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Abstract 

This study investigates the impact of dynamical representational error (RE) on the analysis of 

an ocean ensemble Kalman filter-based data assimilation system, LETKF-ROMS (Local 

Ensemble Transform Kalman Filter - Regional Ocean Modeling system) configured for the 

Indian Ocean and assimilating in-situ temperature and salinity observations from Argo. Three 

different approaches to account for the RE are studied and inter-compared: (i) static RE (varies 

in horizontal and vertical direction), (ii) dynamic RE (varies in space and time) estimated from 

concurrent observations, and (iii) dynamic RE estimated using concurrent high resolution 

model outputs. RE estimated from the model outputs exhibits rich spatial and temporal 

variability with an estimated temporal mean RE for temperature below 0.5 °C and 0.2 °C in the 

surface and deep layers, respectively, and reaching up to 1°C in the thermocline layers. The 

region encompassing the Great Whirl displays a large seasonal variability reaching up to 0.8°C, 

and the South Equatorial Current (SEC)a large inter-annual variability reaching up to 0.4°C.  

Neglecting such spatio-temporal variations of RE and assimilating with a static RE limited the 

benefits of assimilation by entertaining over-fitting issues that caused degradations in the Bay 

of Bengal, the western parts of the Arabian Sea, and the equatorial Indian ocean. Assimilating 

with the observations-based dynamic RE improved the results in these regions, but the best 

performances were obtained with the configuration using the model-based dynamic RE, which 

yielded further improvements (e.g. reduction of sea surface height root-mean-square-errors  

reaches 30% with respect to the observations-based dynamic RE). The latter also better handled 
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the rich spatial variability regions and areas not well sampled by the observations. Improved 

estimates of the spatial and temporal variations of RE helped to better exploit the assimilated 

observations and provided enhanced analyses less prone to assimilation shocks. 

 

 
 

 

Keywords: Ocean data assimilation, Representation Error, LETKF, ROMS  

1. Introduction 

The observation error (OE) is a critical component of any data assimilation system because the 

correction to the background ocean state by the observation is determined by the error 

covariances of the background model state and observations. In the context of data 

assimilation, the OE is defined as the difference between the sampled observation and the true 

state of the ocean projected onto the observation space (Janjic et al., 2017). It consists of two 

components, namely, (1) the Instrument Error (IE), and (2) the Representation Error (RE), 

which can be expressed as 

𝑂𝐸 = 𝑌 − 𝐻(𝑋𝑡) = (𝑌 − 𝑌𝑡) + �𝑌𝑡 − 𝐻(𝑋𝑡)� = 𝐼𝐸 + 𝑅𝐸, 

where 𝑌 is the sampled observation, 𝑌𝑡is the truth in the observation space, 𝑋𝑡 is the true state 

in the model space, and 𝐻 is the observation operator that projects the model state onto the 

observation space. 

IE is associated with the quality of the sensor being deployed to sample the 

observations. This error is typically not large, particularly for in-situ state-of-the-art ocean 

observation systems. RE is known to significantly contribute to the observational error (Wunch 

1996, Hoteit et al., 2010) and comprises (i) errors due to unresolved scales and processes, and 

(ii) errors in the observation operator error (Janjic et al., 2017). The first errors type arises from 
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the mismatch between the scales described in the observations and the model state. For 

instance, an observation may represent the value of a geophysical variable at a given point in 

space and time, whereas the model output is likely to represent a spatial and temporal average, 

depending, among others, on the discretization and resolution of the model. Observation 

operator errors arise from the under-representation of the observation operator H, particularly 

when the observed variables are not prognostic (state variables). In ocean data assimilation, the 

representation errors due to the observation operator errors are typically negligible in 

comparison to those associated with the unresolved scales and processes (Janjic et al., 2017). 

Henceforth we focus on the errors due to unresolved scales and processes and refer to it as RE. 

