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Abstract

Accurate water level forecasts during flood events are crucial tomitigate the loss of human

lives and economic damages. However, the accuracy of flood models can be affected

by various factors, including the complexity of the terrain geometry and bathymetry,

imperfect physics as well as uncertainties in the inflows and parameters. This paper

describes a practical implementation of an ensemble Kalman filter (EnKF) based data

assimilation system that is aimed towards enhancing the forecasting skill of floodmodels.

The system was implemented and tested with a real world dam break flood, based on the

experimentally scaled Toce River valley flood that occurred on July 8th, 1996. Water depth

data are available for assimilation from a network of 21 sensors distributed across the

domain. Our results demonstrate that assimilating data into the floodmodel significantly

improves themodel prediction byup to 90%after assimilation and 60%during forecasting.

Assimilating the data more frequently significantly enhances the system performances.

Estimating the two-dimensionalManning coefficient togetherwith themodel’s dynamical

variables (water depth andvelocities) further improves themodel prediction skill. Overall,

our results suggest that assimilating data into the flood model, while jointly inferring the
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state and (poorly known) parameters, using an EnKF may provide an efficient framework

for developing an operational flood forecasting system.

Keywords: flood modeling, shallow water equations, data assimilation, ensemble

Kalman filter, state-parameter estimation.

1. Introduction1

With continuous growth in global population, the density of human settlements occu-2

pying areas that are vulnerable to flooding and other natural hazards is increasing. As a3

consequence, the human and structural cost of natural disasters has grown considerably4

over time. Flooding is the most common natural hazard that affects humans and prop-5

erties around the world (Few, 2003), often causing colossal human and economic losses.6

Anticipating floods before they occur could help minimize losses through the implemen-7

tation of appropriate protection, provision and rescue plans. Because of the complexity of8

the problem, and the number of different situations that need to be considered, the most9

suitable approach for generic flood prediction is often based on numerical simulations10

that require solution of the shallowwater equations (SWE) (Constantin and Escher, 1998).11

Numerical flood models based on the two-dimensional SWE are widely used to study12

flood events, or analyze the effects of floods in control projects. Despite many significant13

improvements over the last decades, flood forecasting models are still far from being14

perfect. They suffer from scale-related problems, with some of their parameters not15

being directly measurable (Blöschl and Sivapalan, 1995). These models are also subject16

to various sources of uncertainties. Apart from the uncertainty due to randomness in the17

natural process that cannot be avoided, there are also unresolved dynamical processes and18

uncertainties in inputs (e.g. bathymetry and boundary conditions). One way to mitigate19

for these uncertainties that has proven to be efficient in meteorological, oceanographic20

and other hydrological applications (Hoteit et al., 2008; Lermusiaux, 2006; Liu and Gupta,21

2007), is to constrain flood forecasting models with available data. Measurements of22
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flood, including from satellite and in-situ measurements of water levels, are now more23

commonly available in near- to real-time (Zhang et al., 2011; García-Pintado et al., 2013)24

than ever before. These data can be used operationally to improve the model behavior25

and reduce uncertainties in prediction (Ghil, 1989; Holland and Malanotte-Rizzoli, 1989;26

Edwards et al., 2015). This process, referred to generically as data assimilation (DA),27

sequentially nudges the model predictions towards incoming observations to keep the28

model as close as possible to the real trajectory of the simulated system (Hoteit et al.,29

2002).30

The Kalman Filter (KF) is a popular data assimilation method that was designed for31

linear systems with Gaussian uncertainties (Kalman et al., 1960). It recursively computes32

the best (minimum-variance) linear estimate of the state of the system and its error co-33

variance matrix based on available observation. To deal with the non-linearities and34

large-dimensions of geophysical models, ensemble Kalman filters (EnKFs) were intro-35

duced as an alternative, providing an effective Monte Carlo framework to propagate the36

error covariance matrix forward in time while avoiding the need for the complex model37

linearization step (Evensen, 2003). The main idea behind the EnKF is to perform en-38

semble simulations of model runs to compute statistical estimates of the state and error39

covariance. Several studies have demonstrated that the EnKF presents the advantage of40

being portable and straightforward to implement as well as being remarkably robust and41

performant, even when implemented with small ensembles (Anderson and Anderson,42

1999; Hamill and Snyder, 2000; Hoteit et al., 2015).43

The EnKF operates in cycles of two steps: (i) a forecast step in which the ensemble44

members are integrated with the model to the time of the next available observation, and45

