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Distributed Submodular Minimization And Motion
Planning Over Discrete State Space

Hassan Jaleel and Jeff S. Shamma

Abstract—We develop a framework for the distributed min-
imization of submodular functions. Submodular functions are
a discrete analog of convex functions and are extensively used
in large-scale combinatorial optimization problems. While there
has been a significant interest in the distributed formulations of
convex optimization problems, distributed minimization of sub-
modular functions has received relatively little research attention.
Our framework relies on an equivalent convex reformulation
of a submodular minimization problem, which is efficiently
computable. We then use this relaxation to exploit methods for
the distributed optimization of convex functions. The proposed
framework is applicable to submodular set functions as well as
to a wider class of submodular functions defined over certain lat-
tices. We also propose an approach for solving distributed motion
planning problems in discrete state space based on submodular
function minimization. We establish through a challenging setup
of the capture the flag game that submodular functions over
lattices can be used to design artificial potential fields for
multiagent systems with discrete inputs. These potential fields are
designed such that their minima correspond to desired behaviors,
i.e, agents are attracted towards their goals and are repulsed from
obstacles and from each other for collision avoidance. Finally,
we demonstrate that the proposed distributed framework can be
employed effectively for generating feasible trajectories in such
motion coordination problems.

I. INTRODUCTION

Submodular functions play a similar role in combinatorial
optimization as convex functions play in continuous opti-
mization. These functions can be minimized efficiently in
polynomial time using combinatorial or subgradient methods
(see e.g. [1] and the references therein). Therefore, submod-
ular functions have numerous applications in matroid theory,
facility location, min-cut problems, economies of scale, and
coalition formation (see e.g., [2], [3], [4], and [5]). Submodular
functions can also be maximized approximately, which has
applications in resource allocation and welfare problem [6]
and [7], large scale machine learning problems [8] and [9],
controllability of complex networks [10] and [11], influence
maximization [12] and [13], and utility design for multiagent
systems [14].

Unlike convex optimization and submodular maximization
for which efficient distributed algorithms exist in the literature
(see e.g., [15], [16], [17], [18], and [19]), distributed mini-
mization of submodular functions has received relatively little
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research attention. Moreover, most of the existing literature on
submodular optimization focuses on submodular set functions,
which are defined over all the subsets of a base set. However,
our focus in this work is on a wider class of submodular
functions defined over ordered lattices, which are products of a
finite number of totally ordered sets. In particular, we establish
that submodular functions over ordered lattices can play a
significant role in motion planning for multiagent systems with
discrete inputs.

Our first contribution is a framework for the distributed
minimization of submodular functions defined over ordered
lattices. The enabler in the proposed framework is a particular
continuous extension that extends any function defined over
an ordered lattice to the set of probability measures. This
extension, which was presented in [20], is a generalization
of the Lovász extension for set functions [21], and can be
computed in polynomial time through a simple greedy algo-
rithm. The key feature of this extension is that the extended
function is convex on the set of probability measures, which is
a convex set, if and only if the original function is submodular.
Furthermore, minimizing the extended function over the set
of probability measures and minimizing the original function
over an ordered lattice are equivalent if and only if the original
function is submodular.

In the proposed framework, we first formulate an equiv-
alent convex optimization problem for a given submodular
minimization problem by employing the continuous extension
in [20]. After formulating an equivalent convex optimization
problem, we propose to implement any efficient distributed
optimization algorithm for non-smooth convex functions. This
combination of a convex reformulation of a submodular mini-
mization problem and distributed convex optimization enables
us to minimize a submodular function in polynomial time in
a distributed manner. Although submodular optimization and
distributed convex optimization have been well established
areas of research for a long time, the link between these
two areas has not received much research attention. Thus,
our contribution is to exploit this link for the distributed
minimization of submodular functions.

Distributed convex optimization has been an active area of
research and numerous approaches exist in the literature for
the distributed minimization of convex functions (see e.g. [22],
[23], [24], and [25]). In the proposed framework, we employ
the projected subgradient based algorithm presented in [25].
This algorithm is well suited for the proposed framework be-
cause a subgradient of the continuous extension of a submod-
ular function is a byproduct of the greedy algorithm from [20],
which computes the continuous extension of the submodular
function. In the projected subgradient based algorithm, each
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agent maintains a local estimate of the global optimal solution.
An agent is only required to communicate with a subset of the
other nodes in the network for information mixing. However,
through this local communication and an update in the descent
direction of a local subgradient, the algorithm asymptotically
drives the estimates of all the agents to the global optimal
solution.

Our second contribution is to identify a novel application
domain of submodular optimization. We establish that sub-
modular functions over ordered lattices can be used effec-
tively for distributed motion planning in multiagent systems
in which each agent has discrete inputs. Typically, motion
planning problems under uncertainties are computationally
complex. In multiagent systems, the size of the problem
increases exponentially with the number of agents, which
further increases the complexity of the problem. One approach
for handling computational complexity and uncertainties in
motion planning is the use of potential functions (see [26]
and the references therein for details).

In the potential function based approach for motion plan-
ning, the task is to design a function whose minima correspond
to a desired behavior, and whose gradient or a subgradient is
easily computable. Then, by moving an agent along a descent
direction of the potential function from any given initial
condition, we can drive the agent to a minimum point of the
potential function where the desired behavior will be achieved.
In [27], it was shown that if we can simulate attractive
forces for go-to-goal behavior and cohesion among agents
and repulsive forces for obstacle and collision avoidance, we
can design multiagent systems with complex behaviors by
intelligently combining these attractive and repulsive forces.

Traditionally, potential function based approach is used
when the decision variables belong to a continuous set. Our
contribution is to extend this approach to the scenario when
decision variables belong to discrete sets. In particular, we
establish that for a motion planning problem in multiagent
systems with discrete inputs, we can design such potential
functions to simulate attractive and repulsive forces using
submodular functions over an ordered lattice. Thus, we can
find a feasible motion plan in a distributed manner by using
submodular potential functions and our proposed framework
for distributed submodular minimization.

To validate our claim, we consider a version of the capture
the flag game from [28] and [29], which is played between
two teams: offense and defense. This game is selected because
it has a complex setup with both collaborative and adversar-
ial components. Moreover, it offers a variety of challenges
involved in multiagent motion coordination. We formulate
the problem from the perspective of the defense team under
the framework of receding horizon control with one step
prediction horizon.

