A Long Lifetime Aqueous Organic Solar Flow Battery

Wenjie Li, Emily Kerr, Marc-Antoni Goulet, Hui-Chun Fu, Yuzhou Zhao, Ying Yang, Atilla Veyssal, Jr-Hau He, Roy G. Gordon, Michael J. Aziz, and Song Jin

W. Li, Y. Zhao, Prof. Y. Yang, A. Veyssal, Prof. S. Jin

Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
E-mail: jin@chem.wisc.edu

E. Kerr, Prof. R. G. Gordon

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA

Dr. M.-A. Goulet, Prof. R. G. Gordon, Prof. M. J. Aziz

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

Dr. H.-C. Fu, Prof. J.-H. He

Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia

Prof. Y. Yang

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/aenm.201900918.

This article is protected by copyright. All rights reserved.
Monolithically integrated solar flow batteries (SFBs) hold promise as compact stand-alone energy systems for off-grid solar electrification. Although considerable research has been devoted to studying and improving the round-trip efficiency of SFBs, little attention has been paid to the device lifetime. Herein, we demonstrate a neutral pH aqueous electrolyte SFB with robust organic redox couples and inexpensive silicon-based photoelectrodes. Enabled by the excellent stability of both electrolytes and protected photoelectrodes, this SFB device exhibits not only unprecedented stable continuous cycling performance over 200 hours but also a capacity utilization rate higher than 80%. Moreover, through comprehensive study on the working mechanisms of SFBs, we developed a new theory based on instantaneous solar-to-output electricity efficiency (SOEEins) toward more optimized device design and realized a significantly improved solar-to-output electricity efficiency (SOEE) of 5.4% from single-junction silicon photoelectrodes. The design principles presented in this work for extending device lifetime and boosting round trip energy efficiency will make SFBs more competitive for off-grid applications.

The monolithic integration of solar energy conversion and electrochemical energy storage offers a practical solution to provide uninterruptable power supply on demand regardless of the ebb and flow of solar irradiation. Although connecting photovoltaics (PVs) with batteries, as adopted by some solar farms nowadays,[1] can provide the same uninterruptable power supply, the high capital cost and large footprint of two separate devices limit the market cases feasible for this option.[2] In contrast, integrated solar energy conversion and storage may represent a more compact, efficient, and cost-effective approach for off-grid electrification.[3]

Among the many different types of “solar rechargeable battery” devices that have been reported[3-4] since the first demonstration in 1976,[5] integrated solar flow batteries (SFBs) hold great
promises for practical applications because the solar component shares the same liquid electrolyte as the energy storage component,[6] which is based on redox flow batteries (RFBs) and can be easily scale-up.[1b, 9] Despite the significant progress, most of such integrated devices suffer from some common scientific and technical issues.[4a, 7] The first question one typically asks about any “solar device” is the efficiency. Due to the intrinsic efficiency limits of the solar energy conversion components and the working voltage mismatch between the solar energy conversion component and electrochemical energy storage component, the round-trip efficiency (i.e., solar-to-output electricity efficiency, SOEE) of most previously reported solar rechargeable devices rarely exceeded 5\%.[3a, 4a, 7-8] It was recently demonstrated that by monolithically integrating III-V tandem junction solar cells with properly voltage matched RFBs, the integrated SFB device can deliver a SOEE of 14.1 \%.[9] Importantly, this comprehensive study[9] also revealed a set of general design principles that can further boost the SFB’s efficiency. Primary among them is that the formal potential difference of selected redox couples needs to be closely matched with the photovoltage of the photoelectrodes at the maximum power point. Although III-V tandem junction solar cells can enable unprecedented high SOEE, the manufacturing cost for them ($40/W to over $100/W)[10] is too high for practical applications. The most widely produced crystalline silicon-based solar cells have the cost of $0.15/W to $0.25/W after decades of research and commercial deployment,[10] thus are a good candidate for practical SFBs owing to its high abundance and decent PV efficiency.

