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Abstract

Multivariate statistical monitoring charts are efficient tools for assessing the quality of a process by identifying

abnormalities. Most commonly used multivariate monitoring charts, such as the Hotelling T 2 rule, however,

assume the availability of uncorrelated Gaussian observations. Unfortunately, very often, real data do not

satisfy these assumptions, and thus limit the usefulness of these techniques in practice. Furthermore, in

many real applications, changes can occur in the shape of the multivariate distribution of the process while

its mean or variance remains the same. Conventional process monitoring charts, such as the T 2 chart,

fail to detect such changes in the distribution. In this paper, we develop new copula-based multivariate

monitoring techniques for possibly autocorrelated, non-Gaussian data that can detect changes in the shape

of a multivariate distribution that are usually overlooked by conventional monitoring charts. Using synthetic

data, we demonstrate the effectiveness of the developed charts over a conventional monitoring chart. Results

indicate that the proposed charts are very promising because copula-based charts are, in practice, designed to

monitor the entire distribution of a process instead of the individual components. The developed monitoring

charts are validated through practical application on data from a decentralized wastewater treatment plant

in Golden, CO, USA.

Keywords: Copula; Multivariate control chart; Non-Gaussian distribution; Shape of distribution;

Skewness.

1. Introduction

Fault detection and diagnosis have a vital role in modern industrial processes to enhance productivity,

efficiency, and safety, and to reduce expensive maintenance (Isermann, 2006). Early detection of anomalies

is crucial not only to maintain proper process operation, but also for the sake of people’s health. Therefore,

to avoid catastrophic consequences, it is essential to have a process monitoring system. Monitoring is

required to maintain both product quality and safe operation. Fault detection and diagnosis are two vital



components of process monitoring, during which faults are first identified and then isolated to ensure that

they are appropriately handled (Basseville and Nikiforov, 1993).

Over the last two decades, the growing demand for safety, reliability, and efficiency in complex systems

has led to an increased research interest in the areas of fault detection (FD) and diagnosis. Various techniques

for fault detection have been developed, which can be classified into two main categories: data-based and

model-based techniques. Model-based FD techniques are performed by comparing the process-measured

variables with information obtained from the process model (Harrou et al., 2014). In contrast to the model-

based techniques, data-based techniques do not need a process model since they rely on the availability of

historical process data to represent process performance (Russell et al., 2012; Gertler, 1998). Such methods

often generate residuals to quantify the distance between the measured and the desired behaviors. These

residuals remain small or close to zero in the absence of faults and become significantly large in the presence

of faults (Yin et al., 2014).

Several data-based fault detection approaches have been developed in the literature to meet various

requirements in practical use, and they can be grouped into two main classes: univariate and multivariate

techniques (Qiu, 2013; Montgomery, 2005; Bissell, 1994). The univariate statistical monitoring techniques

are used to monitor only one process variable. Such techniques include the Shewhart chart (Shewhart,

1930; Montgomery, 2005), the cumulative sum (CUSUM) control charts (Montgomery, 2005), and the expo-

nentially weighted moving average (EWMA) charts (Lucas and Saccucci, 1990; Rabhu and Runger, 1997).

Although these univariate control charts have been used in most industries, they are only appropriate un-

der the assumption that each observed variable is independent of others. When looking at multivariate

data, these methods will ignore the interaction between the correlated variables and therefore result in a

misleading analysis. Unlike the the traditional univariate statistical process control, multivariate statistical

analysis methods take the correlation between variables into account and study many variables simultane-

ously. Multivariate statistical monitoring approaches include the multivariate Shewhart chart (Hotelling,

1947), multivariate EWMA (Lowry et al., 1992), and multivariate CUSUM (Crosier, 1988). The two es-

sential assumptions underlying the design of conventional process monitoring charts are that the process

observations are independent and identically normally distributed (i.i.d.) (Kazor et al., 2016). However,

data collected from modern industrial processes are often autocorrelated or non-normally distributed. The

violation of these major assumptions seriously affects the monitoring performance of conventional charts.

The main goals of this paper are therefore to extend the capability of multivariate process monitoring tech-

niques to handle autocorrelated and/or non-Gaussian processes, to detect changes in the shape of the joint
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distribution, and to improve the applicability of the developed methods in practice.

To model non-Gaussian multivariate observations, the copula is a powerful tool that can be used to con-

struct flexible multivariate distributions. Copulas have been used in a wide range of actuarial, financial, and

environmental studies; see (Nelsen, 2006) and (Joe, 2014) for detailed overviews. A copula is a multivariate

cumulative distribution function (cdf) with univariate uniform U(0, 1) marginals; this function can be used

to link univariate marginals to construct a joint multivariate cdf. Sklar (1959) showed that for continuous

univariate distribution functions F1, . . . , Fm and a continuous m-dimensional distribution function F , there

exists a unique copula function, C, such that F (z1, . . . , zm) = C{F1(z1), . . . , Fm(zm)} for any z1, . . . , zm.

Other approaches address fault detection as a classification problem and without relying on any distri-

butional assumptions (Deng et al., 2012; Sukchotrat et al., 2009; He and Wang, 2007). Liu et al. (2004)

proposed statistical charts based on data depth. Recently, Zhang et al. (2016) proposed to use a multivariate

goodness-of-fit test to detect changes in the shape of a multivariate distribution. All of these procedures do

not provide additional information regarding the changes in the shape of the distribution that could help to

localize the fault.

Until recently, copulas have not been widely used to improve the performance of multivariate monitoring

charts. Fatahi et al. (2011) proposed a copula-based bivariate control chart to monitor two correlated events

that have zero inflated Poisson distributions. Kuvattana et al. (2015) compared the performance of the

CUSUM control chart constructed using four different copula families when observations follow exponential

distributions. Han and Liu (2013) analyzed the theoretical performance of a principal component analysis

for dependent multivariate data generated from the Gaussian copula with non-Gaussian univariate marginals

and proposed Copula Component Analysis. All of these methods, however, require some assumptions on

the marginal distributions or the joint copula density.