For this game, we design potential functions that generate
attractive forces between defenders for cohesion and go-
to-goal behaviors. We also design potential functions that
generate repulsive forces for obstacle avoidance and collision
avoidance among the members of the defense team. We prove
that these potential functions are submodular over a discrete
set of decision variables, and hence the overall problem is

a submodular minimization problem. Thus, at each decision
time, we can compute a motion plan for the defense team
using our proposed framework for distributed submodular
minimization in polynomial time. Finally, we show through
extensive simulations that the defenders can effectively defend
the defense zone while avoiding collisions and obstacles by
using the motion plan computed from our proposed framework

II. PRELIMINARIES

A. Notations

Let S = {s0, s1, . . . , sm−1} be a finite set with car-
dinality |S| and indexed by Z+, where Z+ is the set of
non-negative integers. We represent a vector x ∈ Rn as
x = (x(0), x(1), . . . , x(n− 1)). We refer to its ith component
by x(i), its dimension by |x|, and its Euclidean norm by
‖x‖. We define {0, 1}|S| as the set of all vectors of length
|S| such that if x ∈ {0, 1}|S|, then x(i) ∈ {0, 1} for all
i ∈ {0, 1, . . . , |S| − 1}. Similarly, [0, 1]|S| is the set of all
vectors of length |S| such that if x ∈ [0, 1]|S|, then x(i) ∈ [0, 1]
for all i ∈ {0, 1, . . . , |S|−1}. A unit vector in Rn is ei which
is defined as

ei(k) =

{
1 k = i,

0 otherwise.
(1)

The indicator vector of a set A ⊆ S is 1A and is defined as

1A(i) =

{
1 si ∈ A,
0 otherwise.

(2)

For any two n-dimensional vectors x and y in Rn, we say
that x ≤ y if x(i) ≤ y(i) for all i ∈ {0, 1, . . . , n − 1}.
Moreover, x < y if x(i) ≤ y(i) for all i ∈ {0, 1, . . . , n − 1}
and there exists at least one j ∈ {0, 1, . . . , n − 1} such that
x(i) < y(i). We define max(x, y) and min(x, y) as vectors in
Rn such that

max(x, y) = (max(x(0), y(0)), . . . ,max(x(n− 1), y(n− 1))),

and

min(x, y) = (min(x(0), y(0)), . . . ,min(x(n− 1), y(n− 1))).

A Partially Ordered Set (POSet) is a set in which the
elements are partially ordered with respect to a binary relation
“≤”. Elements si and sj in S are unordered if neither si ≤ sj
nor sj ≤ si. If si ≤ sj and si 6= sj , then si < sj . A POSet
S is a chain if it does not contain any unordered pair. The
supremum and infimum of any A ⊂ S are

sup(A) = min{s̄ ∈ S | s ≤ s̄ ∀ s ∈ A}, and
inf(A) = max{s ∈ S | s ≤ s ∀ s ∈ A}.

The supremum and infimum of any pair si and sj are repre-
sented as si ∨ sj and si ∧ sj respectively. From [3], a POSet
S is a lattice if for every pair of elements si and sj in S

si ∨ sj ∈ S and si ∧ sj ∈ S.
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B. Submodular Functions Over Lattices

We consider submodular functions that are real-valued func-
tions defined on set products of the form

X =
N−1∏
i=0

Xi.

In particular, our focus is on set products in which Xi is a
lattice for all i ∈ {0, 1, . . . , N − 1}, and x ∈ X is a vector,
i.e., x = (x0, x1, . . . , xN−1) where xi ∈ Xi.

Definition 2.1: Let f be a real valued function defined on
a lattice X . Then, f is submodular if and only if for any pair
x and y in X

f(x ∨ y) + f(x ∧ y) ≤ f(x) + f(y).

For a function defined over a product of finite number of
chains, submodularity can also be defined in terms of antitone
differences. Let X be a product of N chains and x be an
element in X . Given i ∈ {0, 1, . . . , N−1}, we define a vector
yx
i as follows:{

yx
i (j) = x(j) j 6= i,

yx
i (j) ∈ Xi and yx

i (j) > x(j) j = i.

Therefore, yx
i > x and is non-unique from construction. If x(i)

is the largest element in Xi, we say that yx
i does not exist. A

function f : X → R is antitone in i over X if

f(yx
i ) ≤ f(x)

for all x ∈ X and for all the possible vectors yx
i . Then, from

Thm. 3.2 in [3], we can verify whether a function defined on
a product of finite number of chains is submodular or not as
follows:

Definition 2.2: Let X =
N−1∏
i=0

Xi where Xi is a chain for all

i ∈ {0, 1, . . . , N − 1}. A function f : X → R is submodular
if

f(yx
i )− f(x)

is antitone in j for all i and j in {0, 1, . . . , N −1}, i 6= j, for
all x ∈ X , and for all the possible vectors yx

i .
If Xi ⊂ Z for all i ∈ {0, 1, . . . , N − 1}, then the above

definition implies that f is submodular if f(x + ei)− f(x) is
antitone, i.e.,

f(x + ej + ei)− f(x + ej) ≤ f(x + ei)− f(x) (3)

for all i and j in {0, 1, . . . , N − 1}, i 6= j. If Xi’s are
continuous intervals of R, then Def. 2.2 implies that f is
submodular if

∂2f

∂xi∂xj
(x) ≤ 0

for all x ∈ X and i and j in {0, 1, . . . , N−1}, i 6= j. Thus, in
the case of chain products, the condition in the above definition
reduces the question of submodularity to comparing all pairs
of cross differences.

III. SUBMODULAR FUNCTION MINIMIZATION

A brief overview of the tools and techniques for minimizing
submodular set functions that are relevant to this work is
presented in [30].

A. Submodular Minimization Over Ordered Lattices

In [20], it was shown that most of the results relating
submodularity and convexity like efficient minimization via
Lovász extension ([21]) can be extended to submodular func-
tions over lattices. In particular, lattices defined by chain
products were considered and an extension was proposed in
the set of probability measures. It was proved that the proposed
extension on the set of probability measures was convex if and
only if the original function defined over the product of chains
was submodular. Moreover, it was proved that minimizing the
original function was equivalent to minimizing the proposed
convex extension on the set of probability measures.

A greedy algorithm was also presented in [20] for comput-
ing the continuous extension of a submodular function defined
over a finite chain product. This greedy algorithm will play a
central role in our proposed solution approach to distributed
motion planning with discrete inputs. Therefore, we present
the algorithm here for the completeness of presentation. For
details, we refer the readers to [20].

Let X be a product of N discrete sets with finite number
of elements

X =

N−1∏
i=0

Xi.