(ii) an analysis step to update the forecasted members with the data based on the KF anal-46

ysis step, which provides the analysis ensemble from which to start the next assimilation47

cycle (Hoteit et al., 2002; Evensen, 2003). Importantly, this ensemble framework is flexi-48

ble enough to account for model errors through random perturbations of the ensemble49
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members (Hoteit et al., 2008).50

The EnKF is basically formulated under a linear Gaussian framework, which is actually51

not necessarily realizable in practice, and as such the convergence of this filter (to the true52

posterior distribution) is not guaranteed (Ait-El-Fquih et al., 2016). The performances of53

EnKFs are further often affected by the approximative nature of their ensemble covariance54

matrices, as they are usually implemented with limited ensembles and poorly known55

model errors (Song et al., 2010). This can lead to the filter inbreeding problem, with56

the ensemble variance being increasingly under-estimated over time (Hendricks Franssen57

and Kinzelbach, 2008). Covariance inflation (Anderson and Anderson, 1999) and local-58

ization (Hamill et al., 2001) are popular techniques to deal with these problems. A more59

straightforward approach to enhance the filter performances is to further quantify and60

reduce the uncertainties in the model’s poorly known parameters (Elsheikh et al., 2013;61

Gharamti and Hoteit, 2014; Gharamti et al., 2015; Ait-El-Fquih et al., 2016). This is known62

as the state-parameter filtering problemand is often tackled using the so-called Joint-EnKF63

(Chen and Zhang, 2006; Hendricks Franssen and Kinzelbach, 2008; Gharamti et al., 2015).64

The Joint-EnKF concurrently estimates the state of the system and the model’s unknown65

parameters by concatenating both into one state vector to be estimated.66

Modeling of flood events are usually considered as boundary value problem, with67

boundary conditions often described by a time changing water level (hydrograph), guid-68

ing the overflow across the domain (Tirupathi et al., 2016). The ability to update the69

model state through time with real time data is changing our vision of flood prediction70

and the way we forecast the flood evolution in time and space. In the last decade, several71

applications of data assimilation for flood forecasting have been presented. For instance,72

Tossavainen et al. (2008) simulated the river flow using a 2D finite-volume shallow water73

model, assimilating GPS equipped drifter data deployed as passive lagrangian tracers74

using an EnKF. Strub et al. (2009) latter compared EnKF and an offline optimization tech-75

nique for forecasting river hydraulics. Spatially distributed water level data have also76
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been extracted from satellite images and incorporated into floodmodels using variational77

DAmethods (4D-VAR), demonstrating the relevance of the method to improve the consis-78

tency between the model and the data (e.g. Lai and Monnier 2009; Hostache et al. 2010).79

Despite providing high spatial coverage, the application of satellite data to floodmodeling80

problems suffers from poor resolution and large errors (Gichamo et al., 2012; Wu et al.,81

2014).82

Despite the widespread applications of flood modeling and forecasting methods in83

hydrology, very few studies considered the joint state parameter estimation problem.84

Wilson et al. (2010) implemented the EnKF to estimate the rear-shore bathymetry with the85

SHORECIRC hydrodynamic model. Wilson and Özkan-Haller (2012) and Landon et al.86

(2014) respectively assimilated depth-average and drifted-based velocity measurements87

to estimate the bathymetry in the Kootenai River. Mayo et al. (2014) implemented a deter-88

ministic EnKF to estimate the Manning roughness value in a simple configuration of the89

ADCIRC ocean circulation model andmore recently, Siripatana et al. (2017) demonstrated90

the relevance of parameters estimation with the EnKF against a full Markov chain Monte91