On the other hand, another important aspect, device lifetime, has received much less attention than efficiency, which could be partially attributed to different types of challenges involved in achieving longer device lifetime. As summarized in Table S1, none of the existing integrated SFB devices has shown a stable continuous cycling performance longer than 50 hours.[4a] Generally, there are two major challenges preventing those devices from reaching long device lifetime. Firstly, many redox active species, although undergo facile redox reactions, are chemically or electrochemically
unstable for long term energy storage.[11] The 1, 2-benzoquinone-3, 5-disulfonic acid (BQDS) redox couple used in a previous prototype SFB device[8b] and other RFB works[12] is an example of such unstable redox species. It has been shown that the BQDS molecule is particularly susceptible to decomposition by Michael addition.[12b] Secondly, the photocorrosion of semiconductor photoelectrodes by aqueous electrolytes has long been one of the biggest obstacles to the practical application of photoelectrochemical (PEC) cells.[13] This has prompted strategies such as the deposition of inert protection layers and utilization of less corrosive electrolytes to balance the lifetime and efficiency of photoelectrode.[13c, 14]

As pointed out by varies recent reports, the chemical cost of redox active materials would eventually become a tiebreaker for future RFBs with rapid technology development.[15] Although a detailed cost analysis for SFBs has not been performed, the cost of active materials is likely to be a significant contributor to the cost of SFB systems as well. Consequently, redox couples that are based on earth abundant elements, which include many organic and organometallic species, are attractive for developing SFBs. In comparison to the more mature inorganic redox species that have been commercially deployed (such as vanadium),[2a] organic and organometallic compounds tend to be more prone to chemical decomposition.[11c] However, one of the most stable organic RFBs reported so far[11d, 16] is based on bis((3-trimethylammonio)propyl) (BTMAP) functionalized viologen and ferrocene redox couples, which exhibits an exceptionally low capacity fade rate of 11.3 %/year. Such excellent stability of these molecules has been attributed to the suppression of a bimolecular annihilation mechanism by the strong electrostatic repulsion induced by the positive charge on the BTMAP side chains.[16c] Moreover, these molecules also exhibit very low permeabilities across anion exchange membranes, possibly through enhanced charge and size exclusion. The good stability, high solubility in neutral solutions and suitable formal potential of the BTMAP redox couples make them a perfect fit for the long lifetime SFB.

This article is protected by copyright. All rights reserved.
In this paper, we report a neutral pH solar flow battery with a stable continuous cycling performance over 200 hours (100 cycles). This long lifetime device is built by integrating well protected silicon photoelectrodes with robust BTMAP functionalized organic viologen and ferrocene redox couples in neutral aqueous solutions. Moreover, building on a comprehensive study on the working mechanisms of SFBs, we introduce a new concept, instantaneous SOEE (SOEE_{ins}), and show that understanding of instantaneous SOEE and more optimized SFB design can greatly boost the overall SOEE from 1.7%[8b] to 5.4% even though the same silicon photoelectrode design is used.

We synthesized the bis((3-trimethylammonio)propyl)-ferrocene dichloride (BTMAP-Fc) and bis (3-trimethylammonio)propyl viologen tetrachloride (BTMAP-Vi) following the method reported by Beh et al.[16c] and characterized their electrochemical properties using 3-electrode cyclic voltammetry, steady state linear scan voltammetry and 2-electrode RFB cycling. Cyclic voltammograms show a formal potential difference of 0.735 V between these two redox couples (Figure 1A), which can be used to estimate the cell potential (E_{cell}) of the RFBs and SFBs built with these redox couples. As discussed later, although this E_{cell} does not fully utilize the stability window constrained by water splitting, it can be well matched with the photovoltage produced by two silicon photoelectrodes. We also confirmed good redox kinetics of both redox couples by steady state linear sweep voltammetry with rotating disk electrode (Figure S1). Then RFB tests were performed in the SFB device[9] we developed without the photoelectrodes. 0.2 M of BTMAP-Fc and 0.2 M of BTMAP-Vi were used as anolyte and catholyte, respectively, both with 1 M of NaCl as supporting electrolyte. The galvanostatic cycling tests were performed at 6 different current densities from 5 mA/cm2 to 50 mA/cm2 (Figure 1B). The RFB showed excellent Coulombic efficiencies (CE) of >99.9% at all rates (Figure 1C). We noticed that the energy efficiency is rather limited at high cycling rates as a result of high area specific resistance (ASR) of the Sellemion DSV anion exchange membrane used. The lack of a high conductivity and low permeability anion exchange membrane remains a common issue in
the development of high performance RFBs. However, due to the greater limitation on current density of the photoelectrode and the smaller area of the photoelectrode (~1.2 cm²) than that of RFB electrode (~4 cm²), the SFB device usually does not need to be operated at a current density higher than 10 mA/cm² based on the area of RFB electrode. (In practical applications, the areal size of photoelectrodes should be close to that of RFB electrodes, which can be realized with further device engineering and optimization.) Therefore, a high energy efficiency (>90%) for the electrochemical energy storage and redelivery process is guaranteed based on Figure 1C.