We assume that Xi = {s0, s1, . . . , smi−1} is a chain for all i,
which implies that the product set X is a lattice. Since Xi’s
are chains, we can order their elements and represent each set
by the index set

Xi = {0, 1, . . . ,mi − 1}.
Then, any x ∈ X will be an index vector. Let P (Xi) be the
set of all probability measures on Xi. Then, µi ∈ P (Xi) is a
vector in [0, 1]mi such that

mi−1∑
j=0

µi(j) = 1.

For a product set X , let P(X ) be the set of product
probability measures, i.e., for any µ ∈ P(X )

µ =
N−1∏
i=0

µi, µi ∈ P (Xi) ∀ i.

A probability measure µi is degenerate if µi(j) = 1 for some
j ∈ {0, 1, . . . ,mi − 1}. We define Fµi : Xi → R as

Fµi
(j) =

mi−1∑
l=j

µi(l).

Thus, Fµi is similar to cumulative distribution function but
is reverse of it. Since µi is a probability measure, Fµi(0) is
always equal to one. Therefore, we will ignore Fµi

(0) and only
consider mi − 1 values to reduce dimension of the problem.
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For a probability measure µi on Xi, we define a vector ρi
as

ρi = (Fµi
(1), Fµi

(2), . . . , Fµi
(mi − 1)). (4)

Since

Fµi
(j + 1) ≤ Fµi

(j)

for all j ∈ {0, 1, . . . ,mi − 1}, ρi is a vector with non-
increasing entries. The equality ρi(j) = ρi(j + 1) occurs if
and only if µi(j) = 0. Thus, ρi ∈ [0, 1]mi−1

↓ where

[0, 1]mi−1
↓ = {ρ̃ ∈ [0, 1]mi−1 : ρ̃(i+ 1) ≤ ρ̃(i) ∀ i}.

For a product set X , we define the set Ω(X ) as

Ω(X ) =
N−1∏
i=0

[0, 1]mi−1
↓ . (5)

Let θρi : [0, 1] → {0, 1, . . . ,mi − 1} be an inverse map of
ρi and is defined as

θρi(t) = max{0 ≤ l ≤ mi − 1 : ρi(l) ≥ t}.

From the definition of θρi ,

θρi(t) =


mi − 1 t < ρi(mi − 1),

l ρi(l + 1) < t < ρi(l),

l ∈ {1, 2, . . . ,mi − 2},
0 t > ρi(1).

The boundary values can be arbitrary and does not impact the
overall setup. The definition of θρi is extended to a product
set X as follows

θρ(t) =
N−1∏
i=0

θρi(t), (6)

where t ∈ [0, 1].
Let f : X → R be a real valued function defined over X .

Then, the greedy algorithm for computing an extension of f
over a continuous space is presented in Alg. 1. The extension
f ext of f is given in (8) and the subgradient of f ext is in
(10). The algorithm requires sorting r values, which has a
complexity of O(r log r), and r evaluations of the function,
where r is defined in (7). We refer the reader to [20] for the
details and the complexity analysis of the greedy algorithm.

It was proved in [20] that for a function f : X → R, where
X is a product of N finite chains, f ext(ρ) is convex if and
only if f is submodular. It was also proved that minimizing f
over X is equivalent to minimizing f ext over Ω(X ), i.e,

min
x∈X

f(x) = min
ρ∈Ω(X )

f ext(ρ),

and ρ∗ ∈ Ω(X ) is the minimizer for f ext if and only if θρ∗(t)
is a minimizer for f for all t ∈ [0, 1]. Therefore, by minimizing
f ext over Ω(X ), we can find a minimizer for a submodular
function f over an ordered lattice X .

Algorithm 1 Greedy Algorithm
Require: ρ =

∏N−1
i=0 ρi .

1: Form a set Q as follows.

Q = {ρ0(1), . . . , ρ0(m0 − 1), ρ1(1), . . . ,

ρ1(m1 − 1), . . . , ρN−1(1), . . . , ρN−1(mN−1 − 1)}.
The number of elements in Q is

r =
N−1∑
i=0

mi −N. (7)

In the summation, we subtract N because Fµi
(0) is

neglected in ρi for all i.
2: Arrange all the r values of Q in decreasing order in the

set Qdec, i.e.,

Qdec = {ρi1(j1), ρi2(j2), . . . , ρir (jr)},
such that

ρi1(j1) ≥ ρi2(j2) ≥ . . . ≥ ρir (jr).

The ties are handled randomly. However, in the case of
ties within ρi for some i, the order of the values are
maintained.

3: Compute the extension of function f over the probability
measures as follows

f ext(ρ) = f(0) +
r∑
s=1

t(s) (f(ys)− f(ys−1)) , (8)

where

t(s) = ρis(js) ∀ s ∈ {1, 2, . . . , r}.
Moreover, the vector ys ∈ X is

ys =


(0, 0, . . . , 0) s = 0,

ys−1 + eis 1 ≤ s ≤ r − 1,

(m0 − 1,m1 − 1, . . . ,mN−1 − 1) s = r.
(9)

4: The subgradient of f ext evaluated at ρ is

∂f ext
∣∣
ρ

=
N−1∏
i=0

∂f ext
∣∣
ρi
.

The jth component of ∂f ext
∣∣
ρi

is

∂f ext
∣∣
ρi

(j) = f(yg)− f(yg−1), (10)

where g = min{s ∈ {1, 2, . . . , r} : ys(i) = j}.

IV. DISTRIBUTED SUBMODULAR MINIMIZATION

In this section, we present the main contribution of this
work, which is a distributed algorithm for minimizing a
submodular function defined over a product of N chains.

Consider a system comprising N agents,
{v0, v1, . . . , vN−1}. The global objective is to minimize
a cost function, which is the sum of N terms over a product
set X . Each agent has information about one term only in
the global cost function. Thus, the agents need to solve the
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following optimization problem collaboratively

min
x∈X

J(x) =
N−1∑
i=0

Ji(x), (P)

where

X =

p−1∏
j=0

Xj , |Xj | = mj .

We assume that Ji : X → R is a submodular function and each
Xj is a chain. Since the total cost is a sum of N submodular
functions, it is also a submodular function.