Verdier (2013) proposed using a copula function to construct monitoring charts based on the estimated

density levels of the observations and showed that the classical Hotelling T 2 rule can produce many false

alarms for non-Gaussian data. In this paper, we show that the charts constructed using density levels may not

detect changes in the shape of the multivariate distribution of the monitored process variables. Moreover, this

method of constructing charts requires an estimation of the copula density, and if this density is misspecified,

these charts can also produce many false alarms. We develop two new copula-based multivariate monitoring

techniques that can be more sensitive to these changes and that do not require estimation of the joint

distribution. Unlike many existing nonparametric methods, these charts provide additional information
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regarding the observed change in the distribution and can ultimately assist in diagnosing the cause of the

fault.

The following section briefly reviews the multivariate Shewhart chart used for multivariate process mon-

itoring. In Section 3, we show that the monitoring charts based on density levels are not very robust against

density misspecification and that these charts may not detect changes in the shape of the density. We

then introduce new multivariate monitoring methods that do not require modeling of the joint cdf and that

are more sensitive to changes in the density. In Section 4, the performances of the proposed methods are

illustrated in a simulation study and a real data application, and Section 5 concludes with a discussion.

2. Multivariate Control Charts

Consider a data matrix X ∈ Rn×m with n measurements and m process variables, X =
[
x
T
1 , . . . ,x

T
n

]T
.

Assume xt, t = 1, 2, . . . , n, follows a multivariate normal distribution with mean µ and covariance matrix

Σ. A multivariate Shewhart chart, also known as a T 2 chart or a χ2 chart (Hotelling, 1947), for monitoring

the process mean is based on the decision statistic:

T 2
t =

[
(xt − µ)TΣ−1(xt − µ)

]
, (1)

where xt is a vector of m variables, µ is a vector of in-control means of each variable, and Σ is the variance-

covariance matrix of X. The upper limit for this control chart is: UCL = χ2
1−α,m. For new testing data,

when the value of T 2
t exceeds the threshold value, χ2

1−α,m, a fault is declared (Hotelling, 1933). Multivariate

Shewhart monitoring charts tend to fail to detect small and moderate faults in the mean vector (Qiu, 2013).

In cases when the normality assumption is violated, the detection performance of the T 2 chart would be

degraded, and to handle such cases, this study presents the development of copula-based control charts that

do not require any distributional assumptions for their construction.

3. Copula-based Multivariate Control Charts

In this section, we briefly describe how multivariate control charts can be constructed using density level

sets and discuss two major weaknesses of this approach: the copula density estimation and the sensitivity

of this procedure to the distribution changes. We then introduce two new multivariate control charts that

are more sensitive to changes in the shape of the joint distribution of the monitored process and that do not

require estimation of the joint copula density.
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3.1. Using density levels for multivariate monitoring charts

One way to construct a multivariate control chart is to use procedures based on a density level set. For a

given m-dimensional probability density function, f0, and a given constant, c, the density level set is defined

as {z ∈ R
m : f0(z) > c}. Let Z = (Z1, . . . , Zm)T be a monitored m-dimensional process, z = (z1, . . . , zm)T ,

and let f0 be the density of Z. If f0 is known, one can use a training sample to estimate quantiles of

f0(Z) and find thresholds cL and cU , such that Pr{f0(Z) < cL} = Pr{f0(Z) > cU} = α/2, where α

is a prespecified significance level. Under the assumption of multivariate normality of the vector Z, this

procedure is equivalent to using the T 2 chart from Hotelling (1947).

One problem with using such a procedure is that the true density, denoted f0, is usually unknown and

needs to be estimated from data. If one uses a misspecified density function f̃0, the resulting control chart

may not retain the nominal false alarm rate. To illustrate this idea, assume that cL and cU are selected

such that Pr{cL < f̃0(Z̃) < cU} = 1 − α, where the vector Z̃ has the joint density f̃0. Suppose there exist

positive constants k1, k2 such that

f0(z) =

{
k1f̃0(z), if cL ≤ f̃0(z) ≤ cU ,

k2f̃0(z), otherwise,
(2)

where f0 is a valid density function, that is

∫

z

f0(z)dz = k1

∫

z:cL≤f̃0(z)≤cU

f̃0(z)dz + k2

∫

z:f̃0(z)<cL or f̃0(z)≥cU

f̃0(z)dz = k1(1− α) + k2α = 1.

If k2 = M , 0 < M < 1/α, and k1 = (1 −Mα)/(1− α), then the probability of a false alarm is

Pr{f̃0(Z) < cL or f̃0(Z) > cU} =

∫

z:f̃0(z)<cL or f̃0(z)≥cU

f0(z)dz = k2

∫

z:f̃0(z)<cL or f̃0(z)≥cU

f̃0(z)dz = Mα,

and this value can be very large if M > 1. The reason for a large false alarm probability is that f̃0 is inflated

by a constant within a given range and by another constant outside of that range. In other words, the

misspecified density f̃0 has a different shape, and the monitoring chart based on a density level set cannot

detect this change in the shape of the distribution.

