and Bricaud, 1981; Prieur and Sathyendranath, 1981;
Bricaud et al., 2004; Devred et al., 2006; Brewin et al., 2011).
Therefore, phytoplankton size also influences photosynthetic rate
and ocean heating (Sathyendranath and Platt, 2007; Uitz et al.,
2008; Brewin et al., 2017b). The sinking rates of phytoplankton
are impacted by size, with large-celled phytoplankton thought
to be responsible for a large fraction of export production and
small-celled phytoplankton for recycled production (Eppley and
Peterson, 1979; Michaels and Silver, 1988; Boyd and Newton,
1999; Laws et al., 2000; Guidi et al., 2009; Briggs et al., 2011;
Mouw et al., 2016), at the same time acknowledging small-celled
phytoplankton carbon export can also be significant (Mouw
et al., 2016; Richardson, 2019). The size of phytoplankton is
also thought to influence the structure of the marine food chain
(Legendre and Le Fevre, 1991; Maloney and Field, 1991). These
are some of the reasons why phytoplankton biomass and size
structure are considered as two key ecological indicators in the
marine environment (Platt and Sathyendranath, 2008).

A common measure of phytoplankton biomass is the total
chlorophyll-a concentration (representing the sum of mono-
and divinyl chlorophyll-a, chlorophyllide-a, and the allomeric
and epimeric forms of chlorophyll-a, hereafter referred to
collectively as total chlorophyll), the major photosynthetic

pigment in marine phytoplankton. Unlike phytoplankton
carbon, which is more difficult to measure, total chlorophyll
can be routinely estimated in situ (e.g., fluorometrically or using
High Performance Liquid Chromatography, HPLC) or through
satellite remote-sensing of ocean color (O’Reilly et al., 1998).
Conventionally, phytoplankton size structure is quantified by
partitioning biomass (total chlorophyll) into three size classes
[pico- (<2µm), nano- (2–20µm) and micro-phytoplankton
(>20µm); Sieburth et al., 1978], with the role of each
thought to differ in the cycling of key elements such as
carbon, with taxonomic composition, nutrient concentrations
and environmental conditions influencing the composition of the
three size classes (IOCCG, 2014).

The relationship between total chlorophyll and that contained
in each of the three size classes has been studied thoroughly
in some regions (Raimbault et al., 1988; Chisholm, 1992;
Goericke, 2011; Marañón et al., 2012; López-Urrutia and Morán,
2015), with picophytoplankton known to contribute most to
total chlorophyll at low concentrations, nanophytoplankton at
intermediate concentrations, and microphytoplankton at high
concentrations (IOCCG, 2014). This relationship has been
quantified statistically (Uitz et al., 2006), empirically (Hirata
et al., 2011) and more mechanistically (Brewin et al., 2010;
Devred et al., 2011), at local and global scales (IOCCG, 2014).
One approach to modeling this relationship, that has proven to
be a popular choice (e.g., Brotas et al., 2013; Lin et al., 2014;
Sammartino et al., 2015; Sahay et al., 2017; Hu et al., 2018;
Lamont et al., 2018; Liu et al., 2018; Sun et al., 2018), is the
three-component model of Brewin et al. (2010). The model is
based on two exponential functions (Sathyendranath et al., 2001;
Devred et al., 2006) that relate the fraction of total chlorophyll
by combined pico- and nanophytoplankton (Fp,n, cells <20µm)
and picophytoplankton (Fp, cells <2µm) to total chlorophyll
concentration (C) according to

Fp,n =
Cm
p,n[1− exp(−

Dp,n

Cm
p,n
C)]

C
, (1)

and

Fp =
Cm
p [1− exp(−

Dp

Cm
p
C)]

C
. (2)

Model parameters are relatively easy to interpret, with Cm
p,n

and Cm
p representing the asymptotic maximum chlorophyll

concentrations for the associated size classes (<20µm and
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TABLE 1 | Symbols and definitions.

Symbol Definition

C Total chlorophyll concentration (mgm−3)

Cp Chlorophyll concentration for picoplankton (cells < 2µm) (mgm−3)

Cp,n Chlorophyll concentration for combined nano-picoplankton (cells < 20µm) (mgm−3 )

Cn Chlorophyll concentration for nanoplankton (cells 2− 20µm) (mgm−3 )

Cm Chlorophyll concentration for microplankton (cells > 20µm) (mgm−3)

Cmp,n Asymptotic maximum value of Cp,n (cells <20µm) (mgm−3)

Cmp Asymptotic maximum value of Cp (cells <2µm) (mgm−3 )

DOC Dissolved organic carbon (µmol L−1)

Dp,n Fraction of total chlorophyll in combined nano-picoplankton (cells < 20µm) as total chlorophyll tends to zero

Dp Fraction of total chlorophyll in picoplankton (cells < 2µm) as total chlorophyll tends to zero

Fp Fraction of total chlorophyll for picoplankton (cells < 2µm)

Fp,n Fraction of total chlorophyll for combined nano- picoplankton (cells < 20µm)

Fn Fraction of total chlorophyll for nanoplankton (cells 2− 20µm)

Fm Fraction of total chlorophyll for microplankton (cells > 20µm)

G1 Parameter of Equation (5) controlling lower and/or upper bound in Cmp,n

G2 Parameter of Equation (5) controlling slope of change in Cmp,n with T

G3 Parameter of Equation (5) controlling the T mid-point of G2

G4 Parameter of Equation (5) controlling lower and/or upper bound in Cmp,n

H1 Parameter of Equation (6) controlling lower and/or upper bound in Cmp

H2 Parameter of Equation (6) controlling slope of change in Cmp with T

H3 Parameter of Equation (6) controlling the T mid-point of H2

H4 Parameter of Equation (6) controlling lower and/or upper bound in Cmp

J1 Parameter of Equation (7) controlling lower and/or upper bound in Dp,n

J2 Parameter of Equation (7) controlling slope of change in Dp,n with T

J3 Parameter of Equation (7) controlling the T mid-point of J2

J4 Parameter of Equation (7) controlling lower and/or upper bound in Dp,n

K1 Parameter of Equation (8) controlling lower and/or upper bound in Dp

K2 Parameter of Equation (8) controlling slope of change in Dp with T

K3 Parameter of Equation (8) controlling the T mid-point of K2

K4 Parameter of Equation (8) controlling lower and/or upper bound in Dp

MAD Median absolute difference between estimated and measured data

r Pearson correlation coefficient

RFU Relative red fluorescence

RMSD Root mean square difference between estimated and measured data

T Water temperature (◦C)

TDN Total dissolved nitrogen (µmol L−1)

<2µm, respectively), and Dp,n and Dp representing the fraction
of each size-class relative to total chlorophyll as total chlorophyll
tends to zero. Once suitable parameters are obtained, and
Fp,n and Fp derived, the fractions of nano- (Fn) and micro-
phytoplankton (Fm) can be computed as Fn = Fp,n − Fp and
Fm = 1 − Fp,n. The chlorophyll concentration in each size class
(Cp, Cn, and Cm) can be calculated simply by multiplying the
fractions (Fp, Fn, and Fm) by total chlorophyll (C).Table 1 defines
variables, parameters and abbreviations used in the manuscript.

Although such models have proven successful at capturing the
relationship between total chlorophyll and chlorophyll contained
in each size class, it has been recognized that such relationships
may be perturbed by climate variability (Brewin et al., 2012;
Racault et al., 2014; Agirbas et al., 2015), potentially impacting
how the marine ecosystem functions (Sathyendranath et al.,
2017). Furthermore, relationships have been shown to differ

with changes in environmental conditions, for example, with
changes in water temperature and light availability (Brewin
et al., 2015b, 2017a; Ward, 2015). To predict the response of
the marine ecosystem to fluctuations in climate, it is critical to
improve our understanding of how the relationships between
these two key ecological indicators may change with changing
environmental conditions. Among the warmest and most saline
waters on the planet (Longhurst, 2007; Belkin, 2009; Raitsos et al.,
2011; Yao et al., 2014a,b), and believed to reflect environmental
conditions predicted in other marine regions decades from
now (Christensen et al., 2007), the Red Sea is an interesting
location to explore relationships between these indicators and
environmental variability.