Figure 1. A) Cyclic voltammogram of 5.0 mM BTMAP-Fc (red curve) and 5.0 mM BTMAP-Vi (blue curve) in 1.0 M NaCl scanned at 10 mV/s on a glassy carbon electrode, showing a 0.735 V voltage difference. B) Representative galvanostatic cycling curves from 5 mA/cm² to 50 mA/cm² with cut-off voltages of 1.1 V and 0.3 V. C) RFB Coulombic efficiency, voltage efficiency and energy efficiency at different galvanostatic cycling current densities. D) Measured cell open circuit voltage (OCV) vs. state-of-charge (SOC).
To perform bias-free photocharging and on-demand electrochemical discharging of the BTMAP redox couples, we built the SFB device by integrating two carbon felt electrodes and two silicon photoelectrodes in close contact (Figure 2A), similar to the “zero-gap” device design commonly seen in RFBs. Such design allows us to switch the function of the device between 3 different modes: RFB mode, solar cell mode and solar recharge mode, and thus fulfill all the requirements for a stand-alone solar electrification system. As illustrated in Figure 2B, the two photoelectrodes used in the SFB device were both fabricated by forming internal solid-state p-n junction on n-type silicon substrates, but with opposite polarity so that they can be implemented as photoanode (n np⁺-Si) and photocathode (p⁺nn⁺-Si), respectively. Solar illumination comes from the n⁺ side for photoanode and p⁺ side for photocathode in a bifacial fashion. We further deposited a Ti/TiO₂/Pt (5 nm/40 nm/5 nm) layer on the back side the of the photoelectrodes, where solution would be in direct contact, to protect silicon from photocorrosion. Previous reports have shown that TiO₂ protected Si photoelectrodes can be continuously operated for photoelectrolysis of water under extreme pH conditions (such as 1 M HClO₄ and 1 M KOH) with good stability. Thus this protection could potentially enable practical long term operation of Si based photoelectrodes in neutral electrolytes. Having established the excellent RFB performance with the 0.20 M BTMAP electrolytes, we feed the same electrolytes to SFB device for studying its performance under different operation modes with configurations listed at the bottom of Figure 2A. Briefly, in addition to using only the two inert carbon felt electrodes to perform the RFB tests as described above, we can either pair the photoelectrode with carbon felt electrode on the same cell chamber to turn over and regenerate one pair of redox couple and directly produce electricity (solar cell mode); or connect it with the other photoelectrode in series to store converted solar energy as chemical energy by creating an electrochemical bias between the two BTMAP redox couples (solar recharge mode). The detailed discussion on the operation and chemical reactions under different operation modes is presented in Scheme S1.
Figure 2. A) Schematic cross-section of the SFB, showing two single junction silicon photoelectrodes and two carbon felt inert electrodes, which could be connected in 3 different modes. B) Zoom-in scheme of the center part in the SFB, illustrating the architectures and energy diagrams of the illuminated photoelectrodes in equilibrium with BTMAP-Vi and BTMAP-Fc redox couples. C) J-V performance of the photoanode (solid curves) and photocathode (dashed curves) in 0.2 M BTMAP electrolytes, measured individually under solar cell mode at different flow rates. D) J-V performance of photoanode and photocathode connected in series in 0.2 M BTMAP electrolytes, measured under solar recharge mode at different flow rates.