The RE is expected to vary in space and time (Oke and Sakov, 2008; Janjic et al., 2017) 

and with the resolution of the model (e.g. Karspeck 2016); the coarser the resolution the larger 

the RE is expected to be. Oke and Sakov (2008) argued that smaller (larger) than realistic 

observational error in ocean data assimilation systems would enforce large (weak) correction 

with the observation. While weak corrections limit the benefits of assimilated observations, 

large corrections may cause assimilation shocks, which can be generated by spurious 

corrections. These assimilation shocks propagate as planetary waves and degrade the analysis 

elsewhere, unless the observation coverage is sufficient enough to suppress them (Sivareddy et 

al., 2017).The use of spatially and temporally varying (here onwards dynamic) observational 

error may help mitigating these adverse effects by imposing proper weighting of the 

innovations, and is therefore crucial to obtain reliable analysis state.  

 
 

 

Despite a wide range of methods to estimate a dynamic RE; using for e.g. analysis 

increments by Desroziers et al., (2001), (2006); and the maximum likelihood method by Dee 

Silva (1999), methods implemented in Ocean data assimilation systems are still largely based 
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on the concurrent observations (e.g. Behringer et al., 1998; Richman et al., 2005; Oke et al., 

2008; Balmaseda et al., 2013; Sivareddy, 2015). For example, Behringer et al. (1998)and 

Balmaseda et al. (2013) estimated a dynamic RE, that varies in space and time, for temperature 

based on vertical temperature gradients in the concurrent temperature profile. Sivareddy (2015) 

applied the same method to estimate a dynamic RE for salinity. Oke and Sakov. (2008) 

estimated a dynamic RE for sea surface height as a fraction of the variance from binned 

satellite altimeter measurements. These observations-based estimates are, however, likely not 

to be very robust in under-sampled areas, as demonstrated in the results section of this study. 

Employing high-resolution model simulations in the dynamic RE estimation procedure, as has 

been implemented in atmospheric assimilation studies by for e.g. Etherton and Bishop (2004) 

using differences in the state variables of a dynamical models running at two different 

resolutions, is a natural alternative to under-sampling issues. Such an approach is still not 

explored by the ocean data assimilation community, probably due to the computational 

overhead, which is no more a serious concern at present. Most present ocean data assimilation 

systems neglect the spatial and temporal variations of RE and use static (in space or time) 

observational errors (Zhang et al., 2007; Hoteit et al., 2010; Penny et al., 2011; Hoteit et al., 

2013) and did not conduct a comprehensive assessment of the impact of RE on the ocean 

analysis. 

This study aims to provide a comprehensive assessment of the impact of RE on ocean 

analyses using an ensemble Kalman filter-based assimilation system composed of a Local 

Ensemble Transform Kalman Filter (LETKF) and a Regional Ocean Model (ROMS), hereafter 

LETKF-ROMS. This is achieved by inter-comparing the quality of ocean analyses from three 

different assimilation experiments using (1) static REs, (2) observations-based dynamic REs 
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following Behringer et al. (1998), and (3) model-based dynamic REs following Etherton and 

Bishop (2004). We analyze the estimated spatial and temporal structures of the REs and show 

that model-based dynamic RE enhances the performance of the assimilation system and 

mitigates issues related to observations under-sampling. 

The remainder of the paper is organized as follows. Section 2 briefly presents the 

LETKF-ROMS assimilation system and assimilated observations. Section 3 describes the 

methodologies to estimate dynamic REs. Section 4 discusses the spatial and temporal structures 

of the estimated dynamic REs. The impact of the different REs on the ocean analyses is 

analyzed in Section 5. Section 6 summarizes the results and discusses the computational 

feasibility of the model-based dynamic REs. 

 
 

 

2. The assimilation system.  

We used an in-house regional ocean data assimilation LETKF-ROMS system (Balaji et 

al., 2018). The ocean model, ROMS, is a free surface, terrain following general circulation 

model. It solves the primitive equations on an orthogonal curvilinear coordinate grid(Song et 

al., 1994; Haidvogel et al., 2000; Shchepetkin., 2005). It has been deliberately implemented at 

a relatively low resolution, ¼° x ¼° horizontal grid interval, for assimilation to investigate the 

relevance of the estimated REs. The model domain covers the Indian Ocean (IO) region from 

30°E to 120°E in the east-west direction and from 30°S to 30°N in the north-south direction. 