3.2. Estimation of density levels using copulas

Verdier (2013) proposed using copulas to model the true multivariate density f0. Let c0 be the copula

corresponding to the density f0, and Fi(zi) and fi(zi) are the marginal cdf and density of the i-th component
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of the vector Z, respectively. For any vector z, we have f0(z) = c0(F1(z1), . . . , Fm(zm))
∏m

i=1 fi(zi). To

estimate the true density, one therefore needs to estimate marginal distributions Fi, i = 1, . . . ,m, and

the copula density c0. Marginal distributions can be estimated by many methods, either parametrically or

nonparametrically. If the Zi’s are autocorrelated, then one can use the autoregressive-moving-average model

below to remove the serial autocorrelation first:

Zi,t = µi + ǫi,t +

ki∑

k=1

αk,iZi,t−k +

li∑

l=1

βl,iǫi,t−l, i = 1, . . . ,m,

where Zi,t is the i-th component of the multivariate process Z observed at time t; see Box et al. (1994) for

details. Other variables, such as a seasonal cycle or a trend, can be added if needed. The vectors of i.i.d.

residuals ǫt = (ǫ1,t, . . . , ǫm,t)
T can then be used to estimate the joint copula density c0. If the observed

data are not autocorrelated, one can simply use the original data (Z1,t, . . . , Zm,t)
T to estimate c0. For the

remainder of this paper, we assume that the observations of our process are independent as was done in

Verdier (2013).

Modeling the copula c0 is usually the most challenging part of using copula-based control charts, espe-

cially if the dimension m is high. If the training set is not large, it is very difficult to estimate the joint copula

density, especially using nonparametric methods. One can use some parametric copula families in which

dependence can be modeled using only one or two dependence parameters. Examples with one dependence

parameter, θ, include the Frank copula (Frank, 1979) with the cdf

CFrank(u1, . . . , um; θ) = −1

θ
log

[
1 +

∏m
i=1{exp(−θui)− 1}
{exp(−θ)− 1}m−1

]
, θ 6= 0,

the Gumbel copula (Gumbel, 1960) with the cdf

CGumbel(u1, . . . , um; θ) = exp


−

{
m∑

i=1

(− log ui)
θ

}1/θ

 , θ ≥ 1,

and the Clayton copula (Clayton, 1978) with the cdf

CClayton(u1, . . . , um; θ) =

(
m− 1 +

m∑

i=1

u−θ
i

)−1/θ

, θ > 0.

However, these copula families are not very flexible when m > 2 as they assume that all lower-dimensional

marginals are the same. Moreover, many goodness-of-fit tests, such as the ones proposed by Genest et al.
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(2009) or Kojadinovic and Yan (2011), may be not very sensitive if the training set is small. Also, these

tests only provide p-values and do not give information about which copula is most suitable for the data.

One therefore cannot rely on these tests to select a suitable copula family to model the joint density f0.

If one uses a wrong copula density c̃0 when the true one is c0, then the joint density f0 will be misspecified

even if the univariate marginal cdfs F1, . . . , Fm are modeled correctly. This implies that one needs to estimate

both the marginal distributions and the joint copula accurately in order for multivariate control charts that

use density level sets to construct the rejection region.

3.3. Sensitivity of the procedure based on density levels

Even if the density f0 is estimated correctly, the resulting multivariate chart may be not sensitive with

respect to changes in the shape of the density f0. While detecting changes in the mean or variance of the

individual components Zi of the vector Z is important, one also needs procedures that can efficiently detect

changes in the shape of f0 as these can hinder detection of anomalies in the individual components. We

now illustrate these ideas with the following example. Let the true density for the training set be f0. We

assume that f0 is a symmetric density, i.e., f0(−z) = f0(z) for all vectors z. Typical examples include the

multivariate normal or Student’s t distributions. Let the true density for the testing sample be f∗
0 where

f∗
0 (z) =

{
k1f0(z), if

∑d
i=1 βizi ≥ 0,

k2f0(z), otherwise,
(3)

where β1, . . . , βd are any constants, and positive constants k1 and k2 are selected such that f∗
0 is a valid

density function:

∫

z

f∗
0 (z)dz = k1

∫

z:
∑

d

i=1
βizi≥0

f0(z)dz + k2

∫

z:
∑

d

i=1
βizi<0

f0(z)dz

= 0.5k1

∫

z

f0(z)dz + 0.5k2

∫

z

f0(z)dz = 0.5(k1 + k2) = 1.

For a vector Z with the joint density f0, we select cL and cU such that Pr{f0(Z) < cL} = Pr{f0(Z) >

cU} = α/2, as before. If Z∗ is a sample from the testing set with the density f∗
0 , then the probability of
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Figure 1: Contour plots of the normal density with correlation 0.7, f0 (left), and the new density, f∗

0
, with β1 = 1.5, β2 = −1,

k1 = 1.75, k2 = 0.25 (middle), and β1 = 1, β2 = 2, k1 = 1.75, k2 = 0.25 (right).

detection using f0 is α:

Pr{f0(Z∗) < cL or f0(Z
∗) > cU} =

∫

z:f0(z)<cL or f0(z)>cU

f∗
0 (z)dz

= k1

∫

z:
∑

m

i=1
βizi≥0 and f0(z)<cL or f0(z)>cU

f0(z)dz + k2

∫

z:
∑

m

i=1
βizi<0 and f0(z)<cL or f0(z)>cU

f0(z)dz

= 0.5(k1 + k2)

∫

z:f0(z)<cL or f0(z)>cU

f0(z)dz = Pr{f0(Z) < cL or f0(Z) > cU} = α. (4)

Note that the density f∗
0 is no longer symmetric when k1 6= k2 (so that there is a change in the shape of the

density), and in the general case all components of the vector Z
∗ will have means and variances different

from those of the corresponding components of the vector Z.