Figure 2C shows the current density-voltage (J-V) performance of independently characterized photoanode and photocathode configured to solar cell mode with 1-Sun (100 mW/cm2)
simulated solar illumination provided by a quartz tungsten halogen (QTH) lamp or in the dark. To find an optimal electrolyte flow rate for the SFB, we carried out the linear scan voltammetry with three electrolyte flow rates: 20 mL/min (MPM), 60 MPM and 130 MPM. Except for the very slight improvement in fill factor (FF) at high flow rates, the solar performance of both photoelectrodes appears to be rather insensitive to electrolyte flow rates within the range we studied. Such results indicate that the “zero-gap” device design can ensure sufficient electrochemical mass transport between photoelectrodes and carbon felt electrodes even at a flow rate as low as 20 MPM. At 20 MPM, the photoanode shows an open circuit voltage (V_{oc}) of 0.559 V and a short circuit current density (J_{sc}) of 29.4 mA/cm2, and photocathode shows a well matched V_{oc} of 0.532 V and J_{sc} of 32.8 mA/cm2. The combination of these two photoelectrodes can provide a total V_{oc} of 1.091 V for solar charging the BTMAP SFB device without external bias. We also noticed that, in comparison with the solid-state PV cells fabricated with same type of silicon cells (Figure S2), the photoelectrodes measured individually under solar cell mode (at 20 MPM) exhibit reasonably preserved V_{oc} and J_{sc} but noticeable decrease in FF (from 64.1% to 51.7% for photoanode and from 69.9% to 38.9% for photocathode), resulting in a lower overall power conversion efficiency for both photoelectrodes (8.49% for photoanode and 6.79% for photocathode). Potentiostatic electrochemical impedance spectroscopy (EIS) was employed to further study the mechanism behind such efficiency loss (Figure S3). By comparing and analyzing EIS data of the solid state silicon solar cells and photoelectrodes, we attribute the decrease in FF to the uncompensated solution resistance and non-ideal charge extraction process at the semiconductor-liquid interface.

In addition to the J-V characterization of individual photoelectrodes measured under solar cell mode, we also investigate the overall solar performance of the SFB device under solar recharge mode by measuring the J-V response between photoanode and photocathode (Figure 2D). As illustrated in Figure S4, the operating current density of SFB can be found at the intersection point of the overlaid
\(J-V \) curves for independently characterized photoanode and photocathode under solar cell mode. \(J_{sc} \) under solar recharge mode equals to the operating current density of SFB. The slight increase of \(J_{sc} \) under solar recharge mode with increasing flow rates is the cumulative result of aforementioned \(FF \) dependence of individual photoelectrodes on flow rate, as the intersection point is on the high curvature region of these \(J-V \) curves. After confirming that high flow rates would not bring significant benefits for SFB devices, 20 MPM was selected to perform all studies described hereafter.

The main function of SFBs is capturing and storing solar energy when the sun is shining, and delivering electrical energy on demand. This calls for the cooperation between the solar recharge mode and the RFB mode. In order to demonstrate that the SFB device can be stably operated between these two modes, we performed a long term cycling test on this device using a synchronized dual channel potentiostat to continuously monitor solar recharge photocurrent and cell potential. Each cycle was started with 1 hour of bias-free solar charging by connecting the photoanode and photocathode in series, followed by a galvanostatic discharging step at -5 mA/cm\(^2\) (a current of -20 mA, based on a carbon felt electrode area of 4 cm\(^2\)) until a cutoff potential of 0.3 V was reached. Representative device cycling behavior recorded during the first five cycles of the long term cycling test is shown in Figure 3A. The red curve is the cell potential profile measured between the two carbon felt electrodes. Although this curve resembles the typical voltage-time (\(V-t \)) profile of common RFBs, it has a subtle, yet conceptually important difference. Because no external current was provided by the potentiostat during the solar charging process, the rising cell potential recorded during this process represents only the open circuit potential (\(E_{oc} \), this is the open circuit potential of the RFB component and should be distinguished from \(V_{oc} \) of the photoelectrode) of the SFB without any overpotential, while the descending potential recorded during galvanostatic discharging step can be interpreted as \(E_{oc} - \eta \) (\(\eta \) is the overall overpotential), as the case for RFBs. The solar recharge current density (blue curve in Figure 3A) started at ~24 mA/cm\(^2\) and gradually decreased to ~15 mA/cm\(^2\) at
the end of the 1-h charging cycle due to the increase of cell potential, resulting in an average photocurrent density of 18.5 mA/cm2 (a current of 22.9 mA, based on an average photoelectrode area of 1.239 cm2). With the relatively high total photovoltage (~1.1 V) generated by the photoelectrodes, the SFB can effectively utilize most of its storage capacity and reach a near unity state-of-charge (SOC) after being charged for 1 h. The following discharging cycle (cycle 1 in Figure 3B) can deliver a volumetric capacity of 2.27 Ah/L (energy density of 1.52 Wh/L, calculated based on the total volume of both electrolytes), corresponding to 91.5% of the total potentiostatically determined capacity. Based on the solubility of BTMAP redox couples and RFB study in the previous work, the theoretical capacity for the SFB device is 25 Ah/L when 1.9 M of BTMAP redox couples are used.$^{[16c]}$