Carlo (MCMC) inversion. The aforementioned studies considered the parameter estima-92

tion problem in only one dimension. Here we investigate the efficiency of (i) the EnKF93

for estimating time-varying water height and flow directions, and (ii) the Joint-EnKF for94

simultaneously estimating the two-dimensional Manning’s n coefficients, which define95

the bottom roughness in a 2-D SWE model, together with the flow height and directions.96

Adetailed evaluation of the filters’ performances is reported based on realistic experiment97

reproducing the flooding event of the Toce river valley system (Italy) that occurred on July98

8th, 1996 (Prestininzi, 2008) and assimilating real measurements that were collected as99

part of this experiment. We assess the sensitivity of the system to the ensemble size and100

the frequency of the observations, with particular focus on the relevance of the Joint-EnKF101

for enhancing the prediction skill of the flood modeling system.102

The paper is organized as follows. Section 2 describes the flood model. The Joint-103

5



EnKF is presented in Section 3. Section 4 provides an overview of the experimental setup104

and Section 5 presents the assimilation results. A summary of the main findings and105

conclusions is given in Section 6.106

2. The Flood model107

2.1. Governing equations108

The model solves the Shallow Water Equations (SWE):109

∂U
∂t

+ ∇F (U) � S, (1)

where, t is the time, U and F (U) � (E (U) ,G (U)) respectively denote the vectors of110

conserved flow variables and the flux, and S is the source vector. Neglecting Coriolis111

effects, kinetic and turbulence viscous terms and wind stresses, S only includes the bed112

slope source S0 and friction source S f . These vectors are expressed as113

U � [h , qx , qy]T , (2)

E � [qx , uqx + gh2/2, uqy]T , (3)

G � [qy , vqx , vqy + gh2/2], (4)

and114

S � S0 + S f � (0,−gh
∂z
∂x
,−gh

∂z
∂y

)T
+ (0,−gh

n2u
√

u2 + v2

h4/3 ,−gh
n2v
√

u2 + v2

h4/3 )T , (5)

where h is the water depth, u and v are the velocities and qx and qy are the unit-width115

discharges in x- and y-directions (qx equals to hu and qy equals to hv), respectively, g is116

the gravitational acceleration, z is the bottom elevation, and n is the Manning roughness117

coefficient. A variety of numerical techniques have been proposed for solving the SWE118
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model (Eq. (1)), including finite element (Strang and Fix, 1973) and finite volumemethods119

(Eymard et al., 2000), etc. In this work, we implement the finite volume method on an120

unstructured triangular grid using triangular domain discretisation.121

2.2. Numerical implementation122

Finite volume framework123

Within an arbitrary cell, the definite integral form of Eq. (1) is124

∫
Ω

∂U
∂t

dΩ +

∫
Ω

∇F (U)dΩ �

∫
Ω

SdΩ. (6)

Using the divergence theorem, Eq. (6) can be rewritten as125

∫
Ω

∂U
∂t

dΩ +

∮
Γ

F (U) · mdΓ �
∫
Ω

(So + S f )dΩ, (7)

whereΩ and Γ denote the control volume of the system and the boundary of the volume,126

which in two-dimension is the control area and edges of the cell. m is the outward unit127

vector normal to the prescribed boundary with the components of (mx and my). F(U) ·m128

is the flux vector normal to the boundary. In Eq. (7), the first term involving time129

differentiation is always computed with a finite difference method, so after a time interval130

of ∂t, U at each cell is updated to the next time step using131

U t+1
� U t

+
∆t
Ω

(∫
Ω

(
S0 + S f

)
dΩ −

∮
Γ

F (U) · mdΓ
)
. (8)

The integral of F(U) · m around the cell is evaluated with an explicit Euler method as132