Figure 1 shows contour plots for the bivariate normal density, f0, with correlation 0.7 and for the new

density, f∗, defined in (3), using two sets of parameters: β1 = 1.5, β2 = −1, k1 = 1.75, k2 = 0.25 and

β1 = 1, β2 = 2, k1 = 1.75, k2 = 0.25. The new density f∗
0 has a different shape. The Spearman’s correlation

for the original density, f0, is 0.70, and for the new density, f∗
0 , they are 0.77 and 0.49 for the two sets

of parameters, respectively. The mean vector for the original density is E[Z] = (0, 0)T , and for the new

densities, they are E[Z∗] = (0.03, 0.51)T and E[Z∗] = (0.51, 0.57)T , respectively. However, the multivariate

control chart still has a probability of detection equal to α as it follows from (4), and therefore it cannot

detect these changes in the joint distribution.

More generally, let S1 and S2 be two disjoint subsets of Rm such that S1 ∪ S2 = R
m and if z ∈ S1, then
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−z ∈ S2, or vice versa. In other words, S2 is the reflection of S1 with respect to the origin. Define

f∗
0 (z) =

{
f0(z) − h(z), if z ∈ S1,

f0(z) + h(z), otherwise,
(5)

where h(z) is a function such that |h(z)| ≤ f0(z). Here, h(z) represents the change in the shape of the

density f0(z).

Similar to (3), one can check that (5) is a valid density function and that the probability of detection using

f0 is α. Many different asymmetric distributions can be obtained using this construction. For example, if

h(z) is positive in the joint lower tail, then the corresponding distribution is skewed with stronger dependence

in the lower tail. As a result, the multivariate chart based on the copula density fails to detect these changes

in the density f0(z).

In the next section, we propose two new monitoring procedures that can more efficiently detect such

changes in the shape of the joint density f0 and that do not require the estimation of the copula c0.

3.4. The proposed multivariate control charts based on skewness and overall dependence measures for mul-

tivariate data

Assume that {(Z1,t, . . . , Zm,t)}T0

t=1 is the learning sample for the process Z with the density f0, and

{(Z1,t, . . . , Zm,t)}T1

t=T0+1 is the testing sample for the process Z
∗ with possibly different density f∗

0 . For

i = 1, . . . ,m, define uniform ranks as follows:

Ui,t =
rank(Zi,t)− 0.5

T0
, t = 1, . . . , T0.

Let c0 be the copula corresponding to the density f0, and let the density of a vector (U1, . . . , Um)T be c0.

Define

ζk = E

(
U1 + . . .+ Um

m
− 1

2

)k

,

and the empirical estimate of ζk is

ζ̂k =
1

T0

T0∑

t=1

(
U1,t + . . .+ Um,t

m
− 1

2

)k

. (6)
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Figure 2: Scatter plots of f0 with the following copula densities (left to right): Frank, Gumbel, Clayton, and normal, with
standard normal marginal cdfs. Copula parameters are selected such that the Spearman’s correlation equals 0.7 for all 4
copulas.

The measure ζk depends on the copula c0:

ζk =

∫

[0,1]m

(
u1 + . . .+ um

m
− 1

2

)k

c0(u1, . . . , um)du1 . . . dum.

With an even k, ζk can be used to detect changes in the strength of overall dependence, and with an odd k,

this measure can be used to detect skewness (reflection asymmetry). A copula density c0 is called reflection

symmetric if c0(u) = c0(1−u) for any u = (u1, . . . , um)T ∈ [0, 1]m. For a reflection symmetric copula density

and an odd k, ζk = 0. Otherwise, the measure ζk can be positive or negative, depending on the direction of

reflection asymmetry; see Krupskii (2016) for details. If uniform marginal cdfs F1, . . . , Fm are all symmetric

(for example, normal), and the copula density c0 is reflection symmetric, then f0(−z) = f0(z) for any

z = (z1, . . . , zm)T ∈ R
m. Figure 2 shows the scatter plots of the bivariate density f0 (m = 2) with standard

normal N(0, 1) marginal cdfs and three copulas (Frank, Gumbel, and Clayton) from Section 3.2. We also

include a scatter plot of the bivariate normal density with standard normal marginals for comparison.

We see that the shapes of these distributions are quite different. The Frank and normal copulas are

symmetric, while the Gumbel and Clayton are reflection asymmetric copulas, skewed to the left and to the

right, respectively. We therefore use ζ2k+1 as a measure of skewness (reflection asymmetry). The estimate

ζ̂2k+1, obtained using non-parametric ranks, Ui,t, t = 1, . . . , T0, i = 1, . . . ,m, is asymptotically normal with

some variance σ2
2k+1 that can be estimated using non-parametric methods such as the jackknife; see Shao

and Wu (1989). Let σ̂2
2k+1 be an estimate of σ2

2k+1. The 95% confidence interval for ζ2k+1 can then be

constructed as follows: (
ζ̂2k+1 − 1.96

σ̂2k+1√
T0

, ζ̂2k+1 + 1.96
σ̂2k+1√

T0

)
.
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We can use ζ2 as a measure of overall dependence. This measure can be seen as a multivariate version

of the Spearman’s correlation coefficient. It can be shown that

ζ2 =
1

m2

{
m∑

i=1

E

(
Ui −

1

2

)2

+ 2
∑

i1>i2

E

(
Ui1 −

1

2

)(
Ui2 −

1

2

)}

=
1

m
Var(U1) + 2

∑

i1>i2

Cov(Ui1 , Ui2)

=
1

12m
+

1

6m2

∑

i1>i2

ρi1,i2 ,

where ρi1,i2 = cor(Ui1 , Ui2) is the Spearman’s correlation for pair (i1, i2). Larger Spearman’s correlations

between different pairs imply larger values for ζ2. Similar to ζ2k+1, one can construct the 95% confidence

interval for ζ2 as follows: (
ζ̂2 − 1.96

σ̂2√
T0

, ζ̂2 + 1.96
σ̂2√
T0

)
.

Note that measures ζ2 and ζ2k+1 do not depend on the univariate marginal distributions, but these

measures do depend on the copula density c0 and can detect changes in its shape. At the same time, c0

does not need to be estimated to obtain estimates ζ̂2, ζ̂2k+1.