The ocean depth is discretized into 40 vertical sigma levels. The vertical stretching parameters 

are chosen in such a way that the vertical resolution is highest in the upper ocean. The lateral 

boundaries in the east and south are treated as open, where the tracer and momentum fields are 

nudged to 10-day mean fields derived from the ocean analysis of the Global Ocean Data 

Assimilation System, available from the Indian National Centre for Ocean Information 
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Services (here after INCOIS-GODAS; Siva Reddy, 2015). The western and northern 

boundaries are solid walls with no-slip conditions. The model uses the K-profile 

parameterization scheme (Large et al., 1994) to parameterize the vertical mixing. Smagorinsky 

type bi-harmonic diffusion (50 m2s-1) and viscosity (300 m2s-1) schemes are used for horizontal 

mixing and a bulk parameterization scheme (Fairall et al., 1996; Griffies and Hallberg, 2000) 

is selected for the computation of air–sea fluxes of heat (Jithin et al., 2017). Salinity in the 

model’s top layer is relaxed to monthly climatology derived from the World Ocean Atlas 

(WOA) climatology (Antonov et al., 2009; Locarnini et al., 2009).  

The assimilation code of this regional ocean data assimilation system, LETKF, was 

originally developed for the modular ocean model (MOM) by Penny (2011) and has been 

adopted to suit ROMS (Balaji et al., 2018).   The LETKF is implemented with 32-member 

ensemble, with capabilities to assimilate sea level anomaly, temperature and salinity profiles. 

The choice of 32 ensemble size is to balance computational cost and results. As demonstrated 

by earlier studies, (e.g. Xu et al., 2013; Xu and Oey, 2014), a 32 ensemble size is a reasonable 

choice for LETKF based ocean assimilation system to capture oceanic features. In the present 

study, we assimilate in-situ Argo temperature and salinity profiles as made available by Ingleby 

and Huddleston (2009). Argo is a global network of freely moving profiling floats that sample 

the ocean column from surface to 2000m depth (Roemmich et al., 2009). It shows good spatial 

coverage during 2008-2010 in the Indian Ocean (see Figure 1) except in the regions dominated 

by horizontal divergence and upwelling (e.g. South-western parts of the Indian Ocean around 

Madagaskar, South-eastern parts of the Arabian Sea covering Lakshadweep). The observational 

errors for temperature (salinity) vary between 0.5-3°C (0.3–3 psu) in the present study, in line 

with the suggested ranges of observational errors by earlier assimilation studies with coarse 
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resolution ocean models (e.g., Richman et al., 2005; Forget and Wunsch, 2007; Oke and Sakov, 

2008; Karspeck, 2016). We further assume that the observational errors are uncorrelated, a 

reasonable assumption given that we assimilate relatively distanced in-situ observations (e.g., 

Wunsch and Heimbach, 2007; Zhang et al., 2007; Giese and Ray, 2011; Balmaseda et al., 

2013; Karspeck et al., 2013). The observational error covariance matrix is therefore diagonal 

with the variances of the OEs as diagonal elements. A localization radius of 360 km is 

implemented to avoid spurious ensemble correlations between remote locations. The lack of 

the ensemble spread can be an issue for ensemble Kalman filter-based data assimilation 

systems. This was tackled by setting an inflation factor to 1.05 and also by perturbing the 

atmospheric forcing. The ensemble ROMS forecasts, including assimilation-free experiments, 

are forced using a 32-member ensemble atmospheric fluxes generated, as in Penny et al. 

(2015), by adding ensemble perturbations from the Twentieth Century Reanalysis Project 

(20CR) daily averaged 3-h forecasts (Compo et al. 2006, 2011; Whitaker et al. 2004) to NCEP-

R2 (Kanamitsu et al., 2002). All the model experiments start from the same initial ensemble 

(generated from a hindcast run of ROMS; Jithin et al., 2017) of 1st January, 2008 and ran up to 

31st December, 2010.  

3. Estimation of dynamic REs 

 
 

 

Two types of dynamic REs are estimated in the present study; observations-based dynamic RE 

and model-based dynamic RE following Behringer et al. (1998) and Etherton and Bishop 

(2004), respectively.  