The cost function of each agent in (P) depends on the entire
decision vector, which is global information. However, we
assume that each agent has access to local information only.
The local information of agent vi consists of the term Ji in the
cost function. Moreover, each agent is allowed to communicate
with a subset of other agents in the network. Therefore,
no agent has direct access to any global information. The
communication network is represented by a graph G(V, E),
where V = {v0, v1, . . . , vN−1} is the set of vertices and
E ⊆ V × V is the set of edges. An edge (vi, vj) ∈ E
implies that agent vi has access to the information of vj . The
neighborhood set of vi contains vi and the agents with which
vi can communication, i.e.,

N(vi) = {vi} ∪ {vj ∈ V : (vi, vj) ∈ E}.
The communication network is represented algebraically by a
weighted incidence matrix A defined as follows:

A(i, j) =

{
aij vj ∈ N(vi),

0 otherwise.
(11)

where aij ≥ 0 for all i and j.
To find a minimizer of J(x), we propose a relaxation based

approach in which we formulate a relaxed problem that is
equivalent to (P). The structure of the relaxed problem is as
follows:

min
ρ∈Ω(X )

Jext(ρ) =
N−1∑
i=0

Jext
i (ρ). (P1)

In the relaxed problem, Jext is the extension of J , which is
computed through (8) in Alg. 1, and Ω(X ) is the constraint set
defined in (5). To find a solution to (P1), we implement Alg. 2,
which is the consensus based projected subgradient algorithm
from [25]. Finally, we compute a minimizer for J(x) in (P)
from the solution of (P1) computed from Alg. 2.

Since the cost of each agent depends on the entire state vec-
tor, agents need global information to solve the optimization
problem. The main idea in Alg. 2 is that each agent generates
and maintains an estimate of the optimal solution based on its
local information and communication with its neighbors. The
local information of agent vi is the cost function Ji. It solves
a local optimization problem and exchanges its local estimate
of the solution with its neighbors. Then, it updates its estimate
of the optimal solution by mixing the information it received
from its neighbors and the process is repeated. The details are
presented in Alg. 2 from the perspective of agent vi.

Algorithm 2 Distributed Submodular Minimization
To solve the optimization problem (P1), agent vi has to
perform the following steps:

1: Select any ρ ∈ Ω(X ), where Ω(X ) is defined in (5). Set

ρi[0] = ρ,

2: At each time k, update ρi[k − 1] as follows
3: for k = 1 to iter do
4: for j = 0 to p− 1 do

νij =
N−1∑
w=0

aiwρ
w
j [k − 1] (12)

5: end for
6: Set

ρi[k] = PΩ(X )

(
νi − γk∂Jext

i

∣∣
νi

)
, (13)

where νi =
p−1∏
j=0

νij , and γk is the step size such that∑
k γk = ∞ and

∑
k γ

2
k < ∞. The term ∂Jext

i

∣∣
νi is a

sub-gradient of Jext
i evaluated at νi and can be computed

using (10).
7: end for
8: Set ρ̂i = ρi[iter].
9: Agent vi’s estimate of an optimal solution for (P) is

x̂i[iter] = θρ̂i(t̂) (14)

for some t̂ ∈ [0, 1]. Here θρ̂i(t̂) is computed from (6).

In Alg. 2, agent vi starts by initializing its estimate ρi

of the optimal solution with a feasible product vector, i.e.,
ρi[0] ∈ ΩX . To update ρi[k] for all j ∈ {0, 1, . . . , N − 1},
vi exchanges its local estimate with all the agents in its
neighborhood set N(vi)\{vi}. The estimates are updated in
two steps, a consensus step and a gradient descent step. The
consensus step is in (12) in which vi computes a weighted
combination of the estimates of vk ∈ N(vi) by assigning
weight aiw to ρw[k−1] . The gradient descent step is in (13),
in which the combined estimate νi is updated in the direction
of gradient descent of Jext

i evaluated at νi. Here, γk is the step
size of the descent algorithm at time k. The gradient ∂Jext

i

∣∣
νi

is computed through the greedy algorithm.
Finally, PΩ(X )(ξ

i) is the projection operator that projects ξi

on the constraint set Ω(X ). Let

ξi = νi − γk∂Jext
i

∣∣
νi ,

Since νi and ∂Jext
i are product vectors,

ξi =

p−1∏
j=0

ξij , j ∈ {0, 1, . . . , p− 1}, and

ξij = νij − γk∂Jext
i

∣∣
νi
j

.

Thus, the projection of ξi on Ω(X ) can be decomposed into
projecting each ξij on [0, 1]

mj−1
↓ for which we solve the
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following problem.

min
ρ̃∈[0,1]mj−1

‖ρ̃− ξij‖2 (15)

s.t. Cρ̃ ≤ 0mj−2,

where 0mj−2 ∈ Rmj−2 with all entries equal to 0 and C ∈
R(mj−2)×(mj−1) with entries equal to

Cuz =


−1 ifu = z,

1 ifz = u+ 1,

0 otherwise.

The inequality constraints ensure that the solution to (15) has
non-increasing entries, i.e.,

ρ̃(u+ 1)− ρ̃(u) ≤ 0 ∀ u ∈ {0, 1, . . . ,mj − 2}.
The vector ρi is updated through Eqs (12) and (13) for iter
number of iterations. After iter iterations, agent vi’s estimate
of the optimal solution for (P1) is

ρ̂i = ρi[iter].

Based on this estimate, agent vi computes x̂i as in (14), which
is its estimate of the optimal solution for the problem in (P)

Proposition 1: If the communication graph G(V, E) and
the corresponding adjacency matrix defined in (11) satisfy the
following conditions:

1) G(V, E) is strongly connected.
2) There exists a scalar η ∈ (0, 1) such that aii ≥ η for

all i ∈ {0, 1, . . . , N − 1}.
3) For any pair of agents (vi, vj) ∈ E , aij ≥ η.
4) Matrix A is doubly stochastic, i.e.,

∑N−1
i=0 aij = 1 and∑N−1

j=0 aij = 1 for all i and j in {0, 1, . . . , N − 1}
Then,

x̂i[iter]→ x∗ as iter→∞, (16)

where x̂i[iter], computed in (14), is the estimate of agent vi
for x∗ ∈ X ∗, which is an optimal solution to the submodular
minimization problem (P) and X ∗ is the set of optimal
solutions to the problem.

Proof: Proposition 1 states that as the number of updates
in Alg. 2 approaches infinity, the estimate of agent vi of the
global solution to (P) approaches to an optimal solution of
(P). Thus, each agent can find a global minimizer of the
submodular function J(x) in (P) in a distributed manner.

The proof of the proposition is as follows. As stated before,
Alg. 2 is the consensus based projected subgradient algorithm
presented in [25] for constrained convex optimization prob-
lems. Since the relaxed problem (P1) is a constrained convex
optimization problem as shown in [20], we can deduce directly
from [25] that if conditions 1 to 4 in the proposition statement
are satisfied, then

ρi[iter]→ ρ∗ as iter→∞, (17)

where ρi[iter], computed in (4), is agent vi’s estimate of the
optimal solution for (P1) after iter iterations and ρ∗ is an
optimal solution of (P1).