In this study, we make use of a dataset collected in coastal
waters of the central Red Sea over a 4-year period, consisting of
measurements of total chlorophyll, size-fractionated chlorophyll,
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FIGURE 1 | Study site. (A) Location of the study site with respect to the broader Red Sea. (B) Study site near the coastal waters of Thuwal in the Kingdom of Saudi

Arabia and the locations of the three datasets used in the study. KAEC refers to the King Abdullah Economic City and KAUST to the King Abdullah University for

Science and Technology.

picophytoplankton (abundance and cell properties by flow
cytometry) and nutrient concentrations. We use these data,
together with the three-component model of Brewin et al. (2010),
with the aim to quantify the relationship between total and
size-fractionated chlorophyll in tropical waters and improve our
understanding on what controls this relationship. Specifically, we
aim to address the following two research questions: (1) Is the
relationship between total and size-fractionated chlorophyll in
coastal waters of the Red Sea consistent with that observed in
other ocean basins? (2) What factors influence the relationship
between total and size-fractionated chlorophyll?

2. METHODS

2.1. Study Area: Coastal Waters of the Red
Sea
The chosen study site was located in the central Red
Sea (Figure 1A) in the coastal waters near Thuwal in the
Kingdom of Saudi Arabia (Figure 1B). We made use of water
samples collected by King Abdullah University for Science and
Technology (KAUST) at three locations: (1) in KAUST harbor
(22.3065◦N, 39.1029◦E; Silva et al., 2019), where weekly sampling
of surface waters was conducted between 2015 and 2017 and
monthly sampling of surface waters during 2018; (2) near King
Abdullah Economic City (KAEC, 22.4712◦N, 39.0345◦E,∼700m
depth; Calleja et al., 2018), where surface waters (5m depth)
were sampled around midday covering the seasonal variability
between 2015 and 2017, on board of KAUST R.V. Thuwal and
KAUST R.V. Explorer; and (3) near Abushusha reef, just offshore
from KAUST (22.321◦N, 39.027◦E; see Figure 1B), at the surface
of a ∼70m depth station, sampled on a monthly basis during
2018 on board the KAUST Durrat Al-Bahr Almar 1 and 5 vessels.
All water samples were collected during daylight hours (08:30–
14:30 local time) using a pre-clean (acid-washed) polycarbonate

9 L carboy (KAUST Harbor and Abushusha reef) or Niskin
bottles (the rest of the sampling).

2.2. Size-Fractionated Filtration (SFF) Data
The size-fractionated filtration (SFF) method for determining
the chlorophyll concentration in each size class involves filtering
water through filters of different pore sizes. For eachwater sample
collected, 200ml of sea water were filtered sequentially through
20, 2, and 0.2µm polycarbonate filters. Following filtration,
the filters were stored at −80◦C for at least 24 h. Pigment
extraction was made by submerging the filters in 90% acetone
for 24 h at 4◦C. Samples were then analyzed using a Triology
Fluorometer (Turner Designs), pre- and post-calibrated using
pure chlorophyll-a as a standard (Anacustis nidulans, Sigma
Aldrich). The total chlorophyll concentration was taken as the
sum of the size fractions for each sample. The concentration
of chlorophyll passing through the 2µm filter and retained
on the 0.2µm filter was designated as picophytoplankton
chlorophyll (Cp), that passing through the 20µm filter was
designated as pico- and nano-phytoplankton chlorophyll (Cp,n),
the chlorophyll retained on the 20µm filter was designated as
microphytoplankton chlorophyll (Cm), and the concentration of
chlorophyll retained on the 2µmfilter, having passed through the
20µm filter, was designated as nanophytoplankton chlorophyll
(Cn). The fractions of each size class relative to total chlorophyll
(Fp, Fp,n, Fn, and Fm) were computed by dividing the chlorophyll
concentration in each size class (Cp, Cp,n, Cn, and Cm) by total
chlorophyll concentration (C). In total, 136 SFF samples were
available, 8 from KAEC, 116 from KAUST harbor and 12 from
Abushusha reef.

2.3. Model Parameterization
Model parameters (Cm

p,n, Cm
p , Dp,n, and Dp) for the three-

component model of Brewin et al. (2010) were derived by
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TABLE 2 | Parameter values for Equations (1) and (2) compared with parameters derived using the size-fractionated filtration (SFF) method in other regions.

Study Parameters for Equations (1) and (2) Location N#

Cp,n
m∗

Cp
m∗

Dp,n Dp

This Study$ 1.23 (0.83↔2.78) 0.43 (0.33↔0.68) 0.94 (0.86↔1.0) 0.66 (0.58↔0.73) Red Sea 136

Brewin et al., 2014b$ 2.61 (1.82↔4.09) 0.73 (0.54↔1.11) 0.95 (0.92↔0.98) 0.76 (0.71↔0.82) Atlantic Ocean 408

Corredor-Acosta et al., 2018$ 2.12 (1.75↔2.54) 0.19 (0.11↔0.27) 0.92 (0.88↔0.96) 0.21 (0.16↔0.33) Central-southern Chile 182

Ward, 2015 0.79 0.16 0.98 0.85 Global Ocean 620

$ Model parameters are computed as the median of the bootstrap parameter distribution and bracket parameter values refer to the 2.5% and 97.5% confidence intervals on the

distribution.
# N, Number of samples used for model parameterization.
∗ denotes units in mgm−3.

fitting Equations (1) and (2) using a standard, nonlinear least-
squared fitting procedure (Levenberg-Marquardt, IDL Routine
MPFITFUN, Moré, 1978; Markwardt, 2008) using the Fp, Fp,n
and C SFF data as input. The parameters Dp,n and Dp were
constrained to be less than or equal to one, since size-fractionated
chlorophyll cannot exceed total chlorophyll. The method of
bootstrapping (Efron, 1979; Brewin et al., 2015b) was used to
randomly resample (utilizing IDL Routine RANDOMU) with
replacement the dataset and re-fit equations for each iteration
(1,000 iterations). Median values and 95% confidence intervals
were taken from the resulting parameter distributions (see
Table 2). Model parameters are compared with other model fits
using SFF data in other ocean basins (Table 2).

2.4. Flow Cytometry, Nutrient Sampling
and Physical Variables
For the 136 samples with SFF data, measurements of flow
cytometry, nutrients, dissolved organic carbon (DOC) and total
dissolved nitrogen (TDN) were also collected. The abundances of
three picophytoplankton groups, Prochlorococcus, Synechococcus
and picoeukaryotes, were obtained from each water sample using
BD FACSCanto flow cytometer, applying the methodology as
detailed in Gasol and Morán (2015). We measured the red
fluorescence as a proxy for the chlorophyll content and the right
angle light scatter or side scatter (SSC) as a proxy of cell size,
following Calvo-Díaz andMorán (2006). These values were made
relative to those of the 1µm latex fluorescent beads added to each
sample as internal standard (Molecular Probes, ref. F-13081).
The empirical calibration between relative SSC and cell diameter
described in Calvo-Díaz and Morán (2006) was used to estimate
the cell size of each of the three picophytoplankton groups.

Nutrients were measured by filtering seawater through pre-
combusted (450 ◦C, 4.5 h) GF/F filters. The samples were
subsequently frozen and stored at −20◦C until analysis. Nitrate,
nitrite, silicate, and phosphate were analyzed using a segmented
flow analyzer from Seal Analytical, with standards prepared in
acid-washed glassware using a nutrient-free artificial seawater
matrix (Silva et al., 2019). Samples for DOC and TDN analysis
were passed through an online acid-cleaned polycarbonate filter
cartridge, holding a pre-combusted (450 ◦C, 4.5 h) GF/F filter,
attached directly to the Niskin bottle, and collected into acid
cleaned and pre-combusted glass vials. Samples were acidified

with H3PO4 until a pH of 1-2, and kept in the dark at 4◦C
until analysis at the laboratory by high temperature catalytic
oxidation (HTCO) using a Shimadzu TOC-L (Calleja et al.,
2019). The accuracy of the estimates were monitored using
reference material of deep-sea carbon water (42–45µmolC L−1

and 31–33µmol NL−1) and low carbon water (1–2µmolC L−1)
provided by D. A. Hansell (Univ. of Miami).