∮
Γ

F (U) · mdΓ �
mb∑
j�1

F∗j (UL ,UR) · m j l j , (9)

in which, j and l are the index and area (length for 2D) of the faces of the cell, respectively,133

and mb is the number of faces of the cell. UL and UR are the reconstructed values of U134
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on the right and left sides of the face, respectively. To implement a stable second-order135

accurate scheme, the MUSCL linear interpolation approach (Van Leer, 1979) is applied136

to reconstruct UL and UR. The Harten, Lax and van Leer approximate Riemann solver137

with the contact wave restored (HLLC) (Toro, 2009) is employed to calculate the flux138

F∗j (UL ,UR) · m j at the jth face.139

The slope source term S0 is transformed into a sum of fluxes through all faces of the140

cell as proposed by (Audusse et al., 2004). Finally, the friction terms are solved by a semi-141

implicit scheme (Begnudelli and Sanders, 2006), in order to avoid numerical instabilities142

in case of occurrence of rapid changes in flow depth or velocity. More details about the143

scheme and its validation can be found in Hou et al. (2015).144

3. State and parameters estimation with the EnKF145

The flood data assimilation problem can be described by a state-space model of the146

form:147

xk � M(xk−1, θk−1) + ηk−1, (10)

yk � Hk (xk) + εk , (11)

where xk ∈ R
Nx denotes the system state (of dimension Nx) composed of the water depth148

and water velocity in x and y directions evaluated at every point of the domain, yk ∈ R
Ny149

the flood observations at time tk (of dimension Ny), and θ ∈ RNθ the parameter vector (of150

dimension Nθ). M is a nonlinear operator integrating the system state from time tk to tk+1151

using the SWE, and Hk the observational operator relating the state to the observations152

(the bold font reflects the linear form of the observational operator in the present study).153

The model process noise, η � {ηk }k∈N, and the observation process noise, ε � {εk }k∈N,154

are assumed to be statistically independent, jointly independent and independent from x0155

and θ. Both ηk and εk are assumed to follow Gaussian distributions with zero mean and156
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covariances Qk and Rk , respectively. We emphasize that the EnKF scheme is still valid in157

the perfect model case (i.e.,Qk � 0), which is actually usually considered in the literature.158

The joint state-parameter filteringproblemconsists of estimating the augmentedvector,159

zk
def
� [xT

k , θ
T
k ]T , at each time tk , given the previous observations y0:k

def
� {y0, y1, y2, ..., yk }.160

One common approach to address this problem is to minimize the mean square error161

(MSE), which leads to the posterior mean (PM) (Ait-El-Fquih and Hoteit, 2016):162

Ep(xk |y0:k )[xk] �
∫

xk p(xk , θ | y0:k)dxk dθ, (12)

163

Ep(θ |y0:k )[θ] �
∫

θp(xk , θ | y0:k)dxk dθ. (13)

Because of the nonlinear character of the system, an analytical computation of Eqs. (12)164

and (13) is not feasible. The Joint-EnKF was proposed as an efficient method to compute165

approximate solutions for Eqs. (12) and (13) with a reasonable computational cost (Ait-166

El-Fquih et al., 2016). The state-parameter estimation problem is first converted into a167

classical state-space system on which the EnKF is directly applied as follows168




zk � M̃(zk−1) + η̃k−1,

yk � H̃kzk + εk ,

(14)

where M̃(zk−1) =
(

M(xk−1)
θk−1

)
, η̃k−1 �

(
ηk−1
0

)
and H̃k � [Hk 0], where 0 is a zero matrix with169

appropriate dimensions. Starting from an analysis ensemble of Ne members at time tk−1,170

{xa ,i
k−1, θ

a ,i
k−1}

Ne
i�1, the EnKF forecast and analysis steps can be summarized as follows.171

Forecast step172

Starting froman analysis ensemble and assuming static dynamics for the parameter vector,173

i.e. θ f ,i
k � θa ,i

k−1, the state analysis members, xa ,i
k−1, are integrated with (10) to compute the174
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state forecast members175

x f ,(i)
k � M(xa ,(i)

k−1 , θ
a(i)
k−1 ) + η(i)

k−1; η(i)
k−1 ∼ N (0,Qk−1). (15)

The state and parameter forecasts are then the sample mean of the x f ,i
k , and θ f ,i

k , respec-176

tively, and the associated error covariance matrices are their sample covariances.177