Based on the results in [20], problems (P) and (P1) are
equivalent. Therefore, we can find an optimal solution to (P)
through an optimal solution to (P1). Let X ∗ ⊆ X be the set
of optimal solutions of (P). From (14), the estimate of agent
vi for optimal solution to (P) is x̂i[iter] and it depends on
ρi[iter]. Then, the fact that ρi[iter] approaches to an optimal
solution ρ∗ for all i implies that x̂i[iter] → x∗ as iter → ∞,
where x∗ = θρ∗(t) belongs to X ∗ for all t ∈ [0, 1].

Note: An important note related to finding optimal solution
to (P) from the solution to (P1). We know from [20] that
θρ∗(t) ∈ X ∗ for all t ∈ [0, 1]. Let ti ∈ [0, 1] be the value used
by agent i to compute its optimal solution θρ∗(ti). If |X ∗| = 1,
i.e., P has a unique optimal solution x∗, then θρ∗(ti) = x∗

for all i. However, if |X ∗| > 1, ti and tj can lead to different
elements in X ∗ for ti 6= tj . Therefore, if there is an additional
constraint that all the agents should select the same optimal
solution, we need to set

ti = t̂ for all i ∈ {0, 1, . . . , N − 1}

for some t̂ ∈ [0, 1]. The agents can decide on a value of t̂ by
running a parallel consensus algorithm on t in Alg. 2.

In Alg. 2, there are two primary operations that an agent
performs in every iterations. The first operation is the com-
putation of subgradient, which is computed through Alg. 1.
The complexity of this algorithm was already discussed in the
previous section. The second operation is the projection of the
updated estimate of the optimization vector on the constraint
set by solving (15). This is an isotonic regression problem and
can be solved by any quadratic program solver.

V. DISTRIBUTED MOTION PLANNING OVER DISCRETE
DOMAIN

Our second contribution is a novel application domain of
submodular function minimization. We establish through a
challenging setup of capture the flag game that submodular
function minimization can play a fundamental role in motion
planning under uncertain environments for multiagent systems
in which each agent has discrete set of inputs.

As outlined in the classical “boids” model in [27], the
motion of an individual agent in a multiagent system should
be a combination of certain fundamental behaviors. These be-
haviors include collision avoidance, cohesion, and alignment.
Cohesion corresponds to the tendency of the agents to remain
close to each other, and alignment refers to the ability of the
agents to align with a desired orientation and reach a desired
goal point. In addition to these behaviors, agents should be
able to avoid any obstacles in the environment.

We demonstrate that the behaviors in the “boids” model
can be achieved by solving submodular minimization problems
over discrete inputs. Our contributions are as follows:
• We propose potential functions ((20), (21), and (22)) to

simulate attractive forces between agents and prove that
these functions are submodular over the set of discrete
inputs. We show that we can achieve go-to-goal, align-
ment, and cohesion behaviors based on these attractive
potential functions.
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• We design a potential function (23) that simulates repul-
sive forces and prove that this function is submodular over
the set of discrete inputs as well. This potential function
generates repulsive forces between an agent and entire
planes. We show that through this repulsive potential
function, we can achieve collision avoidance and obstacle
avoidance.

• We establish the effectiveness of the proposed motion
planning approach based on submodular potential func-
tions through an example setup, which is inspired from
the capture the flag game as presented in [28] and [29].
Capture the flag is a challenging setup that involves two
teams of agents competing against each other. We demon-
strate through extensive simulations that by formulating
the problem in terms of submodular potential functions
and solving it using our proposed distributed submodular
minimization framework, each agent can compute an
effective motion plan for itself in a distributed manner.

A. Problem Formulation
Capture the flag game is played between two teams of

agents, offense and defense, over a time interval of length T .
We will refer to the members of the offense and defense teams
as attackers and defenders respectively. The arena is a square
region of area N2

g that is discretized into a two dimensional
grid having Ng×Ng sectors as shown in Fig. 1. The discretized
arena is represented by a set G = G×G, which is an integer
lattice, i.e., each z = (x, y) in G is a vector in Z2, where x
and y belong to G = {0, 1, 2, . . . , Ng − 1}.

A flag is assumed to be placed in the arena and the area
surrounding it is declared as a defense zone. The defense zone
D = {zf0 , zf1 , . . . , zfnf−1} is a subset of G with nf points. The
points in D are stacked in a vector

zf = (zf0 , z
f
1 , . . . , z

f
nf−1), zf ∈ Z2nf

in which each zfi = (xfi , y
f
i ) is a point in Z2.

The grid points of the shaded region at the top of Fig. 1
comprise the defense zone. The objective of the offense is
to capture the flag. The flag is considered captured if any
attacker reaches a point in the defense zone. Once the flag is
captured, the game stops and the offense wins. On the other
hand, the objective of the defense is to stop the attackers
from entering the defense zone either by capturing them or
forcing them away. To defend the defense zone, there needs
to be collaboration and cohesion among the defenders. An
attacker is in captured state if its current location is shared
by at least one defender. However, if that defender moves to
a different location, the state of the attacker switches from
captured to active. If no attacker can enter the defense zone
for the duration of the game, the defense wins.

Let P = {a, d} be a set of teams where a and d correspond
to the teams of attackers and defenders respectively. Let np be
the number of players and pi be the ith player in team p ∈ P .
The locations of all the players in a team at time k are stacked
in a vector zp(k) ∈ Z2np where the location of pi at time k
is zpi (k) = (xpi (k), ypi (k)). The update equation for pi is

zpi (k + 1) = zpi (k) + upi (k),

(0, 0)

Y

X

∗

∗

∗
∗

∗

Rp

i,col

pi

Defense Zone D

pj

pk

Fig. 1. Layout of the playing arena.

where upi (k) = (upx,i(k), upy,i(k)) ∈ U × U , and

U = {−umax,−umax + 1, . . . , 0, . . . , umax − 1, umax}.

Let Upi = U × U be the input set of player pi. Then, the
reachable set of pi at time k is

Rpi (k) = {z ∈ G : z = zpi (k) + upi , upi ∈ Up},

i.e., Rpi (k) is the set of all points that pi can reach in one
time step. For notational convenience, we will drop k from
the arguments. The reachable sets of players with umax = 1
are depicted in Fig. 1.

Two players can collide if their reachable sets overlap with
each other. Let

Rpi,col =

np⋃
j=1
j 6=i

(
Rpi ∩Rpj

)
.