Water temperature and salinity measurements were collected
for each sample. In KAUST harbor and at Abushusha reef,
this was conducted immediately prior to sampling with an
environmental probe (YSI probe; Silva et al., 2019). At KAEC,
water temperature and salinity measurements were obtained
using a SBE 9 (Sea-Bird Electronics) Conductivity-Temperature-
Depth (CTD) probe. All data used in this study can be accessed
in the Supplementary Material.

2.5. Statistical Tests
To evaluate the model performance, the Pearson linear
correlation coefficient (r, IDL Routine CORRELATE) and the
median absolute difference (MAD) were used. The significance
(p) of the correlation coefficient (r) was computed using the t-
statistic and applying a two-sided t-test (utilizing IDL Routine
T_PDF). The correlation was deemed significant if p < 0.05 and
highly significant if p < 0.001. The MAD was computed as

MAD = median(|Xi,E − Xi,M|), (3)

where X is the variable, subscript i denotes the index in
the data series, from 1 to N where N is the length of the
series, the subscript M denotes the measured variable and
E the estimated variable from the model. Considering that
the chlorophyll concentration is approximately log-normally
distributed (Campbell, 1995), statistical tests were performed
in log10 space when using chlorophyll as the variable (unless
explicitly stated), and in linear space when using the fraction
of total chlorophyll in each size class as the variable. The MAD
was used as it is robust to non-Gaussian distributions and
outliers. For comparison with results from other studies, we also
computed the root mean square difference (RMSD), according to

RMSD =

[

1

N

N
∑

i=1

(Xi,E − Xi,M)2
]1/2

. (4)
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FIGURE 2 | Fits of the three-component model to size-fractionated filtration (SFF) data collected in the study. Top row shows the absolute chlorophyll concentrations

(Cm, Cp,n, Cn, and Cp) and bottom row the fractions (Fm, Fp,n, Fn, and Fp) plotted as a function of total chlorophyll (C), with the tuned three-component model

(parameters from Table 2) overlain. Gray shading represents a model ensemble varying parameters between their confidence intervals (Table 2).

3. RESULTS AND DISCUSSION

3.1. Fit of Three-Component Model to SFF
Data
The three-component model was seen to capture the general
changes in size-fractionated chlorophyll (Cp, Cn, Cp,n, and
Cm) and fractions of total chlorophyll (Fp, Fn, Fp,n, and Fm)
when plotted as a function of total chlorophyll (Figure 2
and Table 3). Statistical performance indicates that the three-
component model fits the SFF data well (Table 3), with
comparable or lower RMSD values when compared with
model fits in other regions using SFF measurements. Model
parameters also compare favorably with other model fits using
SFF data in other ocean basins (Table 2). The conceptual
framework of the three-component model is seen to hold in
coastal Red Sea waters, with the abundance of small cells
increasing to a given chlorophyll concentration, beyond which
chlorophyll increases through the addition of larger size classes
of phytoplankton (Raimbault et al., 1988; Chisholm, 1992;
Goericke, 2011). This upper bound for small cells increases
with increasing size (Brewin et al., 2014b), with assemblages of
phytoplankton <20µm in size having a significantly higher upper
bound (Cm

p,n) than assemblages of phytoplankton <2µm in size
(Cm

p , see Table 2). In agreement with other studies (IOCCG,
2014), picophytoplankton contribution to total chlorophyll
is highest at low total chlorophyll, nanophytoplankton at
intermediate total chlorophyll, and microphytoplankton at high
total chlorophyll (Figure 2).

3.2. Relationship Between Model Residuals
and Other Variables
Although themodel fits the data reasonably well, it is by nomeans
perfect (Table 3, Figure 2). Differences between the model and
data can be related either to uncertainties in the measurements
(Brewin et al., 2014a), or simply to inability of the model to

account for real variability surrounding the general relationship
between size-fractionated chlorophyll and total chlorophyll.

Whereas the SFF method has an advantage in that the sizes
of phytoplankton are explicitly partitioned, in comparison with
other methods of determining size-fractionated chlorophyll (e.g.,
by High Performance Liquid Chromatography pigment analysis;
Vidussi et al., 2001; Uitz et al., 2006; Brewin et al., 2010;
Devred et al., 2011; Kheireddine et al., 2017), there are still
uncertainties in the measurements. The filters can retain particles
smaller than the nominal pore size, which is dependent on the
morphology of the particles, cohesiveness of the particles, volume
filtered and on the filter types used (Sheldon, 1972; Logan, 1993;
Logan et al., 1994; Chavez et al., 1995; Gasol and Morán, 1999;
Knefelkamp et al., 2007; Dall’Olmo et al., 2009). On the other
hand, a certain portion of particles larger than the nominal
pore size can also pass through the filter (e.g., from overlapping
holes), and be accounted for in smaller-size fractions. This is
dependent on whether the phytoplankton break apart during the
filtration process, on themorphology of the particles, and on their
orientation as they pass through the filter. The impact of these
factors on measurement uncertainties is difficult to quantify,
though it has been suggested that the clogging of filters and
the inability to define accurately the pore size of filters, are two
key issues (Droppo, 2000). Simultaneous measurements made by
multiple types of in situmethods are needed to make an accurate
diagnosis of uncertainty in the SFF technique (Nair et al., 2008;
Brewin et al., 2014a). Though beyond the scope of this study,
future efforts are needed in this direction.

While acknowledging that the measurements have
uncertainties, to explore how the relationship between total
and size-fractionated chlorophyll could be influenced by other
ecological factors and consequently how the three-component
model could be improved, we investigated whether the residuals
(model minusmeasurement) were correlated with other variables
in the dataset. We focused on the differences between model and
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measurement for Fp,n and Fp, considering that these fractions
were used to parametrize the model (Equations 1 and 2).

Table 4 shows correlations between residuals in Fp,n and Fp
and other variables in the dataset. As anticipated, there is no
correlation between residuals and total chlorophyll, highlighting
that the model fit captured the variation in Fp,n and Fp as a
function of total chlorophyll. For Fp,n, highly significant (p <

0.001) correlations were observed with temperature (positive),
and significant correlations (p < 0.05) with picoeukaryote cell
abundance (negative) and salinity (positive). For Fp, significant
(p < 0.05) correlations were observed with temperature, TDN,
silicate, nitrite (all positive) and picoeukaryote cell abundance
(negative). Of all the variables, Fp,n and Fp were both significantly
correlated with temperature and picoeukaryote cell number.
These two variables were inversely correlated (r = −0.40, p <

0.001) in the dataset, with higher picoeukaryote cell numbers in
the winter and lower picoeukaryote cell numbers in summer.

Residuals between the three-component model and fitted
data have previously been shown to vary with temperature in
polar waters and in the North Atlantic (Ward, 2015; Brewin
et al., 2017a), but not in tropical seas with temperatures
consistently exceeding 22 ◦C, suggesting seasonality may also
play an important role in tropical waters. To investigate the
impact of temperature on the parameters of the three-component
model we followed a similar approach to Brewin et al. (2017a).
This involved sorting the dataset by increasing temperature and
conducted a running fit of the model (Equations 1 and 2) as
a function of temperature using a bin size of 60 samples. This
involved sliding the bin from low to high temperature and fitting
Equations (1) and (2) each time the bin slides (increments of 1
sample). For each fit, we used the method of bootstrapping (1,000
iterations), and derived 13.6 and 86.4% confidence intervals (1
standard deviation), as well as 2.5 and 97.5% confidence intervals
(2 standard deviation), for each parameter distribution in each
bin (Figure 3), and assessed the relationship between the median
parameters and average temperature of the bins.