For the testing sample, we use the last K observations of the process Z to estimate ζk. For each

i = 1, . . . ,m and t∗ = T0 + 1, . . . , T1 and some K > 0 (moving window length), we define

UK
i,t =

rank(Zi,t)− 0.5

K
, t = t∗ −K + 1, . . . , t∗,

ζ̂Kk (t∗) =
1

K

t∗∑

t=t∗−K+1

(
UK
1,t + . . .+ UK

m,t

m
− 1

2

)k

. (7)

Let the estimate of ζk for the training set be ζ0k (treated as a fixed value). Here we assume that, under the

null hypothesis, the measure ζKk (t∗) remains the same in the testing set, so that the difference ζ̂Kk (t∗)− ζ0k is

close to zero and ζ0k has very small variability (when the learning sample size, T0, is large), so its estimation

adds no uncertainty to (8). Then, the 95% confidence interval for ζ̂Kk (t∗)− ζ0k is:

(
−1.96

σ̂k√
K

, 1.96
σ̂k√
K

)
. (8)

Using Monte Carlo simulations, we checked that some uncertainty that comes from estimating the asymp-
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totic variance using the training set, σ̂2
k, does not have a significant effect on the confidence interval even if

the training sample size is not very large, and the false alarm rate is close to the nominal level. If T0,K → ∞,

then ζ̂k →P ζk, σ̂k →P σk, and therefore

Pr

(
ζ̂Kk (t∗)− 1.96

σ̂k√
K

≤ ζ0k ≤ ζ̂Kk (t∗) + 1.96
σ̂k√
K

)
→ 0.05.

Consequently, at time t∗ an abnormality is detected if |ζ̂Kk (t∗)− ζ0k | > 1.96σ̂k/
√
K. With a large K, the

confidence intervals will be narrower; however, the monitoring procedure based on ζKk (t∗) will not be able to

detect changes in density f0 very quickly because it is constructed using many observations from the past.

We found that a K between 80 and 100 can be a good choice in many scenarios; more details are given in

the next section.

4. Simulation Study

In this section, we conduct simulation studies to show that the monitoring chart based on density levels

is usually not very sensitive to changes in the shape of the density, unless there is a very large change in the

mean of individual components of the observed process Z. The two testing charts based on the measures

of skewness and overall dependence, ζ2k+1 and ζ2, can be more sensitive to such changes, and they can also

provide some information regarding the shape of the new density f∗
0 .

We summarize the previous section to briefly describe how the control charts are constructed:

Step 1 Appropriate models are fitted to univariate marginals of the training data set of size T0;

Step 2 Residuals from the fitted models are transformed to uniform ranks;

Step 3 Estimates of ζ2 and ζ2k+1 are calculated using (6);

Step 4 Asymptotic variances σ2
2 and σ2

2k+1 are estimated by nonparametric methods, and the confidence

intervals for the training data set are constructed using (8);

Step 5 For the testing data set, we calculate ζ̂K2 (t∗) and ζK2k+1(t
∗) for t∗ = T0 + 1, . . . , T1 using (7). An

anomaly is detected if these estimates fall outside the corresponding confidence intervals constructed

in the previous step.

4.1. Change in overall dependence, no change in shape

We investigate the behavior of three monitoring charts: the first one constructed using negative log-

density levels (density levels-based chart) and the other two based on dependence measures ζ2k+1 and ζ2

12



(skewness-based chart and overall dependence-based chart, respectively). We assume that the new density f∗
0

has the same shape, and that the copula c0 is not changed, but that the strength of dependence changes. For

example, for the multivariate normal distribution, testing data have stronger correlations. For the training

sample, we generate data from 4 different copulas (normal, Frank, Gumbel, Clayton), and we assume that all

marginal cdfs are standard normal. For the testing sample, we generate data from the same copulas but with

different parameters. For each copula, we consider cases when the marginal distributions remain the same

and when there is a shift in mean for all individual components (such that the new marginal distributions

are all normal with some mean µ). For the monitoring chart based on the density level sets, we assume that

the copula for the training data set is known, and it is used to construct the 95% confidence intervals. In

practice, the density needs to be estimated from the data, and this can result in a worse performance of this

monitoring chart.

We assume that vector Z has three components so that the corresponding copula is trivariate (similar

results are obtained for dimensions m = 2, 3, . . . , 10). We use T0 = 200 for the training data and T1−T0 = 200

for the testing data. The copula parameters for the training/testing data sets are 0.25/0.5 for the normal

copula, 1.5/3.3 for the Frank copula, 1.2/1.5 for the Gumbel copula, and 0.4/1.0 for the Clayton copula.

This corresponds to a change in Spearman’s rho from approximately 0.3 to 0.5 for all of these models.

In general, ζk depends on k-dimensional marginal distributions, and it is more sensitive to changes in the

shape of the distribution when k is larger. However, the variability of this measure is also larger for larger

k, and a large sample size is required to estimate it with a good accuracy. We use k = 3 for ζ2k+1 because

Krupskii (2016) showed that the measure ζ7 can be more sensitive to reflection asymmetry of copula density

c0 when m ≤ 10, and statistical tests based on ζ7 have good power for data sets with small to moderate

sample size. For high-dimensional data with m > 10, k = 1 gives good results in simulations with K ≤ 200.

Larger k can be used if K > 200.

We calculate the number of detections in different scenarios for the three monitoring procedures, and

we use K = 80 to obtain estimates of ζ̂2, ζ̂7, and the corresponding 95% confidence intervals. We use the

following scenarios:

1. No change in the density function;

2. Change in the copula parameter, no shift in the mean;

3. Change in the copula parameter, shift in the mean (new mean µ = 1);

4. Change in the copula parameter, shift in the mean (new mean µ = −1).
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Table 1: Proportion of detections for three testing procedures for different scenarios with copula parameters shown in paren-
theses. For each scenario, 1000 data sets were generated to calculate these values.