Analysis step178

When a new observation becomes available, the x f ,i
k and θ f ,i

k are updated following the179

KF analysis step:180

xa ,i
k � x f ,i

k + Px f
k ,y

f
k
P−1

y f
k

(yk − y f ,i
k ), (16)

181

θa ,i
k � θ

f ,i
k + P

θ
f
k ,y

f
k
P−1

y f
k

(yk − y f ,i
k ), (17)

where y f ,i
k � Hkx

f ,i
k + εi

k ; εi
k ∼ N (0,Rk). The (cross-)covariance matrices are evaluated182

from the ensembles as183

Px f
k ,y

f
k
� (Ne − 1)−1Wx f

k
WT

y f
k

, (18)

184

Py f
k
� (Ne − 1)−1Wy f

k
WT

y f
k

, (19)

185

P
θk−1 ,y

f
k
� (Ne − 1)−1Wθk−1W

T
y f

k

, (20)

where for a given ensemble {ui
}

Ne
i�1, Wu denotes the perturbation matrix (Evensen, 2003)186

(eq. 49-51). The state and parameter analysis and their error covariance matrices are187

then the analysis ensembles mean and covariances Pxa
k
� (Ne − 1)−1Wxa

k
WT

xa
k
and Pθa

k
�188

(Ne − 1)−1Wθa
k
WT

θa
k
, respectively. The schematic representation of an assimilation cycle of189

the (Joint)-EnKF is depicted in Figure 1.190

10



Figure 1: A schematic illustration of an assimilation cycle of the (Joint)-EnKF. State vector Z could
be X = (water depth, velocities) for EnKF or (X,θ) = Manning coefficient for Joint-EnKF.

Covariance inflation (Anderson and Anderson, 1999) and localization (Hamill et al.,191

2001) techniques are implemented to mitigate the limitations of the EnKF with small192

ensembles and neglected model errors (Song et al., 2010) after every forecast step. The193

sample forecast error covariance matrix is inflated by a prescribed factor λ2
≡ (1 + δ)2

194

for a positive scalar δ (Anderson and Anderson, 1999; Hoteit et al., 2003). Localization195

is used in order to alleviate the problems of rank deficiency and spuriously long range196

correlations between distant state variables (Hamill et al., 2001). We adopt the standard197

local analysis (LA) technique where the state space is divided into a set of disjoint local198

analysis domains, and the system state in a local domain is updated using only nearby199

observations within a preset distance.200

4. Experimental Setup201

4.1. Model domain and configuration202

We consider a real-scalewave propagation event, driven by torrential and fluvial flood-203

ing along an experimentally scaled river valley. An experimental model of a river located204

in the Occidental Alps (Italy) within a narrow flood plain was built at the National Insti-205

tution for Electrical Energy (ENEL) in Milano, Italy, under the European Union CADAM206

(Concerted Action onDamBreakModelling) project to investigate flowmethods and their207

use for simulation and prediction of dam failures effects (Soares-Frazão and Testa, 1999).208
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A 5 km length of the Toce river valley was scaled down 100 times to reduce the209

dimension to approximately 50×11 m. The model is made of concrete and covers nearly210

the whole breadth of the valley by including the small and nearly not visible thalweg211

(line connecting the lowest points of successive cross-sections along the course of the212

river valley). Based on the model’s basement, the Manning-Strickler coefficient has been213

set experimentally to 0.0162 s/ 3√m (Soares-Frazão and Testa, 1999), as recommended by214

specialists at ENEL. Furthermore, the Digital Terrain Model (DTM) of the valley is scaled215

down to a resolution of 0.0025 m2 covering the 2D domain (Fig. 3).216

The center of the valley is characterized by the presence of a large reservoir that217

expands across the entirety of the section and is bordered by levees, with an aperture at218

the river side that is always kept closed during the experiment. A pump regulates the219

level of the tank that is connected with the upstream boundary of the model. As soon as220

the water level exceeds the bottom of the initial section of the valley that is reproduced221

by the model, the water is released and a monitoring system estimates the discharge. The222

downstream end is modeled as a free fall into a tank. Critical flow occurs at the outlet, so223

that its influence on the upper part should be minimal (Prestininzi, 2008).224

The flood event, that has been replicated, simulates a dam break occurrence where225

inundation overtopped the reservoir levees. The domain is initially dry (water level =226