We observed a positive relationship between Dp,n (fraction of
cells <20µm to C as C tends to zero) and temperature (r = 0.80,
p < 0.001) and Dp (fraction of cells <2µm to C as C tends to
zero) and temperature (r = 0.63, p < 0.001, Figure 3), and an
inverse relationship between Cm

p,n and temperature (r = −0.51,
p < 0.001) and Cm

p and temperature (r = −0.89, p < 0.001).
To capture these relationships, we fitted logistic functions to
the data following the approach of Brewin et al. (2017a). The
quantities Cm

p,n and C
m
p were modeled as functions of temperature

(T) according to

Cm
p,n = 1− {

G1

1+ exp[−G2(T − G3)]
+ G4}, (5)

and

Cm
p = 1− {

H1

1+ exp[−H2(T −H3)]
+H4}, (6)

where G1 and G4 represent the upper and lower bounds of Cm
p,n,

G2 the slope of change in Cm
p,n with T, and G3 the T mid-point

of the slope between Cm
p,n and T. For Cm

p , Hi, where i = 1 to 4, is

Frontiers in Microbiology | www.frontiersin.org 7 September 2019 | Volume 10 | Article 1964

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Brewin et al. Total and Size-Fractionated Chlorophyll-a in the Red Sea

TABLE 4 | Correlations between model residuals (model minus measurements) in the fraction of total chlorophyll by combined pico- and nano-phytoplankton (Fp,n) and

picophytoplankton (Fp, cells <2µm) and other variables collected in the dataset.

Variable Fp,n Fp

r p N r p N

Total chlorophyll (C) 0.00 0.962 136 −0.03 0.740 136

Temperature 0.34 0.000 134 0.26 0.002 134

Salinity 0.23 0.008 133 −0.07 0.398 133

DOC 0.16 0.073 132 0.03 0.737 132

TDN 0.16 0.072 133 0.17 0.045 133

Silicate 0.05 0.590 122 0.18 0.046 122

Nitrite 0.12 0.193 122 0.26 0.004 122

Nitrate 0.06 0.533 122 0.15 0.090 122

Phosphate −0.09 0.322 121 0.07 0.464 121

Picoeukaryotes cells ∗ –0.18 0.040 131 –0.20 0.022 131

Synechococcus cells ∗ −0.04 0.638 131 −0.13 0.127 131

Prochlorococcus cells ∗ −0.26 0.187 27 −0.25 0.212 27

Bold indicates significant correlations (p < 0.05).
∗ Cell numbers were log10 transformed when running the correlations.

analogous to Gi for Cm
p,n. Similarly, Dp,n and Dp were modeled as

a function of temperature (T) according to

Dp,n =
J1

1+ exp[−J2(T − J3)]
+ J4, (7)

and

Dp =
K1

1+ exp[−K2(T − K3)]
+ K4, (8)

where J1 and J4 represent the upper and lower bounds of Dp,n, J2
the slope of change in Dp,n with respect to T, and J3 the T mid-
point of the slope between Dp,n and T. For Dp, Ki is analogous
to Ji for Dp,n. The parameters for Equations (5)–(8) were derived
by fitting the equations to the median parameter values for each
bin and average temperature of each bin, using a nonlinear
least-squared fitting procedure with bootstrapping (utilizing IDL
Routines described in Section 2.3), and by constraining input to
plausible values (0 to 10 for Cm

p,n and C
m
p and <1 for Dp,n and Dp).

Parameter values for Equations (5)–(8) are provided in Table 5.
The functions are seen to capture the general relationships
observed in the dataset (Figure 3). Nonetheless, as this analysis
is based on a relatively small dataset (136 samples), we recognize
additional data is required to substantiate the relationship
between model parameters and temperature observed here.

After Equations (5)–(8) were incorporated into the model,
residuals between the temperature-dependent model and data
were no longer significantly correlated with water temperature
or picoeukaryote cell number (p > 0.05 for both Fp,n and Fp
for these correlations), confirming that the new parameterization
accounted for the relationships originally observed between
the residuals and model output (Table 4). Furthermore, model
performance was seen to improve using the temperature-
dependent model, with lower MAD values for all size classes
and higher correlation coefficients and lower RMSD for most

size classes (Table 3). Figure 4 illustrates how the relationship
between size-fractionated chlorophyll and total chlorophyll
changes with temperature, when incorporating Equations (5)–(8)
into the model.

Figure 5A shows a time-series of water temperature and
total chlorophyll at KAUST harbor between 2016 and 2019.
Clear seasonal cycles are seen in temperature, but not for
total chlorophyll, with sporadic variations occurring at different
times. Figures 5B–D show chlorophyll for micro-, nano- and
picophytoplankton from in situ data (black) and estimates
from the model (red), driven by total chlorophyll and water
temperature (Figure 5A, Equations 1, 2, 5, 6, 7, and 8). In
a highly-complex coastal environment, the three-component
model is seen to explain around 50% of the variance in size-
fractionated chlorophyll (r ≥ 0.7 correlation in linear space,
Figure 5). Considering that both water temperature (sea-surface
temperature) and chlorophyll are accessible through satellite
visible and thermal radiometry, the approach offers the potential
for estimating size-fractionated chlorophyll from satellite data in
the central Red Sea.

3.3. Influence of Changes in Taxonomic
Composition of Picophytoplankton on
Model Parameters
Our understanding of how model parameters change with
temperature can be guided by analysing the flow cytometry
data. Figure 6 shows the relationship between temperature
and cell abundance for the two dominant picophytoplankton,
Synechococcus and picoeukaryotes, as determined by flow
cytometry. For the three sites sampled, with differing conditions
(depth and picophytoplankton community composition), there
is a clear shift in the composition of picophytoplankton with
temperature, Synechococcus being positively correlated with
temperature and picoeukaryotes inversely correlated (Figure 6).
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FIGURE 3 | Relationship between the parameters of the three-component

model and water temperature derived from sorting the dataset and conducted

a running fit of the model (bin size 60 measurements) with increasing

temperature. Average water temperature of each bin is on the abscissa and

13.6 and 86.4% (darker shading) and 2.5% and 97.5% (lighter shading)

confidence intervals of the parameters from a bootstrap fit (1,000 iterations) on

the ordinate (confidence intervals are constrained to realistic values, 0 to 10 for

Cmp,n and Cmp and <1 for Dp,n and Dp). (A) Shows the relationship between

temperature and the parameters Dp,n and Dp. Solid black line is the model of

Brewin et al. (2017b) tuned to the data (Equation 8) for cells <2µm and

dashed line for cells <20µm (Equation 7). (B) Shows the relationship between

temperature and the parameters Cmp,n and Cmp . Solid black line is the model of

Brewin et al. (2017b) tuned to the data (Equation 6) for cells <2µm and

dashed line (Equation 5) for cells <20µm.

Table 6 lists the average relative red fluorescence and cell
size for each community of picophytoplankton derived from the
flow cytometry data. Picoeukaryotes, as expected, were found
to be larger in size and to have higher relative red fluorescence
than the cyanobacteria (Table 6), consistent with studies in other
regions (Blanchot et al., 2001; Calvo-Díaz et al., 2008). Relative
red fluorescence has been used as a proxy of per cell chlorophyll
concentration (Olson et al., 1983; Li et al., 1993; Veldhuis et al.,
1997; Veldhuis and Kraay, 2000; Calvo-Díaz and Morán, 2006;
Calvo-Díaz et al., 2008; Álvarez et al., 2017), acknowledging that
there are natural variations in fluorescence per unit of chlorophyll
among species (Sosik et al., 1989), size (Veldhuis et al., 1997), and

with changes in phytoplankton physiology (Veldhuis and Kraay,
1993). Other factors can also impact fluorescence measured by a
flow cytometer (Neale et al., 1989). If we multiply the relative red
fluorescence for all picophytoplankton groups by their respective
abundances, sum them up, then compare with Cp derived from
SFF measurements, we obtain a reasonable positive correlation
(r = 0.38, p < 0.001, N = 131), confirming the use of relative
fluorescence as proxy of per cell chlorophyll concentration in our
dataset. The increase in Cm

p with decreasing temperature could
therefore be associated with increasing picoeukaryotes numbers
at lower temperature. This group of picophytoplankton is larger
in size (1.31µm for picoeukaryotes compared with 0.89µm for
Synechococcus and 0.76µm for Prochlorococcus, see Table 6) and
can store higher concentrations of chlorophyll per cell (Table 6),
and may consequently result in higher Cm

p values. Similarly,
considering Cp constitutes the dominant portion of Cp,n in our
dataset (Figure 2), that picoeukaryote red fluorescence was found
to be correlated with Cn (r = 0.38, p < 0.001, N = 131) and
Cp,n (r = 0.33, p < 0.001, N = 131), and that the presense
of picoeukaryotes is often associated with the presense of larger
nanoeukaryotes (Tarran et al., 2006; Tarran and Bruun, 2015),
similarly links could be made with increases in the parameter
Cm
p,n at low temperature. Nonetheless, additional evidence (e.g.,

taxonomic composition of the larger size classes) is needed to
substantiate these linkages.