Training data set Testing data set Density levels- Skewness- Overall dependence-
based chart based chart based chart

Normal (0.50) + N(0, 1) marginals Normal (0.50) + N(0, 1) marginals 0.06 0.07 0.08
Normal (0.25) + N(0, 1) marginals Normal (0.50) + N(0, 1) marginals 0.06 0.15 0.69
Frank (1.50) + N(0, 1) marginals Frank (3.30) + N(0, 1) marginals 0.07 0.16 0.68
Gumbel (1.20) + N(0, 1) marginals Gumbel (1.50) + N(0, 1) marginals 0.06 0.16 0.64
Clayton (0.40) + N(0, 1) marginals Clayton (1.00) + N(0, 1) marginals 0.05 0.27 0.63
Normal (0.25) + N(0, 1) marginals Normal (0.50) + N(1, 1) marginals 0.15 0.21 0.82
Frank (1.50) + N(0, 1) marginals Frank (3.30) + N(1, 1) marginals 0.17 0.22 0.80
Gumbel (1.20) + N(0, 1) marginals Gumbel (1.50) + N(1, 1) marginals 0.09 0.13 0.74
Clayton (0.40) + N(0, 1) marginals Clayton (1.00) + N(1, 1) marginals 0.22 0.32 0.78
Normal (0.25) + N(0, 1) marginals Normal (0.50) + N(−1, 1) marginals 0.15 0.22 0.82
Frank (1.50) + N(0, 1) marginals Frank (3.30) + N(−1, 1) marginals 0.20 0.22 0.80
Gumbel (1.20) + N(0, 1) marginals Gumbel (1.50) + N(−1, 1) marginals 0.19 0.18 0.77
Clayton (0.40) + N(0, 1) marginals Clayton (1.00) + N(−1, 1) marginals 0.08 0.30 0.75

For each scenario, we generate 1000 data sets to estimate the proportion of detections for the testing data

set. The results are presented in Table 1.

We see that the proportions of false alarms are close to nominal levels for all monitoring charts, as shown

in the first line of the table. With a larger training sample, the accuracy of the estimated intervals can be

increased. The density levels-based chart cannot detect changes in the dependence and, even when there is

a shift in mean of individual components of the vector Z, the proportions of detections are very small (8%

to 22%). In contrast, the overall dependence-based chart has 63% to 69% of detections when there is no

change in the mean. The detection rate is even higher when the mean is changed to +1 or −1 (74% to 82%).

This is because the ζ2 measure is sensitive to changes in overall dependence as measured by Spearman’s rho,

and therefore this measure performs quite well for all scenarios.

Two typical monitoring charts are shown in Figure 3. The black vertical lines correspond to the point at

which the normal copula and the Gumbel copula parameters change from 0.5 to 0.25 and from 1.2 to 1.5,

respectively. Two horizontal gray lines correspond to the 95% confidence intervals for each monitoring chart

obtained from the training data set. For the testing set, the overall dependence-based monitoring chart goes

below the lower bound for the normal copula (above the upper bound for the Gumbel copula) indicating

weaker (stronger, respectively) overall dependence for the new distribution. There are also some detections

in the T 2 density level charts, but the proportion of these detections is close to the nominal level of 5%.
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Figure 3: Monitoring results for density levels-based chart (left), skewness-based chart (middle) and overall dependence-based
chart (right). The 95% confidence intervals (gray) are constructed from the training set: normal copula with parameter 0.5
(top) and Gumbel copula with parameter 1.2 (bottom). The copula parameter changes to 0.25 for the normal copula and to
1.5 for the Gumbel copula for the testing set (to the right of the black vertical line). Univariate marginals are N(0, 1) for both
the training set and for the testing set.

4.2. Change in shape, no change in overall dependence

We investigate the performance of the three monitoring charts from the previous section when there is

no change in the overall dependence of the testing data set, that is, when the Spearman’s rho for all pairs of

the observed variables in Z does not change. We again assume that vector Z has three components so that

the corresponding copula is trivariate (similar results are obtained for dimensions m = 2, 3, . . . , 10), and we

use T0 = 200 for the training data and T1 − T0 = 200 for the testing data.

We select copula parameters such that the Spearman’s correlations for each pair of variables equal 0.5,

both for the training set and for the testing set. We consider three cases: when the normal copula changes

to the Gumbel copula, when the normal copula changes to the Clayton copula, and when the Gumbel copula

changes to the Clayton copula. As before, we consider cases when the marginal distributions remain the

same and when there is a shift in mean for all individual components. We calculate the number of detections

in different scenarios for the three monitoring procedures, and we use K = 80 to obtain estimates of ζ2, ζ7,

and the corresponding 95% confidence intervals. We use the three scenarios:

1. Change in the copula density, no shift in the mean;

2. Change in the copula density, shift in the mean (new mean µ = 1);
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Table 2: Average proportion of detections for three testing procedures for different scenarios with copula parameters shown in
parentheses. For each scenario, 1000 data sets were generated to calculate these values.