3.1 Observations-based dynamic RE 
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The observations-based dynamic RE is estimated at every observation location (x)and analysis 

time (t)using the following expression, as suggested by Behringer et al. (1998) 

𝑆𝐹 × �
𝑑𝑇(𝑥,𝑡)
𝑑𝑧 −𝑑𝑇(𝑥,𝑡)

𝑑𝑧𝑚𝑖𝑛
𝑑𝑇(𝑥,𝑡)
𝑑𝑧𝑚𝑎𝑥

�                      (1) 

 
 

 

where 𝑆𝐹 is scaling factor, 𝑑𝑇(𝑥,𝑡)
𝑑𝑧

 is the smoothened (in the vertical direction) tracer 

(temperature/salinity) gradient of the concurrent observed tracer profile,  𝑑𝑇(𝑥,𝑡)
𝑑𝑧𝑚𝑖𝑛

and 𝑑𝑇(𝑥,𝑡)
𝑑𝑧𝑚𝑎𝑥

 are 

respectively the minimum and maximum vertical tracer gradient in the observed tracer gradient 

profile. Following Behringer et al. (1998), the RE so estimated is added to uniform Standard 

Error (SE) to obtain the total observational error for the corresponding tracer profile. The 

chosen SE encompasses IE and sets a lower limit for the total observational error. As can be 

inferred from the expression (1), the term within the open brackets vary between 0 and 1; the 

larger the vertical gradient the closer the term to unity. The parameters SF and SE enforces the 

OE to vary between SE and (SE+SF). 

3.2Model-based dynamic RE 

The model-based dynamic RE is estimated on a coarse resolution grid (m x m) using high 

resolution (nxn) model outputs. The steps to estimate the model-based dynamic RE at any 

analysis time t can be summarized as follows: 

Step 1: Take the high-resolution (n x n) assimilation-free model state, Y, which plays 

the role of the true state of the ocean in the observation space. We implicitly assume that the 

chosen high resolution assimilation-free model resolves the variability of the Indian Ocean at 

all scales.  
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Step 2: Choose a lower resolution grid (m x m), such that m/n is an integer. Compute the 

spatial mean of Y on this lower resolution grid to filter out the sub-grid scale variability and 

estimate the ocean state (Yc) at the lower resolution grid (typical regridding).  

Step 3: Apply a simple bilinear interpolation operator P to map Yc on the high-

resolution observational space of Y.  

 
 

 

Step 4: Take the Root-Mean-Square (RMS) of [Y-P(Yc)] using the (m/n)2 points 

corresponding to each lower resolution grid point to estimate RE at the low resolution m x m 

grid.  

The method is straightforward to apply and naturally introduces spatio-temporal 

variability into RE. It is similar to that of Etherton and Bishop (2004) except that we use only 

one dynamical model for the estimation of RE. The coarse resolution grid m x m is then 

considered as a proxy for the coarse resolution model in Etherton and Bishop (2004). 

Considering the fact that the model with a certain resolution can only represent the waves of 

wave lengths four times larger than its grid spacing (e.g. Pielke 1984; Grasso, 2000), one may 

choose the coarse resolution grid m x m four times coarser than the targeted assimilation grid, 

as a reasonable alternative for setting a dedicated coarse resolution model. In addition to this, 

our approach has an advantage of increasing the number of samples from (m/n)2 to (4m/n)2 for 

the estimation of RE.  

Jithin et al. (2017) demonstrated that the ROMS 1/12° x 1/12° covering the Indian 

Ocean domain closely reproduces the observed spatial and temporal variability. To estimate the 

model-based dynamic RE in the present study, we adopted this 1/12° x 1/12°(n x n) ROMS 

using the same boundary, forcing (mean NCEP-R2) and vertical resolution as the low 

resolution forecast ROMS model. The RE is calculated on the1°x1° grid (m x m) that is 4 times 
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coarser than the targeted assimilation model’s grid. The model-based dynamic RE so derived is 

interpolated on the observations locations and then added it to a uniform SE to obtain OE, as in 

the observations-based method. 

4. Spatial and temporal structures of the estimated dynamic RE 

 
 

 

The estimated model-based dynamic RE for sea surface temperature (SST) exhibits a 

significant spatio-temporal variability compared to the sea surface salinity (SSS) RE 

counterpart. The mean (taken over the period 2008-2010) spatial features of SST RE and SSS 

RE are displayed in Figures 2a and 2b ,respectively. The significant spatial variations of SST 

RE is evident from Figure 2a; below 0.2 °C in the equatorial regions and reaching up to 0.5 °C 

in the western parts of the Arabian Sea and southern parts of the Indian Ocean owing to a 

strong eddy activity. The spatio-temporal variability is less prominent for SSS RE compared to 

SST RE.; itis quite weak except in the Head Bay of Bengal, the region influenced by adjacent 

river discharges, where it reaches 0.5 psu.  