With regards to parameters Dp and Dp,n, it is worth recalling
that these parameters reflect the fraction of each size-class relative
to total chlorophyll as total chlorophyll tends to zero (i.e.,
ultra-oligotrophic waters). Picophytoplankton are thought to
dominate in oligotrophic conditions, owing to their competitive
advantage over larger cells in low nutrient conditions, a result
that is consistent with our model parameterization over the
entire temperature range (Dp > 0.6, Figure 4). However, we
see marginally higher Dp and Dp,n parameters in warmer waters
(summer, higher Synechococcus cell numbers) than cooler waters
(winter, higher picoeukaryote cell numbers). A decrease in Dp

and Dp,n with temperature has also been observed in other
regions, over a different temperature range (Brewin et al., 2017a).
There may be some direct effect of temperature on growth rates
of the different picophytoplankton communities (Eppley, 1972;
Chen et al., 2014) and their grazers (Steinberg and Landry, 2017),
that cause these differences and allow for an increasing presence
of larger cells (nano- and micro) in cooler oligotrophic waters.
However, it is worth noting that, as most of the dataset is very
coastal, chlorophyll concentrations rarely fall below 0.1mgm−3

(Figure 2) making it difficult to interpret variations in Dp and
Dp,n in this dataset. Future efforts to sample more oligotrophic
regions of the Red Sea may shed further light on variations in
these two parameters.

3.4. Understanding the Relationship
Between Phytoplankton Biomass and Size
Structure in a Future Ocean
Two key ecological indicators, phytoplankton biomass and
size structure, are seen to covary in a predictable manner
in coastal waters of the Red Sea (Figure 2), with small cells
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TABLE 5 | Parameter values for Equations (5)–(8).

Model parameter Equation Parameters for Equations (5) and (8)$

Cmp,n
∗ 5 G1 = –3.56 (±1.33) G2 = –1.47 (±0.86) G3 = 28.34 (±0.87) G4 = 0.00 (±0.171)

Cmp
∗ 6 H1 = 1.20 (±0.30) H2 = 2.58 (±2.23) H3 = 27.28 (±0.60) H4 = –0.61 (±0.58)

Dp,n 7 J1 = 0.058 (±0.010) J2 = 5.86 (±4.87) J3 = 28.01 (±0.31) J4 = 0.88 (±0.01)

Dp 8 K1 = 0.097 (±0.019) K2 = 5.34 (±4.49) K3 = 27.82 (±0.21) K4 = 0.60 (±0.02)

$ Model parameters are computed as the median of the bootstrap parameter distribution and bracket parameter values refer to median absolute deviation on the distribution.
∗ Denotes units in mgm−3.

FIGURE 4 | Influence of temperature on the relationship between size-fractionated chlorophyll and total chlorophyll, when incorporating Equations (5)–(8) into the

three-component model. Top row shows the size-fractions of chlorophyll and bottom row the fractions of total chlorophyll in each size class, all plotted as a function of

total chlorophyll. Dashed black lines refer to the model using a single set of parameters (Table 2).

dominant at low chlorophyll concentrations and large cells at
high concentrations, consistent with studies in other regions
(Raimbault et al., 1988; Chisholm, 1992; Uitz et al., 2006; Brewin
et al., 2010). These predictable relationships have been exploited
for the development of ocean-color algorithms (IOCCG, 2014),
and for the validation of, and assimilation of data into, marine
ecosystem models (Ward et al., 2012; Hirata et al., 2013;
Holt et al., 2014; de Mora et al., 2016; Ciavatta et al., 2018;
Skákala et al., 2018). However, it has been recognized that
such relationships might be perturbed by changes in climate
(Sathyendranath et al., 2017).

The size-structure of the phytoplankton affects export of
large aggregates (Boyd and Newton, 1999), with large cells
thought to contribute more to the flux of carbon at depth
than smaller phytoplankton, at similar levels of total chlorophyll
(Guidi et al., 2009), acknowledging small-celled carbon export
can be significant (Richardson, 2019). The photosynthetic rate
of phytoplankton, for a given concentration of total chlorophyll,
has been shown to depend on size-structure (Platt and Jassby,
1976; Fernández et al., 2003; Morán et al., 2004; Uitz et al., 2008;
Álvarez et al., 2016; Brewin et al., 2017b; Curran et al., 2018;
Robinson et al., 2018a,b). Biological heating by phytoplankton

is influenced by the chlorophyll-specific absorption coefficient,
which changes with size (Bricaud et al., 2004; Devred et al., 2006;
Uitz et al., 2008; Brewin et al., 2011). The structure of the marine
food web has also been found to depend on size composition
of phytoplankton (Maloney and Field, 1991). Models that tie
primary production and total chlorophyll, export production and
total chlorophyll, predict energy flow and biological heating using
total chlorophyll, are all vulnerable to shifts in the relationship
between total and size-fractionated chlorophyll.

Standard, empirical algorithms used by space agencies
for estimating total chlorophyll from blue-green reflectance
ratios, derived from satellite measurements of ocean color,
have been shown to incorporate implicitly a fixed relationship
between size-fractionated chlorophyll and total chlorophyll
(IOCCG, 2014), with low total chlorophyll concentrations
represented by the optical properties of small cells and high
concentrations by large cells (Dierssen, 2010; Sathyendranath
et al., 2017). These algorithms are also vulnerable to shifts
in the relationship between total and size-fractionated
chlorophyll, with implications for using ocean-color data
to detect climate variability (Sathyendranath et al., 2017). Tying
the relationship between total and size-fractionated chlorophyll
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FIGURE 5 | Time-series of data collected at KAUST harbor in Thuwal between 2016 and 2019. (A) time-series of water temperature and total chlorophyll (C), (B)

microphytoplankton chlorophyll (Cm), (C) nanophytoplankton chlorophyll (Cn), and (D) picophytoplankton chlorophyll (Cp). r represents the correlation coefficient

between measurements and model (conducted in linear space).

to other environmental factors (e.g., temperature) could aid in
ocean-color algorithm development.

Results from this study indicate that, in the coastal waters
of the Red Sea, changes in the taxonomic composition of the
phytoplankton within a size class may affect the chlorophyll
in that size class. Therefore, to predict future changes in
size-fractionated chlorophyll, we need to understand how
phytoplankton taxonomic composition is likely to change. In
the coastal waters of the Red Sea, we found temperature to
correlate with taxonomic composition of picophytoplankton
and the partitioning of total chlorophyll into the three size
classes. Other studies in the Red Sea, using different methods,
have confirmed the influence of temperature on phytoplankton
taxonomic composition (Pearman et al., 2017). Temperature has

been shown as a key variable for predicting changes in taxonomic
composition in tropical oceans (Flombaum et al., 2013; Lange
et al., 2018; Agusti et al., 2019), temperate regions (Morán et al.,
2010; Flombaum et al., 2013; Brewin et al., 2017a), and in polar
waters (Li et al., 2009; Ward, 2015). Furthermore, as temperature
is a variable that is routinely measured from space, its integration
into models of ocean color could lead to improved estimates of
size-fractionated chlorophyll (Raitsos et al., 2008; Ward, 2015;
Brewin et al., 2017a), as well as other regional ocean-color
products used in ecological studies (Brewin et al., 2013, 2015a;
Raitsos et al., 2013, 2015, 2017; Racault et al., 2015; Gittings
et al., 2018; Kheireddine et al., 2018), putting us in a better
position to harness ocean-color data for detecting shifts inmarine
ecosystems in the Red Sea.
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FIGURE 6 | Relationship between temperature and picophytoplankton cell

counts. (A) Synechococcus vs. temperature and (B) Picoeukaryotes vs.

temperature. Solid line is a linear regression and symbols follow those of

Figures 1, 2.

TABLE 6 | Average relative red fluorescence and cell size for each community of

picophytoplankton derived from the flow cytometry data.