Training data set Testing data set Density levels- Skewness- Overall dependence-
based chart based chart based chart

Normal (0.50) + N(0, 1) marginals Gumbel (1.50) + N(0, 1) marginals 0.07 0.37 0.09
Normal (0.50) + N(0, 1) marginals Clayton (1.00) + N(0, 1) marginals 0.07 0.51 0.10
Gumbel (1.50) + N(0, 1) marginals Clayton (1.00) + N(0, 1) marginals 0.08 0.80 0.08
Normal (0.50) + N(0, 1) marginals Gumbel (1.50) + N(1, 1) marginals 0.11 0.36 0.12
Normal (0.50) + N(0, 1) marginals Clayton (1.00) + N(1, 1) marginals 0.14 0.52 0.17
Gumbel (1.50) + N(0, 1) marginals Clayton (1.00) + N(1, 1) marginals 0.19 0.80 0.18
Normal (0.50) + N(0, 1) marginals Gumbel (1.50) + N(−1, 1) marginals 0.14 0.39 0.16
Normal (0.50) + N(0, 1) marginals Clayton (1.00) + N(−1, 1) marginals 0.12 0.49 0.14
Gumbel (1.50) + N(0, 1) marginals Clayton (1.00) + N(−1, 1) marginals 0.14 0.81 0.10

3. Change in the copula density, shift in the mean (new mean µ = −1).

For each scenario, we generate 1000 data sets to estimate the proportion of detections for the testing data

set. The results are presented in Table 2.

We can see that density levels-based and overall dependence-based charts cannot detect changes in the

shape of the density f0; but the skewness-based measure is more sensitive to these changes, with a detection

rate ranging from 36% to 81%, depending on how strong the change of the underlying copula density c0

is. Two typical monitoring charts are shown in Figure 4. The black vertical lines correspond to the points

at which the normal copula with parameter 0.5 changes to the Gumbel copula with parameter 1.5 (top)

and to the Clayton copula with parameter 1 (bottom). Two horizontal gray lines correspond to the 95%

confidence intervals for each monitoring procedure obtained from the training data set. For the testing set,

the skewness-based monitoring chart goes above the upper bound (below the lower bound) indicating that

the new distribution is skewed to the right (left, respectively).

From the plot in the top middle of Figure 4, it can be seen that the first signal is given by this chart at

around sample 240 and goes back below the upper bound again at around sample 270. The missed detection

regions of the former chart might be due to the large variability when the moving window is not large.

Indeed, with a larger moving window, variability is less, but it can take longer for the chart to detect any

changes in the distribution.

4.3. Real data application: Monitoring of a decentralized wastewater treatment plant at Golden, USA

Monitoring of treatment processes is needed not only for evaluating the process operating conditions, but

also for inspecting product quality. The developed monitoring charts are illustrated here with data collected

from the Mines Park Water Reclamation Test Site, a decentralized wastewater treatment plant in Golden,
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Figure 4: Monitoring results for density levels-based chart (left), skewness-based chart (middle), and overall dependence-based
chart (right). The 95% confidence intervals (dashed gray lines) are constructed from the training set (Normal copula with
parameter 0.5), and the copula changes to the Gumbel copula with parameter 1.5 (top) and to the Clayton copula with
parameter 1 (bottom) for the testing set to the right of the black vertical line. Univariate marginals are N(0, 1) both for the
training set and for the testing set.

CO. Wastewater treatment processes are extremely important for community health, removing pollutants

from wastewater so that it can be reused or safely discharged. Decentralized facilities such as this one will

become more common in the future as communities begin to reuse their wastewater locally, and with greater

influent variability, quality, and quantity, decentralized systems require tighter control and faster response

to changes or malfunctioning.

This dataset includes 28 variables for which ten minute averages were recorded from April 10, 2010,

to May 10, 2010, resulting in a total of 4,464 observations. During this 31-day period, a fault is known

to have occurred that affected both pH and salinity, and the microoganisms in the system took over two

months to recover. Here, we select some key variables involved in the process to monitor, namely a subset

of the following six variables: membrane bioreactor (MBR) permeate pressure, permeate turbidity, return

activated sludge (RAS) dissolved oxygen content, RAS pH, RAS total suspended solids, and permeate tank

conductivity. There are two MBRs in this particular system, and since they operate similarly, we only

monitor the second one here. The RAS contains active biological organisms that do much of the work of

eliminating waste from the water. The design of the system is described in detail in Vuono et al. (2013).

Note that the proposed monitoring charts assume that the data are uncorrelated. However, the data col-

lected from the inspected MBR system show serial dependency. Time-series models are commonly utilized
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for modelling autocorrelated processes. If the model is adequate, the residuals are approximately uncor-

related and can be monitored using the developed charts. Therefore, different non-seasonal autoregressive

(AR) models have been fit to each variable. We use the first 500 fault-free observations shown in Figure 5 as

training data to build AR models. An AR(1), AR(3), AR(13), AR(12), AR(12), and an AR(2) adequately

capture the autocorrelative structure in a time series of the MBR 2 permeate pressure, permeate turbid-

ity, RAS dissolved oxygen content, RAS pH, RAS total suspended solids, and permeate tank conductivity,

respectively. To find the best AR model to fit each variable, Box and Jenkins’s methodology (Box and

Jenkins, 1976) was used to analyze the simple autocorrelation and partial autocorrelation functions of each

time series. The maximum likelihood estimates of nonzero AR coefficients with their sampling standard

deviations are shown in Table 3.
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Figure 5: Training data time series of: (a) MBR permeate pressure, (b) permeate turbidity, (c) RAS dissolved oxygen content,
(d) RAS pH, (e) RAS total suspended solids, and (f) permeate tank conductivity.

The sample autocorrelation function (ACF) and the sample partial autocorrelation function (PACF)

are used to check the presence of serial correlation in the AR-based residuals. The ACF and PACF of the

residuals for the selected AR models are presented, respectively, in Figures 6 and 7. Figure 6 indicates that

the residuals are not significantly different from a white noise series. It can be seen from Figure 7 that the

residuals are approximately uncorrelated.

After reference AR models are identified based on fault-free data, the residuals are used to monitor the

abnormal events (faults) in the MBR system that may lead the system to depart from its normal state. To

do so, we use three monitoring procedures:
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Table 3: The details of the parameter estimations and their associated standard errors for the six time series under study.