Rpi,col is the set of all points in Rpi that can result in a
collision between pi and the members of its team. The shaded
region in Fig. 1 depicts Rpi,col for pi. To make the game more
challenging and to add obstacle avoidance, we assume that
some point obstacles are placed in the arena. Let

O = {zobs
1 , . . . , zobs

nobs−1}

be the set of obstacle locations. In Fig. 1, the obstacles are
represented by asterisks.

For player pi, we combine the sets of points of possible
collisions with other players and with obstacles as follows:

Rpi,avoid = Rpi,col ∪ (Rpi (k) ∩ O). (18)

One approach to guarantee collision avoidance is to limit
the effective reachable set of pi to Rpi \Rpi,avoid, which is
the set of points of Rpi that are not included in Rpi,avoid. To
avoid the points in Rpi,avoid, we compute Xp

i,avoid and Y pi,avoid.
These are sets of collision avoidance planes along x and y
direction such that avoiding these entire planes guarantee that
zpi ∈ Rpi \Rpi,avoid in the next time step. We explain collision
avoidance planes through examples in Fig. 2. In both the cases,
the shaded regions are the sets where collisions can occur. In
Fig. 2(a), if pi avoids the entire plane x = xpi + 1 and pj



2325-5870 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2019.2933993, IEEE
Transactions on Control of Network Systems

8

avoids the entire plane x = xpj − 1, then pi and pj cannot
collide at time k + 1. In this case

Xp
i,avoid = {xpi + 1}, Y pi,avoid = ∅,

Xp
j,avoid = {xpj − 1}, Y pj,avoid = ∅.

Similarly, the avoidance planes in Fig. 2(b) are

Xp
i,avoid = {xpi + 1}, Y pi,avoid = {ypi + 1},

Xp
j,avoid = {xpj − 1}, Y pj,avoid = ∅,

Xp
l,avoid = ∅, Y pl,avoid = {ypl − 1}.

For umax
x = umax

y = 1, the sets Xp
i,avoid and Y pi,avoid can be

computed easily.
Next, we formulate the problem form the perspective of

defense team. In the game setup, we assume that at time k
each defender knows the current locations of all the attackers.
However, any mobility strategy for the defense team inherently
depends on the strategy of the attack team, which is unknown
to the defenders. Therefore, we implement an online optimiza-
tion strategy, in which the defenders assume a mobility model
for attackers. At each time k, the online optimization problem
has the following structure.

min
ud∈Ud

J(zd,ud, (za)+, zf , zobs),

s.t. (zd)+ = zd + ud. (P2)

where Ud =
nd−1∏
i=0

Udi and Udi = {−1, 0, 1} × {−1, 0, 1}.

In this problem formulation, za and zd are the location
vectors of the offense and defense teams at time k, and (za)+

is the location vector of offense at time k+ 1. To solve (P2),
defenders still need to know (za)+, which cannot be known
at current time. Therefore, defenders assume a mobility model
for attackers. The assumed model can be as simple as the
shortest path form the current location of an attacker to the
defense zone. The model can also be more sophisticated like
a feedback strategy as presented in [29].

The cost function J in (P2) is

J(zd,ud, (za)+, zf , zobs) =

nd−1∑
i=0

Ji(z
d,ud, (za)+, zf , zobs).

The total cost is the sum of the costs of individual defenders.
The local cost of each defender is

Ji = αfi J
f
i (zdi , u

d
i , z

f )+αai J
a
i (zdi , u

d
i , (z

a)+)+Jdi (zd,ud)+

Javoid
i (zd, udi , z

obs) + Jmob
i (udi ). (19)

To avoid notational clutter, we will ignore function arguments
unless necessary. The terms comprising the cost function are

(xp
i , y

p
i ) (xp

j , y
p
j )

(xp
l , y

p
l )

(xp
i , y

p
i ) (xp

j , y
p
j )

(a) (b)

Fig. 2. Collision avoidance planes.

defined as follows.

Jfi =

nf−1∑
h=0

wfihd((zdi )+, zfh), (20)

Jai =

na−1∑
g=0

waigd((zdi )+, (zag )+), (21)

Jdi =

nd−1∑
j=0

wdijd((zdi )+, (zdj )+), (22)

Javoid
i =

∑
cx∈Xd

i,avoid

dx,avoid((zdi )+, cx)

+
∑

cy∈Y d
i,avoid

dy,avoid((zdi )+, cy), (23)

Jmob
i = wui (|udx,i|2 + |udy,i|2). (24)

In the cost functions, wfih, waig , wdij , and wui are non-negative
weights. The function d(zi, zj) is a distance measure between
points zi and zj . It can be either of the following two
functions:

d(zi, zj) = (xi − xj)2 + (yi − yj)2, or
d(zi, zj) = |xi − xj |+ |yi − yj |. (25)

The functions dx,avoid and dy,avoid are

dx,avoid(zdi , cx) = ζ1e
−ζ2(xd

i−cx)2 , and

dy,avoid(zdi , cy) = ζ1e
−ζ2(ydi−cy)2

with ζ1 ≥ 1 and ζ2 ≥ 1.
The local cost of each defender has five components, each

of which is a potential function with the minimum value at
the desired location. The term Jfi in (20) models defensive
behavior in which di stays close to the defense zone to protect
it. The constant weight wfih ≥ 0 is the strength of attractive
force between di and the point zfh in the defense zone. The
cost term Jfi is minimized when zdi is equal to a weighted
average of the points in the defense zone. We assume that
each defender di is assigned the responsibility of a subset Di

of the defense zone D, where

Di ⊆ D and

nd⋃
i=1

Di = D.

The weights are assigned as follows.

wfih =

{
1
|Di| zfh ∈ Di,

0 otherwise
(26)
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The term Jai defined in (21) models attacking behavior of
the defenders. In this mode, the defenders actively pursue the
attackers and try to capture them before they reach the defense
zone. The function Jai is a weighted sum of square of the
distances between di and the locations of the attackers at the
next time step. For the simulations in the next section, we
assume that defender di only pursues the attacker that is closest
to Di. Let

δ(Di, ag) = min{d(zfh , z
a
g ) : zfh ∈ Di}, and

δ(Di) = min{δ(di, ag) : g ∈ {1, . . . , na}}.
Here δ(Di, ag) is the minimum Manhattan distance of attacker
ag from Di and δ(Di) is the minimum of the distances of all
the attackers from Di. Then

waig =

{
c δ(Di, ag) = δ(Di),

0 otherwise.
(27)

where c is a scalar. In case of a tie, di selects an attacker
randomly and starts pursuing it.