Variable Picoeukaryotes ∗ Synechococcus ∗ Prochlorococcus ∗

(N = 131) (N = 131) (N = 27)

Relative red

fluorescence (RFU)

0.89 (±0.22) 0.031 (±0.008) 0.004 (±0.001)

Cell diameter (µm) 1.31 (±0.05) 0.89 (±0.02) 0.76 (±0.01)

∗ Bracketed values ± represent the median absolute deviation of the data.

4. SUMMARY

Using datasets of size-fractionated chlorophyll, flow cytometry,
physical variables and nutrient concentrations, collected over
a 4-year period in the coastal waters of the central Red Sea,
we analyzed the relationship between total chlorophyll and its
partitioning into three size classes of phytoplankton (pico-, nano-
and micro-phytoplankton) to address two research questions:
(1) Is the relationship between total and size-fractionated
chlorophyll in coastal waters of the Red Sea consistent with that
observed in other ocean basins? and (2) What factors influence
the relationship between total and size-fractionated chlorophyll?
A conceptual, three-component model was fitted to the data, that
describes the relationship between total chlorophyll and those

in the three size classes. Model fits and model parameters were
comparable to studies fitting the model to datasets in other ocean
basins, demonstrating, in answer to research question (1), that
the relationship between total and size-fractionated chlorophyll
in the coastal waters of the Red Sea is consistent with that
observed in other ocean basins. We found the residuals in the fits
to be significantly correlated with water temperature (positively)
and picoeukaryote cell abundance (negatively), demonstrating, in
answer to research question (2), that temperature and taxonomic
composition are key factors influencing the relationship between
total and size-fractionated chlorophyll in the coastal waters of the
Red Sea.

We introduced a temperature-dependency on model
parameters that was subsequently found to improve
performance. Temperature was inversely related with
picoeukaryote cell abundance, with higher picoeukaryote
cell abundances in winter (cold) than summer (warm).
Picoeukaryotes are known to contain higher chlorophyll per
cell than picophytoplanktonic cyanobacteria and be larger
in size, possibly explaining a decrease in the maximum
chlorophyll concentration of small cells in the model (Cm

p

and Cm
p,n) with increasing temperature. This was supported

by additional analysis using the relative red fluorescence
and cell size estimates from flow cytometer data. However,
we recognize additional evidence is needed to substantiate
the link between the temperature dependence of model
parameters and changes in the taxonomic composition of
phytoplankton. Our results highlight the importance of
temperature and taxonomic composition of phytoplankton
within each size class when exploring the relationship between
size-fractionated and total chlorophyll. This has implications
for the development of satellite ocean-color algorithms and
for predicting how ecosystem functioning may change in a
future ocean.

DATA AVAILABILITY

All datasets generated for this study are included in the
manuscript and/or the Supplementary Material.

AUTHOR CONTRIBUTIONS

RB, XM, DR, JG, and IH proposed the study. XM, MC, MV, MA,
NA-O, and TH-S collected the data. RB synthesized the data, re-
tuned and further-developed the algorithms, organized, prepared
and wrote the first version of the manuscript, and prepared all
figures and tables. All authors contributed to the subsequent
versions of the manuscript.

FUNDING

This work was funded by the King Abdullah University
for Science and Technology (KAUST) Office of
Sponsored Research (OSR) under the Virtual Red Sea
Initiative (Grant # REP/1/3268-01-01). This work was

Frontiers in Microbiology | www.frontiersin.org 12 September 2019 | Volume 10 | Article 1964

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Brewin et al. Total and Size-Fractionated Chlorophyll-a in the Red Sea

also supported by the UK National Centre for Earth
Observation (NCEO).

ACKNOWLEDGMENTS

The authors would like to acknowledge all scientists and
crew involved in the collection of the in situ data used in

this manuscript. We thank Trevor Platt for providing helpful
comments on our manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2019.01964/full#supplementary-material

REFERENCES

Agirbas, E., Martinez-Vicente, V., Brewin, R. J. W., Racault, M.-F., Airs, R. L.,
and Llewellyn, C. A. (2015). Temporal changes in total and size-fractioned
chlorophyll-a in surface waters of three provinces in the Atlantic Ocean
(September to November) between 2003 and 2010. J. Mar. Syst. 150, 56–65.
doi: 10.1016/j.jmarsys.2015.05.008

Agusti, S., Lubián, L.M.,Morerno-Ostos, E., Estrada,M., andDuarte, C.M. (2019).
Projected changes in photosynthetic picoplankton in a warmer subtropical
ocean. Front. Mar. Sci. 5:506. doi: 10.3389/fmars.2018.00506

Álvarez, E., Morán, X. A. G., López-Urrutia, A., and Nogueira, E. (2016). Size-
dependent photoacclimation of the phytoplankton community in temperate
shelf waters (southern Bay of Biscay). Mar. Ecol. Prog. Ser. 543, 73–87.
doi: 10.3354/meps11580

Álvarez, E., Nogueira, E., and López-Urrutia, Á. (2017). In vivo single-cell
fluorescence and size scaling of phytoplankton chlorophyll content. Appl.
Environ. Microbiol. 83, e03317–16. doi: 10.1128/AEM.03317-16

Belkin, I. M. (2009). Rapid warming of large marine ecosystems. Prog. Oceanogr.
81, 207–213. doi: 10.1016/j.pocean.2009.04.011

Blanchot, J., André, J. M., Navarette, C., Neveux, J., and Radenac, M. H. (2001).
Picophytoplankton in the equatorial Pacific: vertical distributions in the warm
pool and in the high nutrient low chlorophyll conditions. Deep Sea Res. I 48,
297–314. doi: 10.1016/S0967-0637(00)00063-7

Boyd, P. W., and Newton, P. (1999). Does planktonic community structure
determine downward particulate organic carbon flux in different oceanic
provinces? Deep Sea Res. I 46, 63–91. doi: 10.1016/S0967-0637(98)00066-1

Brewin, R., Ciavatta, S., Sathyendranath, S., Jackson, T., Tilstone, G., Curran,
K., et al. (2017a). Uncertainty in ocean-color estimates of chlorophyll
for phytoplankton groups. Front. Mar. Sci. 4:104. doi: 10.3389/fmars.2017.
00104

Brewin, R. J., Devred, E., Sathyendranath, S., Hardman-Mountford, N. J., and
Lavender, S. J. (2011). Model of phytoplankton absorption based on three size
classes. Appl. Opt. 50, 4535–4549. doi: 10.1364/AO.50.004535

Brewin, R. J. W., Hirata, T., Hardman-Mountford, N. J., Lavender, S.,
Sathyendranath, S., and Barlow, R. (2012). The influence of the Indian
Ocean Dipole on interannual variations in phytoplankton size structure
as revealed by Earth Observation. Deep Sea Res. II 77–80, 117–127.
doi: 10.1016/j.dsr2.2012.04.009

Brewin, R. J. W., Raitsos, D., Dall’Olmo, G., Zarokanellos, N., Jackson, T., Racault,
M.-F., et al. (2015a). Regional ocean-colour chlorophyll algorithms for the Red
Sea. Remote Sens. Environ. 165, 64–85. doi: 10.1016/j.rse.2015.04.024

Brewin, R. J. W., Raitsos, D. E., Pradhan, Y., and Hoteit, I. (2013). Comparison of
chlorophyll in the Red Sea derived fromMODIS-Aqua and in vivo fluorescence.
Remote Sens. Environ. 136, 218–224. doi: 10.1016/j.rse.2013.04.018

Brewin, R. J. W., Sathyendranath, S., Hirata, T., Lavender, S. J., Barciela,
R., and Hardman-Mountford, N. J. (2010). A three-component model of
phytoplankton size class for the Atlantic Ocean. Ecol. Model. 221, 1472–1483.
doi: 10.1016/j.ecolmodel.2010.02.014

Brewin, R. J. W., Sathyendranath, S., Jackson, T., Barlow, R., Brotas, V., Airs, R.,
et al. (2015b). Influence of light in the mixed layer on the parameters of a three-
component model of phytoplankton size structure. Remote Sens. Environ. 168,
437–450. doi: 10.1016/j.rse.2015.07.004

Brewin, R. J. W., Sathyendranath, S., Lange, P. K., and Tilstone, G. (2014a).
Comparison of two methods to derive the size-structure of natural populations
of phytoplankton. Deep Sea Res. I 85, 72–79. doi: 10.1016/j.dsr.2013.11.007