Temperature and salinity changes in the whole water column largely influence the Sea 

Surface Height (SSH) variations (e.g. Teague et al., 1995; Backer-Yeboah et al., 2009). In 

order to identify the regions with large temperature and salinity REs in the whole water 

column, we also assessed the SSH RE. Figure 3 plots (a) SSH RE averaged over the period 

2008-2010, and(b) time series of SSH RE averaged over different regions encompassing the 

Great whirl (black; 50°E-60°E & 5°N-10°N; GW), the South Equatorial Current (Red; 60°E-

80°E & 10°S-20°S; SEC), the Head Bay of Bengal (Blue; 85°E-95°E & 15°N-20°N; HBoB) 

and the Southern part of Mozambique current (green; 40°E-50°E & 25°S-30°S; SMC).The 

SSH RE exhibits rich spatio-temporal variability. For instance, while the REs of the regions 

encompassing the east India coastal current, south Equatorial current, Indonesian through flow, 
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and Agulhas current vary between 2-4 cm, the eddy dominant regions, such as the Great whirl, 

the North and South branches of the Mozambique current have large REs, reaching up to 7 cm. 

These regions are also distinguishable in terms of seasonal and inter-annual scales (Figure 3b). 

For instance, the seasonal cycle dominates the temporal variations of SSH RE in the GW 

region, being large during summer (June-September) and small during winter (December-

March) whereas the inter-annual variability is prominent in the SMC region. The differences in 

the spatio-temporal patterns of SSH RE and SST and SSS REs indicate important variations of 

temperature and salinity REs in the sub-surface layers.   

Analyzing the vertical cross-sections of temperature and salinity reveals large 

temperature and salinity REs, reaching up to 1°C and 0.75 psu in the thermocline and halocline 

regions, respectively. These are also the layers that exhibit important spatio-temporal 

variability. Figure 4 plots the spatially averaged depth-time sections of REs for temperature for 

three different regions (a) GW, (b) SEC, and (c) SMC. These regions are selected based on the 

magnitude of SSH RE (marked in Figure 3a).  One can see from Figure 4a-c that there is a 

great deal of prominent spatial variability at the thermocline depth. For example, the GW 

region shows large seasonality with the amplitude reaching 1°C, while SMC exhibits the least 

seasonality with an amplitude less than 0.2°C. Similarly, SEC exhibits large inter-annual 

variability, whereas GW has the least. Compared to temperature, the spatial RE variations for 

salinity are negligible with the only noticeable variations found in the Head Bay of Bengal 

(BoB). The magnitude of the salinity RE reaches 0.5 psu at the end of the summer monsoon 

season (Figure not shown), owing to the variations in fresh water discharges from the 

neighboring rivers.   
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The binned (over month and region) average temperature RE estimated from the 

observations-based method, as in (1) with SF=1.5, is plotted in Figures 4d, 4e, and 4f for GW, 

SEC, and SMC, respectively. The mean of dynamic RE estimated from 3 years of data is also 

shown in Figure 4g for all three regions. Comparing this observations-based dynamic RE with 

that of the above model-based dynamic RE indicates a larger mean for the former by 0.2-

1°C,particularly in the thermocline layers (Figure 4g). The spatial and temporal variations of 

the observations-based RE are weaker compared to those of the model-based RE. For instance, 

the model-based temperature RE shows a strong seasonal cycle in GW (Figure 4b) and 

moderate inter-annual variability in SEC (Figure 4c) in the sub-surface layers, whereas they are 

quite weak in the observations-based RE (Figure 4d and 4e). Likewise, the distinct patterns 

estimated by the model-based temperature RE across the regions is weaker in the observations-

based RE (Figure 4g). Similarly, the observations-based salinity RE also exhibits large RE with 

weaker spatial and temporal variability particularly in BoB (figure not shown).  