The behavior of each defender can be selected to be a
combination of these two terms by tuning the parameters αai
and αfi such that

αai + αfi = 1.

The values αai = 1 or αfi = 1 corresponds to purely attacking
or defensive behaviors for di. If these parameters are constant,
the behavior of the defenders remain the same through out
the game. We can also have an adaptive strategy based on
feedback for adjusting the behavior of each defender. Let δth
be a threshold distance and let αanom and αfnom be the nominal
weights assigned to Jai and Jfi respectively at δ(Di) = δth
such that

αanom + αfnom = 1.

Then

αai =
αanome

β(δth−δ(Di))

αanome
β(δth−δ(Di)) + αfnom

, (28)

αfi =
αfnom

αanome
β(δth−δ(Di)) + αfnom

.

where β ∈ [0, 1] is a constant value.
For defender di, if δ(Di) = δth, the parameters αai and

αfi are equal to their nominal values. If an attacker gets
closer to Di than δth, i.e., δ(Di) < δth, the value of αai
increases exponentially and the value of αf decreases. Thus,
as the attackers move towards Di, the weight assigned to
Jai increases, and the behavior of di shifts towards attacking
mode . However, if the attackers are not close to the Di, i.e.,
δ(Di) > δth, then the value of αai reduces exponentially and
the behavior of di becomes more defensive.

The third term Jdi defined in (22) generates cohesion among
the defenders. Minimizing Jdi drives di towards the weighted
average of the locations of all the other defenders at time k+1.
We assume that the weights wdih are positive, i.e.,

wdih > 0 for all i, h in {1, 2, . . . , nd}.
The function Jdi depends on the next locations of all the
defenders. We assume that each defender knows that current

locations of all of its teammates. However, it does not know
the behavior parameters of other defenders, i.e., αai and αfi
are private parameters of each player. Therefore, we need to
implement a distributed optimization algorithm to minimize
Jdi . We will show through simulations that the proposed
algorithm Alg. 2 can be used effectively to minimize Jdi .

The fourth term Javoid
i defined in (23) guarantees obstacle

and collision avoidance by generating repulsion from the
avoidance planes. The function dx,avoid((xdi )

+, cx) is max-
imum when (xdi )

+ = cx, where cx ∈ Xd
i,avoid. Similarly,

dy,avoid((ydi )+, cy) is maximum when (ydi )+ = cy , where
cy ∈ Y di,avoid. By selecting ζ1 large enough, we can guarantee
that di avoids the planes in Xd

i,avoid and Y di,avoid, which ensures
that it avoids Rdi,avoid. Thus, minimizing (23) guarantees
collision and obstacle avoidance. The purpose of ζ2 is to
control the region of influence of this barrier potential. Finally,
the fifth term Jmob

i in (24) is the mobility cost of di.
Problem (P2) is a combinatorial optimization problem

because the set of inputs is discrete. We will now prove that
the cost J in (19) is submodular and (P2) is a submodular
minimization problem.

Theorem 5.1: Problem (P2) with the cost function defined
in (19)-(24) is a submodular minimization problem over

U =

nd−1∏
i=0

U × U,

where U = {−umax,−umax + 1, . . . , 0, . . . , umax− 1, umax}.
Proof: Since U is a subset of Z, we can use the criterion

in (3) to verify submodularity of the the cost function. From
(19), the cost of each agent Ji is a summation of five terms.
We will show that each of these terms is submodular. Then,
using the property that sum of submodular functions is also
submodular, we prove the theorem.

The terms Jfi , Jai , and Jdi are weighted sums of the distance
functions in (25). We verify that

d(z) = (xi − xj)2 + (yi − yj)2,

is submodular for any z = (xi, yi, xj , yj). To prove that d(z)
is submodular, we need to show that

d(z + ep + eq)− d(z + eq) ≤ d(z + ep)− d(z).

where ep and eq are unit vectors of dimension four.
The first scenario is that both ep and eq increment either

the x or the y components in z. Without loss of generality,
we assume that the x components are incremented, i.e., p = 1
and q = 3. Then,

[d(z + ep + eq)− d(z + eq)]− [d(z + ep)− d(z)] =

− (1− 2(xi − xj))− (1 + 2(xi − xj)) = −2.

The second scenario is that out of p and q, one corresponds to
an x component and the other corresponds to a y component.
Let p = 2 and q = 3. Then,

[d(z + ep + eq)− d(z + eq)]− [d(z + ep)− d(z)] =

(1 + 2(yi − yj))− (1 + 2(yi − yj)) = 0.
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Thus, the condition in (3) is satisfied for all possible
scenarios, which proves that the function d(z) is submodular.
The same sequence of steps can be followed to verify the
submodularity of Manhattan distance.

The function Javoid
i is the summation of the terms dx,avoid

and dy,avoid. Since each of these terms is only a function
of single decision variable, the second order comparison
condition in (3) will be satisfied with equality. The same
argument is valid for Jmob

i . Since all the functions in Ji are
submodular, Ji is submodular for all i, which concludes the
proof.

Since (P2) is a submodular minimization problem, we
can use our proposed framework for distributed submodular
minimization to find an optimal plan for the defenders. In this
setup of capture the flag game, the defense team needs to solve
(P2) at each decision time as depicted in Alg. 3. The cost of
each defender in (P2) depends on zd, zf , zobs, (za)+ and ud.
The first three terms correspond to the current locations of all
the defenders, location of the defense zone, and the locations
of obstacles, all of which are known to each defender. The
fourth term corresponds to the locations of the attackers in the
next time step, which each defender computes based on the
assumed model for attackers. The final term is the decision of
all the defenders, which is not known and cannot be computed
locally. Therefore, each defender has to minimize its cost Ji
over the set of decision variables ud.

In Alg. 3, defender di runs Alg. 2 for fixed number of
iterations iter. The output of Alg. 2 is ûdi , which is di’s
estimate of the decision vector ud. Because of real-time
constraints, the number of iterations iter has to be a small
value. Therefore, the estimates of the defenders of the decision
vector are not guaranteed to be same. Defender di uses its
own estimate of the optimal decision vector ûdi to update its
location and the process is repeated.

Problem (P2) includes important requirements for a class
of motion planning problems in multiagent systems. We can
generate collision free paths for multiple agents starting from
given initial conditions to terminal conditions while avoid-
ing any obstacles in the environment. Moreover, the online
implementation presented in Alg. 3 provides the capability
of handling unmodeled system dynamics and uncertainties in
the environment. Thus, we can claim with confidence that
submodular minimization is a natural paradigm for modeling
motion coordination problems in multiagent systems over
discrete state space. Moreover, the framework proposed in
this work can effectively compute feasible motion plans in
a distributed manner.