Brewin, R. J. W., Sathyendranath, S., Tilstone, G., Lange, P. K., and Platt, T.
(2014b). A multicomponent model of phytoplankton size structure. J. Geophys.
Res. 119, 3478–3496. doi: 10.1002/2014JC009859

Brewin, R. J. W., Tilstone, G., Jackson, T., Cain, T., Miller, P., Lange,
P. K., et al. (2017b). Modelling size-fractionated primary production in
the Atlantic Ocean from remote sensing. Prog. Oceanogr. 158, 130–149.
doi: 10.1016/j.pocean.2017.02.002

Bricaud, A., Claustre, H., Ras, J., and Oubelkheir, K. (2004). Natural variability of
phytoplanktonic absorption in oceanic waters: influence of the size structure of
algal populations. J. Geophys. Res. 109:C11010. doi: 10.1029/2004JC002419
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HelgoaẼnder Wissenschaftliche Meeresuntersuchungen 30, 575–581.
doi: 10.1007/BF02207862

Platt, T., and Denman, K. L. (1978). “The structure of pelagic marine ecosystems,”
in Rapports et Procès-Verbaux des Rèunions Conseil Permanent International

pour l’Exploration de la Mer. 173, 60–65.
Platt, T., and Jassby, A. D. (1976). The relationship between photosynthesis and

light for natural assemblages of coastal marine phytoplankton. J. Phycol. 12,
421–430. doi: 10.1111/j.1529-8817.1976.tb02866.x

Platt, T., and Sathyendranath, S. (2008). Ecological indicators for the pelagic zone
of the ocean from remote sensing. Remote Sens. Environ. 112, 13426–3436.
doi: 10.1016/j.rse.2007.10.016

Prieur, L., and Sathyendranath, S. (1981). An optical classification of coastal
and oceanic waters based on the specific spectral absorption curves of
phytoplankton pigments, dissolved organic matter and other particulate
materials. Limnol. Oceanogr. 26, 617–689. doi: 10.4319/lo.1981.26.4.0671

Racault, M.-F., Platt, T., Sathyendranath, S., Agirbas, E., Martinez Vicente, V.,
and Brewin, R. J. W. (2014). Plankton indicators and ocean observing systems:
support to the marine ecosystem state assessment. J. Plankt. Res. 36, 621–629.
doi: 10.1093/plankt/fbu016

Racault, M.-F., Raitsos, D. E., Berumen, M. L., Brewin, R. J. W., Platt, T.,
Sathyendranath, S., et al. (2015). Phytoplankton phenology indices in coral reef
ecosystems: application to ocean-colour observations in the Red Sea. Remote

Sens. Environ. 160, 222–234. doi: 10.1016/j.rse.2015.01.019
Raimbault, P., Rodier, M., and Taupier-Letage, I. (1988). Size fraction of

phytoplankton in the Ligurian Sea and the Algerian Basin (Mediterranean Sea):
size distribution versus total concentration.Mar. Microb. Food Webs 3, 1–7.

Raitsos, D. E., Brewin, R. J. W., Zhan, P., Dreano, D., Pradhan, Y., Nanninga,
G. B., et al. (2017). Sensing coral reef connectivity pathways from space. Sci.
Rep. 7:9338. doi: 10.1038/s41598-017-08729-w

Raitsos, D. E., Hoteit, I., Prihartato, P. K., Chronis, T., Triantafyllou, G., and
Y., A. (2011). Abrupt warming of the Red Sea. Geophys. Res. Lett. 38:L14601.
doi: 10.1029/2011GL047984

Raitsos, D. E., Lavender, S. J., Maravelias, C. D., Haralambous, J., Richardson,
A. J., and Reid, P. C. (2008). Identifying four phytoplankton functional
types from space: an ecological approach. Limnol. Oceanogr. 53, 605–613.
doi: 10.4319/lo.2008.53.2.0605

Raitsos, D. E., Pradhan, Y., Hoteit, I., Brewin, R. J. W., and Stenchikov, G. (2013).
Remote sensing the phytoplankton seasonal succession of the Red Sea. PLoS
ONE 8:e64909. doi: 10.1371/journal.pone.0064909

Raitsos, D. E., Yi, X., Platt, T., Racault, M.-F., Brewin, R. J. W., Pradhan, Y., et al.
(2015).Monsoon oscillations regulate fertility of the Red Sea.Geophys. Res. Lett.
42, 855–862. doi: 10.1002/2014GL062882

Richardson, T. L. (2019). Mechanisms and pathways of small-phytoplankton
export from the surface ocean. Annu. Rev. Mar. Sci. 11, 57–74.
doi: 10.1146/annurev-marine-121916-063627

Robinson, A., Bouman, H. A., Tilstone, G. H., and Sathyendranath, S. (2018a).
High photosynthetic rates associated with pico and nanophytoplankton
communities and high stratification index in the North West Atlantic.
Continent. Shelf Res. 171, 126–139. doi: 10.1016/j.csr.2018.10.010

Robinson, A., Bouman, H. A., Tilstone, G. H., and Sathyendranath, S. (2018b).
Size class dependent relationships between temperature and phytoplankton
photosynthesis-irradiance parameters in the Atlantic Ocean. Front. Mar. Sci.

4:435. doi: 10.3389/fmars.2017.00435
Sahay, A., Ali, S. M., Gupta, A., and Goes, J. I. (2017). Ocean color satellite

determinations of phytoplankton size class in the Arabian sea during the winter
monsoon. Remote Sens. Environ. 198, 286–296. doi: 10.1016/j.rse.2017.06.017

Sammartino, M., Di Cicco, A., Marullo, S., and Santoleri, R. (2015). Spatio-
temporal variability of micro-, nano- and pico-phytoplankton in the
Mediterranean Sea from satellite ocean colour data of SeaWiFS. Ocean Sci. 11,
759–778. doi: 10.5194/os-11-759-2015

Sathyendranath, S., Brewin, R. J. W., Jackson, T., Mélin, F., and Platt,
T. (2017). Ocean-colour products for climate-change studies: what
are their ideal characteristics? Remote Sens. Environ. 203, 125–138.
doi: 10.1016/j.rse.2017.04.017

Sathyendranath, S., Gouveia, A. D., Shetye, S. R., Ravindran, P., and Platt, T. (1991).
Biological control of surface temperature in the Arabian Sea.Nature 349, 54–56.
doi: 10.1038/349054a0

Sathyendranath, S., and Platt, T. (2007). Spectral effects in bio-optical control on
the ocean system.Oceanologia 49, 5–39. Available online at: https://www.iopan.
pl/oceanologia/491platt.pdf

Sathyendranath, S., Stuart, V., Cota, G., Maas, H., and Platt, T. (2001). Remote
sensing of phytoplankton pigments: a comparison of empirical and theoretical
approaches. Int. J. Remote Sens. 22, 249–273. doi: 10.1080/01431160144
9925

Sheldon, R. W. (1972). Size separation of marine seston by membrane and glass-
fiber filters. Limnol. Oceanogr. 17, 494–498. doi: 10.4319/lo.1972.17.3.0494

Sieburth, J. M., Smetacek, V., and Lenz, J. (1978). Pelagic ecosystem structure:
heterotrophic compartments of the plankton and their relationship to plankton

