Supporting Information

Hall Effect in Polycrystalline Organic Semiconductors: The Effect of Grain Boundaries

Hyun Ho Choi, Alexandra F. Paterson, Michael A. Fusella, Julianna Panidi, Olga Solomeshch, Nir Tessler, Martin Heeney, Kilwon Cho, Thomas D. Anthopoulos, Barry P. Rand, and Vitaly Podzorov*
SUPPLEMENTARY INFORMATION

Hall effect in polycrystalline organic semiconductors: the effect of grain boundaries.

Hyun Ho Choi1,2, Alexandra F. Paterson3, Michael A. Fusella4, Julianna Panidi5, Olga Solomeshch6, Nir Tessler6, Martin Heeney7, Kilwon Cho8, Thomas D. Anthopoulos3, Barry P. Rand4,9, and Vitaly Podzorov1,*

1 Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA.
2 School of Materials Science and Engineering & Engineering Research Institute, Gyeongsang National University, Jinju 52828, Korea.
3 King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering and KAUST solar centre, Thuwal 23955-6900, Saudi Arabia.
4 Department of Electrical Engineering, Princeton University, Princeton, NJ, 08544 USA.
5 Department of Physics and Centre for Plastic Electronics, Imperial College London, South Kensington, London SW7 2AZ, UK.
6 Sara and Moshe Zisapel Nano-Electronic Center, Department of Electrical Engineering, Technion Israel Institute of Technology, Haifa 3200, Israel.
7 Department of Chemistry and Centre for Plastic Electronics, Imperial College London, South Kensington, London SW7 2AZ, UK.
8 Center for Advanced Soft Electronics & Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
9 Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544 USA.

* The corresponding author’s e-mail address: podzorov@physics.rutgers.edu
Figure S1. Polarized optical microscope images of spin-cast blends of C$_8$-BTBT small molecule and C$_{16}$IDT-BT conjugated polymer, doped with C$_{60}$F$_{48}$ (a) and pristine (undoped) (b). The films exhibit a clear polarization contrast inversion, revealing a polycrystalline microstructure with similar grain size, texture and morphology in the doped and undoped cases.
Figure S2. Details of four-probe FET measurements of transistors based on C_8-BTBT:C_{16}IDT-BT blends. (a, c) doped, and (b, d) undoped blends. (a, b) Four-probe voltage V_{4P} as a function of the gate voltage V_G measured at several source-drain voltages, $V_{SD} = 1, 3$ and 5 V (indicated). The horizontal solid lines marked “Ideal V_{4P} when Ohmic” correspond to V_{4P} expected in the case of a zero contact resistance (ideal Ohmic device operation). At high V_G, the measured V_{4P} approaches 70% of the expected ideal V_{4P}. (c, d) Comparison of the corresponding longitudinal field-effect mobilities, μ_{FET}, obtained via four-probe and two-probe measurements, marked μ_{4P} (dark grey symbols) and μ_{2P} (red symbols), respectively.
Figure S3. \textit{ac}-Hall effect measurements in OFETs based on C$_8$-BTBT:C$_{16}$IDT-BT blends, (a, b) doped, and (c, d) undoped blends. \(V_H\) is an r.m.s Hall voltage measured across the channel, when an \textit{ac} magnetic field of r.m.s magnitude \(B_{\text{rms}} = 0.2314\) T and frequency in the range 0.56 - 0.7 Hz is applied. The \textit{dc} excitation source-drain current \(I_{SD}\) and the gate voltage \(V_G\) are indicated on top of each panel. Both the in-phase (dark navy squares) and out-of-phase (yellow circles) Hall voltage components are shown. The lower part of each panel shows the corresponding four-probe voltage \(V_{4P}\). The shown two ON-OFF cycles correspond to the \textit{dc} \(I_{SD}\) being intentionally turned ON and OFF in order to determine the baseline of Hall voltage. It is evident that in each case the Hall voltage mostly consists of an in-phase component, signifying that the parasitic Faraday induction contribution is negligible in these measurements, and thus the Hall measurements are reliable.
Figure S4. Identification of molecular orientation in individual grains of polycrystalline rubrene OFETs. The known polarization dependence of the optical absorption coefficient in the orthorhombic rubrene was used for this purpose. The analyzer and polarizer of the optical microscope are fixed at 90° to each other, and the sample is rotated from $\phi = 0$ to 90° ($\phi = 0$ corresponds to the longitudinal channel direction situated horizontally). The minima in transmittance occur when the grain is oriented with its b-axis (the high-mobility axis) either along the polarizer ($\phi = 0$) or along the analyzer ($\phi = 90°$). Correspondingly, the maxima in transmittance occur when the grain’s b-axis is at $\phi = 45°$.
Figure S5. *ac*-Hall effect measurements in the large-grain polycrystalline rubrene OFET (shown in Fig. 4 a, b of the main text). R.m.s. Hall voltage, V_{H}, measured between probes A$^+$ and A$^-$ (panel a) and probes B$^+$ and B$^-$ (panel b), representing regions A and B of the same channel, respectively. The in-phase (blue squares) and out-of-phase (red circles) Hall voltage signals are shown. The applied gate voltage and the source-drain current in this measurement are $V_G = -45 \text{ V}$ and $I_{SD} = 0.21 \mu\text{A}$.