5. Impact of the estimated dynamic REs on the Ocean analyses 

 
 

 

Four different experiments are conducted using LETKF-ROMS to assess the impact of 

dynamical representational error on the ocean analyses of the Indian Ocean ensemble data 

assimilation system.  

(i) Free – run without assimilation. 

(ii) Assim_DynObs – assimilates in-situ temperature and salinity profiles from Argo using 

observations-based dynamic REs (with SF = 1.5) as OEs after adding uniform SEs of 

0.5°C and 0.5psu for temperature and salinity, respectively. These coefficients are set as 

in the operational INCOIS-GODAS, the quality of which was assessed on various 

occasions (e.g. Ravichandran, et al., 2013; Sivareddy et al., 2015; Sivareddy 2015; 
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Sivareddy et al., 2017; Pothapakula et al., 2017). We are also motivated by the weak 

sensitivity of the dynamic RE experiments results to different values of this coefficient, 

as discussed in the Supplementary Information (Section 1 & 2). 

(iii) Assim_DynMod – same as Assim_DynObs but uses model-based dynamic REs as OEs 

after adding the uniform SEs of 0.75°C and 0.35psu for temperature and salinity, 

respectively. The choice of these SEs are motivated by two factors: (i) the insignificant 

sensitivity of Assim_DynMod to the choice of SEs (as discussed in Section 2 of the 

Supplementary Materials), and (ii), the choice of 0.75°C and 0.35psu in Assim_DynMod 

matches (at least to a reasonable extent, as it is not possible to achieve perfect match 

between them due to the pronounced spatial variations estimated by DynMod) the mean 

OEs used in Assim_DynObs to enable a straightforward comparison between the two 

strategies. 

 
 

 

(iv) Assim_Static – same as Assim_DynObs except that it uses static OEs. Different choices 

of static OEs were tested (supplementary section 3), and none of them found to be 

better than either Assim_DynObs or Assim_DynMod. Here we considered the static OE 

that varies in the horizontal and vertical directions by simply considering the temporal 

mean of the OEs used in Assim_DynMod. The results of this experiment are used to 

highlight the shortcomings of using static OEs compared to dynamically varying OEs. 

Comparing the outputs from the Free-run and the assimilation runs with respect to 

independent observations suggests overall improvements with data assimilation, including for 

the non-assimilated state variables. Figures 5a & 5b compares time series of root-mean-square 

differences (RMSD) between independent in-situ temperature and salinity observations from 

RAMA (Research Moored Array for African-Asian-Australian Monsoon Analysis and 
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Prediction; McPhaden et al., 1998) buoys in the entire Indian Ocean and Free-run, 

Assim_Static, Assim_DynObs, and Assim_DynMod. The Free-run temperature and salinity 

fields exhibit RMSDs larger than 2°C and 0.4 psu, respectively. The assimilation with dynamic 

RE (both Assim_DynObs and Assim_DynMod) significantly reduces the RMSDs to 1.5°C and 

0.35 psu, respectively. Time series comparisons of the RMSDs for the non-assimilated sea 

surface height anomaly (SSHA) and currents, with respect to altimeter based merged sea level 

product (AVISO 2009) and Ocean Surface Current Analysis Realtime (OSCAR; Bonjean and 

Largerloef, 2002) are shown in Figure 6. The assimilation of temperature and salinity with 

dynamic RE also respectively improves the estimation of SSH and currents. The improvements 

respectively reach up to 5 cm and 10 cm/s for SSHA and surface currents compared to Free-

run. Assimilation with static RE also improves the estimation of all the ocean variables with 

respect to Free-run, but to a much lesser degree than the assimilation runs with dynamic RE 

(Figures 5 & 6). 