Frontiers in Microbiology | www.frontiersin.org 15 September 2019 | Volume 10 | Article 1964

https://doi.org/10.1002/lno.10049
https://doi.org/10.1093/plankt/13.5.1003
https://doi.org/10.1146/annurev-marine-010814-015955
https://doi.org/10.4319/lo.2012.57.5.1266
https://doi.org/10.1016/0198-0149(88)90126-4
https://doi.org/10.3354/meps274017
https://doi.org/10.1111/j.1365-2486.2009.01960.x
https://doi.org/10.1016/0198-0149(81)90039-X
https://doi.org/10.1002/2015GB005355
https://doi.org/10.1016/j.rse.2008.01.021
https://doi.org/10.4319/lo.1989.34.8.1739
https://doi.org/10.1016/0022-0981(83)90155-7
https://doi.org/10.1029/98JC02160
https://doi.org/10.1038/s41598-017-06928-z
https://doi.org/10.1007/BF02207862
https://doi.org/10.1111/j.1529-8817.1976.tb02866.x
https://doi.org/10.1016/j.rse.2007.10.016
https://doi.org/10.4319/lo.1981.26.4.0671
https://doi.org/10.1093/plankt/fbu016
https://doi.org/10.1016/j.rse.2015.01.019
https://doi.org/10.1038/s41598-017-08729-w
https://doi.org/10.1029/2011GL047984
https://doi.org/10.4319/lo.2008.53.2.0605
https://doi.org/10.1371/journal.pone.0064909
https://doi.org/10.1002/2014GL062882
https://doi.org/10.1146/annurev-marine-121916-063627
https://doi.org/10.1016/j.csr.2018.10.010
https://doi.org/10.3389/fmars.2017.00435
https://doi.org/10.1016/j.rse.2017.06.017
https://doi.org/10.5194/os-11-759-2015
https://doi.org/10.1016/j.rse.2017.04.017
https://doi.org/10.1038/349054a0
https://www.iopan.pl/oceanologia/491platt.pdf
https://www.iopan.pl/oceanologia/491platt.pdf
https://doi.org/10.1080/014311601449925
https://doi.org/10.4319/lo.1972.17.3.0494
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Brewin et al. Total and Size-Fractionated Chlorophyll-a in the Red Sea

size fractions. Limnol. Oceanogr. 23, 1256–1263. doi: 10.4319/lo.1978.23.
6.1256

Silva, L., Calleja, M. L., Huete-Stauffer, T. M., Ivetic, S., Ansari, M. I., Viegas, M.,
et al. (2019). Low abundances but high growth rates of coastal heterotrophic
bacteria in the Red Sea. Front. Microbiol. 9:3244. doi: 10.3389/fmicb.2018.
03244

Skákala, J., Ford, D., Brewin, R. J. W., McEwan, R., Kay, S., Taylor, B., et al. (2018).
The assimilation of phytoplankton functional types for operational forecasting
in the northwest European shelf. J. Geophys. Res. Oceans 123, 5230–5247.
doi: 10.1029/2018JC014153

Sosik, H., Chisholm, S., and Olson, R. (1989). Chlorophyll fluorescence from
single cells: interpretation of flow cytometric signals. Limnol. Oceanogr. 34,
1749–1761. doi: 10.4319/lo.1989.34.8.1749

Steinberg, D. K., and Landry, M. R. (2017). Zooplankton and
the ocean carbon cycle. Annu. Rev. Mar. Sci. 9, 413–444.
doi: 10.1146/annurev-marine-010814-015924

Sun, X., Shen, F., Liu, D., Bellerby, R. G., Liu, Y., and Tang, R. (2018). In situ and
satellite observations of phytoplankton size classes in the entire continental
shelf sea, China. J. Geophys. Res. 123, 3523–3544. doi: 10.1029/2017JC0
13651

Tarran, G. A., and Bruun, J. T. (2015). Nanoplankton and picoplankton in the
Western English Channel: abundance and seasonality from 2007-2013. Prog.
Oceanogr. 137, 446–455. doi: 10.1016/j.pocean.2015.04.024

Tarran, G. A., Heywood, J. L., and Zubkov, M. V. (2006). Latitudinal changes in
the standing stocks of nano-and picoeukaryotic phytoplankton in the Atlantic
Ocean. Deep Sea Res. II 53, 1516–1529. doi: 10.1016/j.dsr2.2006.05.004

Uitz, J., Claustre, H., Morel, A., and Hooker, S. B. (2006). Vertical distribution of
phytoplankton communities in open ocean: an assessment based on surface
chlorophyll. J. Geophys. Res. 111:C08005. doi: 10.1029/2005JC003207

Uitz, J., Huot, Y., Bruyant, F., Babin, M., and Claustre, H. (2008). Relating
phytoplankton photophysiological properties to community structure on large
scales. Limnol. Oceanogr. 53, 614–630. doi: 10.4319/lo.2008.53.2.0614

Veldhuis, M., and Kraay, G. (1993). Cell abundance and fluorescence
of picoplankton in relation to growth irradiance and nitrogen
availability in the Red Sea. Netherlands J. Sea Res. 31, 135–145.
doi: 10.1016/0077-7579(93)90003-B

Veldhuis, M., and Kraay, G. (2000). Application of flow cytometry in marine
phytoplankton research: current applications and future perspectives. Sci. Mar.

64, 121–134. doi: 10.3989/scimar.2000.64n2121
Veldhuis, M., Kraay, G., Van Bleijswijk, J., and Baars, M. (1997). Seasonal and

spatial variability in phytoplankton biomass, productivity and growth in the
northwestern indian ocean: the southwest and northeast monsoon 1992-1993.
Deep Sea Res. I 44, 425–449. doi: 10.1016/S0967-0637(96)00116-1

Vidussi, F., Claustre, H., Manca, B. B., Luchetta, A., and Marty, J. C.
(2001). Phytoplankton pigment distribution in relation to upper thermocline
circulation in the easternMediterranean Sea during winter. J. Geophys. Res. 106,
19939–19956. doi: 10.1029/1999JC000308

Ward, B. A. (2015). Temperature-correlated changes in phytoplankton
community structure are restricted to polar waters. PLoS ONE 10:e0135581.
doi: 10.1371/journal.pone.0135581

Ward, B. A., Dutkiewicz, S., Jahn, O., and Follows, M. J. (2012). A size-structured
food-web model for the global ocean. Limnol. Oceanogr. 57, 1877–1891.
doi: 10.4319/lo.2012.57.6.1877

Yao, F., Hoteit, I., Pratt, L. J., Bower, A. S., Köhl, A., Gopalakrishnan, G., et al.
(2014b). Seasonal overturning circulation in the Red Sea: 2. Winter circulation.
J. Geophys. Res. 119, 2263–2289. doi: 10.1002/2013JC009331

Yao, F., Hoteit, I., Pratt, L. J., Bower, A. S., Zhai, P., Köhl, A., et al. (2014a). Seasonal
overturning circulation in the Red Sea: 1. Model validation and summer
circulation. J. Geophys. Res. 119, 2238–2262. doi: 10.1002/2013JC009004

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Brewin, Morán, Raitsos, Gittings, Calleja, Viegas, Ansari,

Al-Otaibi, Huete-Stauffer and Hoteit. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Microbiology | www.frontiersin.org 16 September 2019 | Volume 10 | Article 1964

https://doi.org/10.4319/lo.1978.23.6.1256
https://doi.org/10.3389/fmicb.2018.03244
https://doi.org/10.1029/2018JC014153
https://doi.org/10.4319/lo.1989.34.8.1749
https://doi.org/10.1146/annurev-marine-010814-015924
https://doi.org/10.1029/2017JC013651
https://doi.org/10.1016/j.pocean.2015.04.024
https://doi.org/10.1016/j.dsr2.2006.05.004
https://doi.org/10.1029/2005JC003207
https://doi.org/10.4319/lo.2008.53.2.0614
https://doi.org/10.1016/0077-7579(93)90003-B
https://doi.org/10.3989/scimar.2000.64n2121
https://doi.org/10.1016/S0967-0637(96)00116-1
https://doi.org/10.1029/1999JC000308
https://doi.org/10.1371/journal.pone.0135581
https://doi.org/10.4319/lo.2012.57.6.1877
https://doi.org/10.1002/2013JC009331
https://doi.org/10.1002/2013JC009004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles

	Factors Regulating the Relationship Between Total and Size-Fractionated Chlorophyll-a in Coastal Waters of the Red Sea
	1. Introduction
	2. Methods
	2.1. Study Area: Coastal Waters of the Red Sea
	2.2. Size-Fractionated Filtration (SFF) Data
	2.3. Model Parameterization
	2.4. Flow Cytometry, Nutrient Sampling and Physical Variables
	2.5. Statistical Tests

	3. Results and Discussion
	3.1. Fit of Three-Component Model to SFF Data
	3.2. Relationship Between Model Residuals and Other Variables
	3.3. Influence of Changes in Taxonomic Composition of Picophytoplankton on Model Parameters
	3.4. Understanding the Relationship Between Phytoplankton Biomass and Size Structure in a Future Ocean

	4. Summary
	Data Availability
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