VI. SIMULATION

We simulated the capture the flag game with the following
setup. The size of the grid was 20 × 20 and the game was
played over a time interval of length T = 40. The defense
zone was located at the top of the field. The number of
players in both the teams was four, i.e., nd = na = 4.
There were six point obstacles placed in the field. The detailed
layout of the field with the locations of the defense zone,
attacker, defenders, and the obstacles is presented in Fig. 3(a).

Algorithm 3 Online Distributed Submodular Minimization
At each decision time k, di needs to perform the following
steps:

1: for k = 0 to T − 1 do
2: Apply Alg. 2 for fixed number of iterations iter. The

output of the algorithm is ûdi .
3: Update the state

zdi (k + 1) = zdi (k) + ûdii .

4: end for

The defense zone is the set of squares at the top of the
field. The obstacles are represented by asterisks, attackers by
diamonds, and defenders by circles. The responsibility set of
each defender di was Di and is shown in the figure.

The parameters in Javoid
i were set as ζ1 = 200 and ζ2 = 5.

The weights in (27) for Jai was c = 20 for each defender. For
cohesion among the defenders in Jdi , the following weights
were used

W d =

 0.0 0.5 0.1 0.01
0.5 0.0 0.1 0.01
0.01 0.1 0.0 0.5
0.01 0.1 0.5 0.0

 ,
where W d

ij = wdij . To switch between attacking and defense
modes, we selected αfnom = 0.9 and αfnom = 0.1 and β = 0.7.
The simulations were performed with Manhattan distance
for the function d(zi, zj) as defined in (25) and for four
different values of threshold distance, δth ∈ {5, 10, 15, 20}.
We also simulate a scenario with different value of δth for
each defender.

The defenders assumed that the attackers always try to
minimize their distance form the defense zone. However,
the actual strategy of the attackers was based on feedback
that depended on their distance from the defenders. Each
attacker had two basic modes: attack base and avoid defender.
It adjusted the weights assigned to each of these modes
depending on its minimum distance from the defenders.

At each decision time, attacker i computed two positions.
To enter the defense zone, it computed the location in its
neighborhood that minimized its distance from the defense
zone. To avoid defenders, it also computed the location that
maximized its distance from the nearest defender. Let ηi,base

be the weight assigned to attack base mode and ηi,avoid be the
weight assigned to avoid defender mode. Let ηnom

base and ηnom
avoid

be the nominal values if the minimum distance between an
attacker and the defenders was equal to some threshold value
∆th. Let ∆a

i (k) be the minimum distance between attacker i
and the defenders at time k. Then

ηi,avoid(k) =
ηnom

avoide
κ(∆th−∆a

i (k)

ηnom
base + ηnom

avoide
κ(∆th−∆a

i (k)
,

ηi,base(k) =
ηnom

base

ηnom
base + ηnom

avoide
κ(∆th−∆a

i (k)
.

where κ ∈ [0, 1] is a constant value. If ∆a
i (k) < ∆th, the

value of ηi,avoid(k) increases because a defender is closer than
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(a) Playing arena. (b) δth = 20. (c) δth = 15.

(d) δth = 10. (e) δth = 5. (f) δth = (20, 8, 8, 20).

Fig. 3. Layout of the playing arena and trajectories of the offense and defense teams for different values of δth in (28).

the threshold value. However, as ∆a
i (k) increases, ηi,avoid(k)

keeps on decreasing. Thus, at each decision time k, the attacker
decides to attack the base with probability ηi,base(k) and avoid
defenders with probability ηi,avoid(k). In the simulation setup,
we selected ηnom

avoid = 0.7, ηnom
base = 0.3, ∆th = 4 and κ = 0.9.

Finally, for the distributed optimization algorithm, we as-
sume that the communication network topology is a line graph
and the adjacency matrix has the following structure.

A =

0.7 0.3 0 0
0.3 0.6 0.1 0
0 0.1 0.6 0.3
0 0 0.3 0.7

 .
The distributed subgradient algorithm was executed for iter =
20 iterations with γ = 0.1 and t̂ = 0.7. The simulation
results are presented for four values of δth, which controlled
the transition of defenders behavior from defense to attack in
(28). In all the simulations, the behavior of the attackers was
aligned with the values set for ηnom

avoid and ηnom
base. The attackers

had more emphasis on avoiding the defenders than capturing
the base. Consequently, none of the attackers could enter the
defense zone. However, the defenders were unable to capture
all the attackers as well.

The effect of decreasing the value of δth can be observed by
comparing the trajectories in Figs. 3(b)-3(e). With δth = 20,
the behavior of the defense team was set to be attacking, which
is evident form Fig. 3(b). The defenders left the base in pursuit
of the attackers and were able to capture three of them. As δth
is reduced, the defensive behavior becomes more and more
prominent. In Fig. 3(c) for δth = 15, the defenders left the
base area in pursuit of the attackers but were a little restrictive
then the case with δth = 20 in Fig. 3(b). The behavior of the
defenders became more restrictive in Fig. 3(d) when δth = 10.
With δth = 5, the behavior of the defenders was set to be
defensive. Therefore, we can observe from Fig. 3(e) that all the
defenders remained close to their assigned base area. Finally,
we simulated the game with different δth for each defenders.
From Fig. 3(f), we can observe that the defenders at the flanks

were attacking and the center players were more defensive and
guarded the defense zone.

In all the simulations, we can observe that the defenders
managed to avoid collisions among themselves and with the
obstacles. Thus, the proposed framework for the distributed
minimization of submodular functions generated effective tra-
jectories for our problem even though our problem was defined
over partially ordered sets.

VII. CONCLUSION

We presented a framework for the distributed minimization
of submodular functions over lattices of chain products. For
this framework, we established a novel connection between
a particular convex extension of submodular functions and
distributed optimization of convex functions. This connection
proved to be effective because that convex extension of sub-
modular functions could be computed efficiently in polynomial
time. Furthermore, the solution to the original submodular
problem was directly related to the solution of the equivalent
convex problem.

We also proposed a novel application domain for sub-
modular function minimization, which is distributed motion
coordination over discrete domains. We demonstrated through
an example setup that we can design potential fields over state
space based on submodular functions. We showed that we can
achieve certain desired behaviors like cohesion, go to goal,
collision avoidance, and obstacle avoidance by driving the
agents towards the minima of these potential fields. Finally,
we verified through simulations that the proposed framework
for distributed submodular minimization can efficiently mini-
mize these submodular potential fields online in a distributed
manner.
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