Figure 3. A) Representative device cycling behavior showing cell potential between cathode and anode (red curves), as well as the photocurrent density delivered by the photoelectrodes connected in series (blue curves), recorded between the first and fifth cycles. B) Representative potential-capacity profiles during galvanostatic discharging process at cycle 1, 50 and 100. The capacity shown here represents the effectively utilized capacity at each cycle after solar charging. C) Charging and discharging capacity utilization (normalized on the basis of the potentiostatically determined capacity before cycling) and solar-to-output electricity efficiency (SOEE), showing a stable cycling
performance over 200 hours (100 cycles). Each cycle was started with a 1 hour bias-free solar charging process followed by a galvanostatic discharging step at -20 mA until reaching the cutoff potential (0.3 V).

Figure 3C shows the SFB can be stably cycled between solar recharge mode and RFB mode over 100 cycles (>200 hours) and maintain an average capacity utilization rate of 81.9%. In comparison, the continuous operation durations for all previous SFB demonstrations are less than 50 hours. The round trip energy efficiency of the SFB was evaluated by the solar-to-output electricity efficiency (SOEE) as defined by the following equation,

\[
SOEE = \frac{E_{\text{electrical,out}}}{E_{\text{illumination}}} = \frac{\int I_{\text{out}}V_{\text{out}}dt}{\int SAdt},
\]

(1)

where \(E_{\text{electrical,out}}\) is the output electrical energy delivered on demand after storage and \(E_{\text{illumination}}\) is the input solar energy (calculated based on the total area of both photoelectrodes). The SFB maintained a high SOEE during the long term cycling test with an average of 5.4%, which is an over 2-fold increase in comparison to that of the previously demonstrated SFB using the same silicon photoelectrode design (1.7%). In addition, both Coulombic and voltage efficiency of the SFB were higher than 90% throughout the cycling test (Figure S5). Although Figure 3C shows slow decay in the capacity utilization rate and SOEE for the SFB, detailed device characterization after the cycling test (Figure S6) suggests that such decay could be avoided with a little additional engineering effort. This decay was mainly caused by the decrease of illumination intensity and accumulation of bubbles in the small electrolyte pocket between the photoelectrodes and carbon felt electrodes. These bubbles can block the flow chambers and result in a decrease of effective electrolyte-contacting surface areas for both photoelectrodes and carbon felt electrodes. For both photoanode and photocathode, their \(J_{sc}\) under solar cell mode can be significantly increased after replacing the light bulb and recalibrating the illumination intensity of the QTH solar simulator. The decay in photocurrent was also responsible for
the decreased capacity utilization rate shown in Figure 3B and 3C because the solar charging process was set to a constant time (1 hour). Additionally, by temporarily increasing the flow rate to 130 MPM to flush out the bubbles accumulated in the flow chambers, we were able to improve the solar performance of the photoelectrodes and almost fully recover to the original level before the cycling test. Fortunately, bubble accumulation is a minor engineering issue that can be easily solved with some modifications in flow management and therefore will not affect the true stability of the SFB devices (Figure S7). In addition, the issue of bubble accumulation can also be addressed by using a well-designed flow channel structure to avoid the need for flushing. In fact, the stability of the photoelectrodes was so good that we actually disassembled and reassembled the SFB devices several times for various tests using the same pair of photoelectrodes. The total operation time of these photoelectrodes was well over 400 hours.

The long lifetime of the SFB device is enabled by the combination of robust photoelectrodes, stable redox flow battery chemistry, and the careful design of the SFB. From the 200 hours cycling test, we did not see an unrecoverable SOEE loss. Based on previous studies on TiO$_2$ protected Si photoelectrodes$^{[20]}$ and BTMAP RFBs$^{[16c]}$, we think the stability of the photoelectrodes could eventually limit the overall lifetime of the SFB device beyond the thousands of hours in typical lab test settings.