MBR process variables Time series Estimated Coefficient Standard error
model parameters

MBR permeate pressure AR(1) Constant 2.00631 0.31680
Lag 1 0.845 0.02434

Permeate turbidity AR(3) Constant 0.008433 0.002292
Lag 1 0.810329 0.034843
Lag 3 0.098051 0.034852

RAS AR(13) Constant 0.023708 0.009263
dissolved oxygen content Lag 1 0.93640 0.016134

Lag 12 0.356009 0.042993
Lag 13 -0.380977 0.042546

RAS pH AR(12) Constant 0.74819 0.23714
Lag 1 0.70432 0.04544
Lag 2 0.07127 0.04512
Lag 12 0.12219 0.02987

RAS total suspended solids AR(12) Constant 2602 519.8
Lag 1 0.4315 0.0377
Lag 12 0.3768 0.0379

Permeate tank conductivity AR(2) Constant 29041 6.69599
Lag 1 0.58608 0.04206
Lag 2 40436 0.04210
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Figure 6: ACF of residual errors: (a) MBR permeate pressure, (b) permeate turbidity, (c) RAS dissolved oxygen content, (d)
RAS pH, (e) RAS total suspended solids, and (f) permeate tank conductivity.

1. Negative log-density levels assuming multivariate normality of data (Hotelling T 2 rule);

2. Procedure based on the measure of skewness ζ7;

3. Procedure based on the measure of overall dependence ζ2.

For the three monitoring charts, we use the first 500 residuals from the fitted autoregressive models in
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Figure 7: PACF of residual errors: (a) MBR permeate pressure, (b) permeate turbidity, (c) RAS dissolved oxygen content, (d)
RAS pH, (e) RAS total suspended solids, and (f) permeate tank conductivity.

Table 3 as training data to construct confidence intervals as explained in Section 3.4. We use the remaining

residuals as testing data. For the skewness-based chart and the overall dependence-based chart, we use the

moving window length K = 500 because there are many observations; with a larger K, the variability of the

measures ζ2 and ζ7 is smaller, so that these charts are more sensitive to anomalies. The top row of Figure 8

shows monitoring results for the three charts for the last 3,464 observations.

We can see that the Hotelling T 2 and skewness-based charts do not detect any significant anomalies. The

proportion of detections when using the Hotelling T 2 is quite close to the nominal level. This suggests that

there is no big change in the shape of the joint distribution of the data. However, the overall dependence-

based monitoring chart indicates that the overall dependence among the six variables weakens. This confirms

findings from Kazor et al. (2016) where the authors monitored the process using all 28 variables. They

applied linear and nonlinear dimension reduction methods to the variables first before constructing T 2 and

monitoring it based on nonparametric thresholds. In nonparametric T 2, the density of this statistic under

normal operating conditions (fault-free) is estimated via kernel density estimation. After obtaining the

estimated density, the decision threshold is then set to the corresponding (1 − α)-th quantile Kazor et al.

(2016). With their method, an alarm would have been issued at 1:40 p.m. on April 21st and then again on

April 22nd. Here, our method begins to flag the fault even earlier, on April 18th. The very large deviation

below the lower bound in Figure 8 coincides with the initial discovery of the problem by operators on April

24th.
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Figure 8: Monitoring results of Hotelling T 2 chart (top left), skewness-based chart (top middle), overall dependence-based chart
(top right), the multivariate nonparametric sign (MNS) chart (bottom left), and the multivariate nonparametric signed-rank
(MNSR) chart (bottom right). The 95% confidence intervals (dashed gray lines) are constructed from the training set (first
500 observations).

In the bottom row of Figure 8, we also compare the detection efficiency of the proposed copula-based

charts to that of two nonparametric multivariate control charts based on the ranking or ordering information

of the observed data. Specifically, the first chart is the multivariate nonparametric sign (MNS) chart (Boone

and Chakraborti, 2012), which is based on the multivariate form of the sign test (Hettmansperger, 2006),

and it uses an asymptotic chi-squared distribution to determine the value of the decision threshold. The

second chart is called the multivariate nonparametric signed-rank (MNSR) chart, and it is based on the com-

ponentwise Wilcoxon signed-rank statistics (Boone and Chakraborti, 2012). In the MNSR chart, Wilcoxon

sign-rank statistics for each component of the multivariate data are considered to design Hotelling’s T 2-type

chart. We used n = 100 consecutive observations to calculate each value of the two test statistics, resulting

in 44 test statistics for the two charts. Figure 8 indicates that these two charts can detect the presence of

faults but with several false alarms when using the training dataset (first four values). In addition, these

charts – like many others – do not provide any information about possible changes in the shape of the

underlying distribution.

5. Conclusion

In this paper, we showed that the multivariate control chart based on density level sets cannot usually

detect changes in the shape of the distribution for a multivariate process. Moreover, this chart is not sensitive
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to changes in the mean of individual components if the shape of the distribution also changes. Therefore,

we constructed two monitoring procedures for a multivariate process that are sensitive to changes in the

shape of the underlying density function. No copula density estimation is needed for these procedures, and

therefore, the corresponding control charts are easy to construct. If there is a change in the shape or overall

dependence in the joint distribution, these new procedures can provide this information, thus helping to

locate the detected abnormality. We applied the proposed monitoring procedures to a real data set. One of

the procedures was able to detect anomalies in the data that were consistent with results obtained earlier

for the same data set.

The proposed charts are constructed using data from the past and therefore might not detect changes

in the distribution very quickly. If an anomaly occurs during a short period of time, the proposed methods

might be not very sensitive. Thus, some adjustment is needed to detect these changes more quickly; for

example, using exponential downweighting. This is a topic for future research.
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