Figure 7 & 8 display the spatial structures of various statistical parameters for SSHA, 

including (7a) observed standard deviation, (7b) RMSD of Free-run with respect to AVISO, 

and difference in RMSD between (8a) Assim_static and Free-run (8b) Assim_DynObs and 

Free-run and (8c) Assim_DynMod and Free-run. In Figure 8, a positive value indicates 

degradation and negative scale indicates improvement after assimilation. The Free-run shows 

large RMSD in the southern Indian Ocean, reaching up to 18 cm that is mostly larger than 

STD. Assimilation using Assim_static effectively reduces these errors to 16 cm, but degrades 

the quality of SSHA elsewhere. Compared to Assim_Static, the improvements are larger and 

relatively homogeneous in Assim_DynObs. However, the best performance is obtained by 

assimilating observations with the model-based RE in Assim_DynMod. For instance, as can be 
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seen in Figure 5, although not as clear for salinity, the RMSDs for temperature in 

Assim_DynMod are always lower than those of Assim_DynObs, with improvements reaching 

up to 0.5°C. The Assim_DynMod yields SSHA improvements in the BoB, in contrast to net 

degradations in Assim_Static and in Assim_DynObs (comparing Figure 8c with 8a and 8b). 

Also, the SSHA improvements resulting from Assim_DynMod in the southern Indian Ocean are 

larger and more homogeneous than those of the improvements obtained in Assim_DynObs. 

SSHA RMSDs in Assim_DynMod (figure not shown) are further always below the observed 

standard deviations, which was not always true for Assim_DynObs and Assim_Static. Similar 

results were also obtained from the comparison of the model estimated velocity fields with the 

OSCAR fields (results not shown). 

In order to provide further insights on the relative improvements of Assim_DynMod, we 

examined the evolution of SSHA RMSDs along 10°S as they result from (a) Free, (b) 

Assim_Static, (c) Assim_DynObs, and (d) Assim_DynMod (Figure 9). While the RMSDs are 

mostly below 8cm in both Free (Figure 9a) and Assim_DynMod (Figure 9d), they reach ~20cm 

and ~12cm, a degradation of  ~12cm and ~4cm, respectively in Assim_Static (Figure 9b) and 

Assim_DynObs (Figure 9c) during March-August, 2009 between 50°E-90°E. This large 

increase in SSHA RMSDs, compared to the robustness in Assim_DynMod, suggests that 

Assim_Static and Assim_DynObs are over-fitting the observations in these areas/periods. The 

Assim_DynMod is not only more robust in terms of observation fitting, but seems also to 

exploit more efficiently the information from the observations. This can be seen from the 

spatio-temporal extent of improvement in SSHA RMSDs in Assim_DynObs and Assim_Static, 

which are always less pronounced than those of Assim_DynMod.  
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Prescribing realistic values of OEs in the assimilation system is important to minimize 

the adverse effects of over-fitting/under-fitting (e.g. Oke and Sakov, 2008). Given that the OEs 

in Assim_DynMod and Assim_DynObs were already scaled to similar means, the better results 

of Assim_DynMod can be attributed to the more realistic spatio-temporal variations of RE. 

Relying purely on observational profiles that are often sparse may not always provide reliable 

estimates of the statistics of the REs in DynObs. The southern Indian Ocean is one such a 

region where spatial and year-to-year variations of RE are large (Figure 3 & Figure 4), and the 

Argo coverage is sparse (Figure 1). This explains why Assim_DynMod leads to considerable 

improvements with respect to Assim_DynObs in this region (comparing Figure 8c with 8b). 

6. Summary and Conclusions 

 
 

 

The impact of using dynamical Representation Errors (RE) on the ocean analyses of an 

ensemble data assimilation system is studied using three different approaches, an observations-

based dynamic RE, model-based dynamic RE, and static RE. The first is estimated from the 

local vertical gradients of concurrent temperature/salinity profiles, the second is estimated from 

the outputs of a high-resolution ocean model, and the third is estimated by using the temporal 

mean of OE from the second approach. The estimated REs for SSH, temperature and salinity 

exhibit significant spatial and temporal variability that are much more pronounced when 

estimated from the model outputs. 

Inter-comparing the ocean analyses estimated using three different REs; static RE 

(Assim_Static), observations-based dynamic RE (Assim_DynObs), and model-based dynamic 

RE (Assim_DynMod), with independent observations in the Indian Ocean shows that 

Assim_Static was the least performant. It limited the benefits of assimilating observations due 

to the issues over-fitting/under-fitting. Assim_DynMod obtained significant improvements. The 
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reduction in RMSDs for temperature and salinity reaches 50% and 30%, respectively. 