Furthermore, compared to most SFB devices previously demonstrated that could only access a small portion of the total capacity,$^{[4a]}$ the SFB demonstrated here sets a new benchmark for capacity utilization rate, which is an essential quality for practical applications. Being able to solar charge the SFB device to a near unity SOC also brings out another unique aspect of the integrated solar energy conversion and electrochemical storage devices. Unlike conventional PEC devices dealing with redox reactions with fixed equilibrium potentials, such as solar water electrolysis$^{[13b, 21]}$ and liquid junction solar cells,$^{[22]}$ SFBs and other similar integrated devices store energy by building up its internal
electrochemical potential (E_{oc} increase in Figure 3A). As illustrated in Figure 4A, an increase of E_{oc} would result in a shift of the operating point on the I-V curve of photoelectrodes and consequently cause a change in $SOEE$. To quantify the relationship between $SOEE$ and E_{oc}, we derive and propose a modified figure of merit, instantaneous $SOEE$ ($SOEE_{ins}$), from Equation (1):

$$SOEE_{ins} = \frac{P_{electrical _out}}{P_{illumination}} \approx \frac{l_{photo}E_{oc} \times CE \times VE}{SA}.$$ (2)

where $P_{electrical _out}$ is the discharging power, which is estimated by using charging power $l_{photo}E_{oc}$ times the internal power conversion efficiency of SFB; $P_{illumination}$ is the illumination power provided by the solar simulator. The detailed derivation and explanation can be found in the Supporting Information. $SOEE_{ins}$ can be simply interpreted as the external power conversion efficiency of the SFB device at certain E_{oc}. A representative $SOEE_{ins}$ curve with respect to E_{oc} is presented in Figure 4B, which is numerically calculated from the first solar charging cycle in Figure 3A with a constant time interval of 60s using cell potential and photocurrent data points that are nearest to the desired time. The $SOEE_{ins}$ increases at the beginning and then decreases with E_{oc} increasing, showing a maximum of 6.51% at 0.663 V and an average of 6.15% that is essentially the same as the $SOEE$ value (6.13%) calculated using Equation 1. By plotting E_{oc} with respect to SOC, we can also find that the highest $SOEE_{ins}$ was reached at a SOC of 22.6%. The shaded area in Figure 4B shows the E_{oc} range between 10% SOC and 90% SOC (an example of E_{oc} vs. SOC for current BTMAP redox couples is plotted in Figure 1D), which represents the typical operation window for practical SFBs or RFBs. Since the overall $SOEE$ of a SFB device is close to the average $SOEE_{ins}$ value within the shaded E_{oc} window, the highest $SOEE$ with the same photoelectrodes should be achieved under the hypothetical blue area. With this method, we can derive the best matched E_{cell} for SFBs to extract the highest power conversion efficiency out of certain photoelectrodes.
Figure 4. A) Overlaid hypothetical J-V curves of photoanode and photocathode. The intersection point of the red and blue curves is influenced by the RFB voltage. The instantaneous SOEE is determined by the power at the operating point. B) Representative instantaneous SOEE as a function of E_{oc} calculated from the first photocharging cycle of the long term SFB cycling test shown in Figure 3C. The maximum instantaneous SOEE (6.51%) was achieved at a E_{oc} of 0.663 V (22.6% SOC). The semi-transparent shaded areas represent the E_{oc} range between 10% SOC and 90% SOC for a SFB with the current BTMAP redox couples (pink) and hypothetical ideal redox couples that have a formal potential difference of 0.663V (blue).

Note that for given photoelectrodes, $SOEE_{ins}$ is only determined by E_{oc}, so the $SOEE_{ins}$-E_{oc} relationship for the same photoelectrodes should remain unchanged no matter which redox couples are used. Thus, the $SOEE_{ins}$-E_{oc} curve can serve as a better guide for tuning the operating $SOEE_{ins}$ window of the SFB with different redox couples in order to optimize the average SOEE. For example, for the p/n Si photoelectrodes used in this study, the best matched E_{cell} should be 0.663 V. As mentioned above, although the same p/n Si photoelectrode design was used, the SFB studied here can deliver a SOEE over 3 times that of a previous SFB demonstration. Such enhancement can be readily explained with the knowledge of the $SOEE_{ins}$-E_{oc} relationship for these p/n Si photoelectrodes: E_{cell} for the present SFB (0.735 V) is much closer to the optimized E_{cell} (0.663 V) than that for the previous demonstration (0.461 V).
Although previous report suggested that the SOC dependency of SOEE can be studied by first charging the SFB to desired SOCs and then measuring solar response of the photoelectrode (a set of data using this method is presented in Figure S8),\(^\text{[8e]}\) the introduction of \(SOEE_{\text{int}}\) makes this analysis much easier and more reliable, since the \(SOEE_{\text{int}}\)-SOC relationship can be directly derived from real time SFB cycling data without additional tests and undesired SOC disturbance. More importantly, harnessing the \(SOEE_{\text{int}}-E_{\text{oc}}\) relationship (such as Figure 4B), the development of the solar energy conversion and electrochemical energy storage components in SFBs can be decoupled to allow independent optimization of these components. The in-depth study on the \(SOEE_{\text{int}}\) unveiled a more flexible design principle for SFBs that can be universally applied to other SFB devices to extract the most solar energy conversion efficiencies out of given solar cells. Such new understanding can stimulate the development of designer solar materials\(^\text{[13a, 13b, 23]}\) and redox species\(^\text{[15b, 24]}\) specifically for SFBs.