Figure S6. *ac*-Hall effect measurements in the large-grain polycrystalline rubrene OFET (shown in Fig. 4 c, d of the main text). R.m.s. Hall voltage, V_{H}, measured between probes A$^+$ and A$^-$ (panel a) and probes B$^+$ and B$^-$ (panel b). The applied gate voltage and the source-drain current in this measurement are $V_G = -50 \text{ V}$ and $I_{SD} = 0.18 \mu\text{A}$.
Figure S7. ac-Hall effect measurements in the large-grain polycrystalline rubrene OFET (shown in Fig. 4 e, f of the main text). R.m.s. Hall voltage, V_H, measured between probes A^+ and A^- (panel a) and probes B^+ and B^- (panel b). The applied gate voltage and the source-drain current in this measurement are $V_G = -45$ V and $I_{SD} = 0.26$ μA.
Figure S8. Verification and quantification of the effect of discrete grain boundaries on the Hall mobility in polycrystalline rubrene OFETs. Here we plot the mobility anisotropy charts (that is, μ_a vs. μ_b plots) that are constructed as follows. The Hall mobility μ_H is modeled as a linear combination of the contributions of individual grains probed by (contained between) the Hall probes, with or without the effect of GBs. When we assume that the contribution of GBs is negligible (such as in panels a and c), the Hall mobilities measured by the two pairs of Hall probes A or B (see device photos in the insets), $\mu_H^{(A)}$ or $\mu_H^{(B)}$, can be each represented by the linear combination of the mobilities of individual grains: $\mu_H = \sum_i w_{Gi} \cdot \mu_{Gi}$, where the coefficients w_{Gi} are the grain widths divided by the total channel width (the relative grain widths), and $\mu_{Gi} = \mu_a \cos^2 \theta_{Gi} + \mu_b \sin^2 \theta_{Gi}$ are the mobilities of individual grains, with θ_{Gi} being the angle between the grain’s b-axis and the longitudinal channel direction. The thin red and blue lines are the solutions for the rubrene’s a-axis and b-axis mobilities, μ_a and μ_b, obtained from the above relationship for μ_H for a given set of measured μ_H, w_{Gi} and grain orientation angles θ_{Gi}. Since two Hall measurements are performed in each FET (by the two pairs of Hall probes, A and B), the obtained values for μ_a and μ_b should agree with each other, resulting in an intercept of the red and blue lines on the μ_a vs. μ_b chart. This intercept would be the only
solution for μ_a and μ_b that satisfies both $\mu_H^{(A)}$ and $\mu_H^{(B)}$ measurements. If the values of μ_a and μ_b at the intercept are reasonable and consistent with the known a-axis and b-axis mobilities of rubrene, then the model given by the above equation can be considered valid. It can be seen that the intercept in panel a corresponds to an unreasonably high anisotropy ratio $\mu_b/\mu_a \sim 10$, inconsistent with the known mobility anisotropy in rubrene ($\mu_b/\mu_a \approx 2 - 3$). In panel c, no intercept at all is reached within the reasonable range of mobilities. This suggests that no reasonable solutions can be found with the assumption of a negligible GB effect. In a model that does account for a GB effect via capacitively charged GBs (shown in panels b and d), the Hall mobility is reduced by each GB present in the channel: $\mu_H = \sum_i w_{Gi} \cdot \mu_{Gi} - \sum_i \mu_{GB} \sin \Delta\theta_{i,i+1}$, where $\Delta\theta_{i,i+1}$ is the GB angle, and μ_{GB} is an amplitude. The solid red and blue lines in panels b and d are the solution plots of this equation for μ_a and μ_b with a varied μ_{GB} parameter (indicated on top of the panels). The intercepts of these red and blue lines represent the final solution for μ_a and μ_b, which should lie in the region of correct mobility anisotropy known for rubrene, $\mu_b/\mu_a = 2 - 3$ (highlighted in green). In this case, after taking a GB effect into account, reasonable solutions (the intercepts) exist for a range of amplitudes μ_{GB}.

Figure S9. FET measurements of the single-crystal rubrene OFET shown in Fig. 5 of the main text. The ratio of the channel length to width is $L/W = 4.1$, and the gate-channel capacitance is $C_i = 1.85 \text{nF}\cdot\text{cm}^{-2}$. (a) Linear-regime transfer characteristics, $I_{SD}(V_G)$, recorded at several values of V_{SD} (indicated). (b) Field-effect mobility, μ_{FET}, extracted from the four-probe (dark grey solid squares) and the two-probe (red open circles) measurements of the device. The matching values of these mobilities signify a very small relative contact resistance in this OFET.
Figure S10. *ac*-Hall effect measurements in the single-crystal rubrene OFET with an “artificial grain boundary” (see Fig. 5 of the main text). R.m.s. Hall voltage, V_H, measured at various locations in the channel between the sets of Hall probes labeled P (panel a), D1 (panel b) and D2 (panel c). The gate voltage and the source-drain current in this measurement are $V_G = -50$ V and $I_{SD} = 0.32$ µA. It is clear that the Hall voltage mostly consists of an in-phase component, which signifies a reliable Hall effect measurement.