Comparisons between Assim_DynMod and Assim_DynObs demonstrates the relevance of the 

model-based dynamic RE. The improvements of Assim_DynMod over Assim_DynObs reach up 

to 0.5oC and 0.2psu (5 cm and 5 cm/s) for temperature and salinity (SSH and currents), 

respectively. The reduction in SSH RMSD further reaches 30%, particularly in the south Indian 

Ocean. Accurate estimation of OEs in both space and time enhances the assimilation analyses 

by limiting the occurrence of degradations from over-fitting. Using such improved 

representation of spatio-temporal variations of REs, Assim_DynMod was able to better exploit 

the observations information than Assim_DynObs. It further helped Assim_DynMod to better 

handle the strongly variable regions and those with sparse observations coverage. 

The estimation of the model-based dynamic RE involves running an assimilation-free 

high-resolution ocean model in conjunction to running the assimilation system. This is an 

additional computational requirement compared to the observations-based dynamic RE. 

Considering, however, the positive impact of the model-based dynamic RE method and the 

continuous progress in computational resources, this method offers a viable alternative 

forocean data assimilation systems. 
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Figure 1. Spatial coverage of Argo during 2008 to 2010 on 0.5 x 0.5 degree grid. Total number of profiles 
taken in the whole domain is also indicated in the figure. 
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Figure 2. Model-based dynamic Representation Error (RE) for (a) sea surface temperature (SST; °C), and 
(b) sea surface salinity (SSS; psu), averaged over the period 2008-2010. 
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Figure 3. Model based dynamic Representation Error (RE) for (a) sea surface height (SSH; cm) averaged 
over the period 2008-2010, and (b) region averaged time series of SSH RE corresponding to the Great whirl 
(black; 50°E-60°E & 5°N-10°N; GW), the South Equatorial Current (Red; 60°E-80°E & 10°S-20°S; SEC), 

the head Bay of Bengal (Blue; 85°E-95°E & 15°N-20°N; HBoB), and the Southern part of Mozambique 
current (green; 40°E-50°E & 25°S-30°S; SMC). Panel a indicates the selected boxes on geographical map. A
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Figure 4. Depth-time sections of model-based dynamic RE for temperature (°C) averaged over three 
different boxes, (a) GW, (b) SEC, and (c) SMC. Panels d, e, and f show the observations-based dynamic RE 
binned over the corresponding regions and months. Mean REs corresponding to the analysis period 2008-
2010 for all the regions from both observations-based and model-based dynamic RE are shown in panel g. 
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Figure 5. Time series of RMSD for (a) temperature (°C) and (b) salinity (psu) from Free (red), Assim_Static 
(pink), Assim_DynObs (green), and Assim_DynMod (blue) experiments. RMSD is computed by interpolating 
the model outputs on available independent RAMA observations over the entire Indian Ocean Domain.  The 
RAMA locations are indicated in the inset with pink dots. 10-day smoothing is applied to better highlight the 

features.   A
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Figure 6. Time series of RMSD for non-assimilated parameters (a) sea surface height anomaly (cm), zonal 
surface current (cm/s), and (c) meridional surface currents (cm/s) from  Free (red), Assim_Static (pink), 

Assim_DynObs (green), and Assim_DynMod (blue) experiments. RMSD is computed by collocating the model 
simulations onto the gridded products (AVISO for SSHA and OSCAR for surface currents ). 10-day 

smoothing is applied to better highlight the features. A
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Figure 7. Spatial structures of (a) observed Standard deviation in SSHA from AVISO product, (b) RMSD of 
Free_run with respect to AVISO SSHA. Units are in cm. Statistics are based on 1st July, 2008 to 31st 

December, 2010. 
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Figure 8. Difference in RMSD between (a) Assim_Static and Free_run, (b) Assim_DynObs and Free_run, and 
(c) Assim_DynMod and Free_run. Units are in cm. Positive values indicate degradation and negative values 

indicate improvement after assimilation. Statistics are based on 1st July, 2008 to 31st December, 2010. 
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Figure 9. Temporal evolution of the root-mean-square-differences (RMSD) of SSHA (cm) in (a) Free, (b) 
Assim_Static, (c) Assim_DynObs, and (d) Assim_DynMod along the latitudinal band of 10°S. RMSD is 
calculated by comparing model outputs to merged-altimeter-AVISO SSHA, between 8°S-12°S. 10-day 

smoothing is applied to better highlight the features. 
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