This work demonstrates that by taking advantage of stable redox couples in low corrosiveness neutral pH electrolytes and well protected Si photoelectrodes, the lifetime of SFBs can be greatly extended. The extensive studies on Si based photoelectrodes for PEC energy conversion applications over the last few decades\(^\text{[25]}\) have led to development and demonstration of successful protection strategies for Si based photoelectrodes in contact with aqueous electrolytes.\(^\text{[19]}\) Indeed, a recent report has shown that \(np-Si/TiO_2/NiCrO_x\) can drive PEC water oxidation in 1.0 M KOH continuously over 3 months.\(^\text{[20]}\) This bodes well for SFBs, because the simplified photoelectrode structure without catalysts in SFBs and the less harsh neutral pH condition are expected to further extend the lifetime of Si photoelectrodes. Moreover, as a small bandgap semiconductor (1.1 eV), silicon shows great promises as the bottom layer material for tandem junction solar cells, such as \(a-Si/\mu c-Si\) (amorphous Si/microcrystalline Si) tandem cell\(^\text{[26]}\) and III-V/Si tandem cell,\(^\text{[27]}\) which features not only higher
efficiency but also larger photovoltage. The ongoing development of tandem junction PV cell technologies has led to the hope that fabricating additional junctions on single junction Si bottom substrate could be a more cost-effective strategy compared to single junction cells. The decoupled light absorption/solution contact photodeelectrode design used in our SFBs (Figure 2B) ensures that these emerging tandem junction cells can be readily adopted into the current SFB design frame to boost its SOEE. In addition, these tandem junction solar cells demand specifically designed redox couples to realize a good voltage match, which can be rationalized under the guidance of $SOEE_{\text{int}} - E_{oc}$ relationship.

The SFB device studied in this work sets new records for both continuous operation time (>200 h) and capacity utilization rate (>80%). The successful application of the voltage matching principle yields a significantly boosted SOEE from 1.7% to 5.4% using the same silicon photodeelectrode design. In addition, the high capacity utilization rate unveiled the unique SOC dependence of the SOEE for SFBs that differentiates SFBs from other conventional PEC regenerative or electrolysis devices. The newly introduced instantaneous solar-to-output electricity efficiency ($SOEE_{\text{ins}}$) and the $SOEE_{\text{int}} - E_{oc}$ curve can provide guidance toward more efficient SFB device design with better working voltage match between photodeelectrodes and redox couples. Building on highly stable BTMAP redox couples and Si photodeelectrodes, the long lifetime SFB demonstrated here sets an important milestone to move SFB research into a more practical arena.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

This article is protected by copyright. All rights reserved.
This research is supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-2017-CRG6-3453.02. H.-C.F. and J.-H.H. are supported by KAUST baseline fund for design and fabrication of single junction Si solar cells. Research at Harvard was supported by the U.S. National Science Foundation through grant NSF CBET-1500041.

Conflict of Interest

The authors declare no competing interests.

References

Monolithically integrated solar flow batteries (SFBs) hold promise as compact stand-alone systems for off-grid solar electrification. Herein, a long lifetime neutral pH aqueous electrolyte SFB with robust organic redox couples and inexpensive silicon-based photoelectrodes is demonstrated. The design principles presented herein for extending device lifetime and boosting round trip energy efficiency will make SFBs more competitive for powering off-grid applications.