0), and the measured inflow hydrograph is reported in Fig. 2. A set of 21 water probes227

scattered over thedomain (as shown in Fig. 3)were employed to retrieve the time evolution228

of thewater depth. These are then assimilated in an attempt to accurately predict the flood229

arrival time and water level.230

The SWE flood model described in Section 2 has been executed on an unstructured231

mesh consisting of Nc � 10, 185 triangular cellswith a resolution of 0.3 m2, as shown in Fig.232

4. Differentmeshes’ resolution have been tested (although not reported in themanuscript)233

in order to assess the performances of the SWE model and filters. In our simulations, the234

choice of using a course resolution mesh consisting of Nc � 10, 185 triangular cells was a235

12



good compromise between accuracy and processing time. As also mentioned in Caleffi236

et al. (2003), the use of higher resolution meshes to improve the model’s forecasting skills237

did not lead to significant improvements in the results, but instead dramatically increased238

the computational cost of the simulation process.239

Figure 2: Hydrograph of the flash flood measured during the experiment.

Figure 3: Digital Terrain Model (DTM) of the river valley showing the decreasing elevation from
left to right side of the domain. 21 gauges are spread along the path of the river, providing water
lever measurements throughout the duration of the simulation.

The valley is very steep, with a mean slope of 2%, while some areas are characterized240

by abrupt drops. Due to the different slopes and shapes changes in the valley, the water241

flow continuously passes through critical condition. Fig. 5 depicts the propagation of the242
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inundation through the valley at instants 0, 20, 40 and 60 seconds, as simulated by the243

SWE model. Several images of the actual inundation can be also found in Soares-Frazão244

and Testa (1999) to visualize the intensity of the event. The time step is set to 10−4 s and the245

total duration of the experimental simulation is 180 s. The experiments were conducted246

on a 12 cores, 2.67 GHz and 48Gb RAM Dell workstation, setting the output interval to247

1 s; memory requirement does not exceed 40 MB. No boundary condition needed to be248

applied at the lateral boundary, as the flow never reaches it.249

Figure 4: Unstructured mesh made by 10185 triangular cells used for the numerical simulation.
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Figure 5: Initial water depth maps at initial time (dry bed, top), after 20 seconds (second from
top), after 40 seconds (third from top) and after 60 seconds of simulation (bottom) using the SWE
model.

4.2. Joint-EnKF implementation and assimilation experiments250

The state vector is composed of 4Nc elements and concatenates the water depth h, the251

water velocities qx and qy in x and y directions, and the Manning value ni at each cell of252

the domain. The observation vector yk is created with the measurements of water depth253

recorded at the 21 water probes, available every second. The measurement Gaussian254

errors are assumed unbiased, spatially uncorrelated, and of variance σ2 � 10−4 m2 (i.e.255
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R � σ2Id).256

The initial 2DManning’s field ensemble is generated using the public domain ANSI-C257

code ’GCOSIM3D’, developed by Gómez-Hernández and Journel (1993) and based on258

the sequential Gaussian simulation algorithm. To generate the initial realizations, the259

covariance has been set with zero mean and standard deviation equal to 20% of the260

prescribed Manning value. The variance is properly scaled for the realizations of 2D261

multi-Gaussian fields to fall within an appropriate range of Manning’s n values (0.01 -262

0.025). The maximum and minimum Manning’s values of these realizations are 0.0187263

and 0.0121, respectively. Examples of generated realizations of Manning’s n fields are264

shown in Fig. 6, from which the initial ensemble was selected.265

Figure 6: Three different realizations of the Manning parameter obtained using the Gaussian
simulation toolbox (Gómez-Hernández and Journel, 1993).
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To assess the relevance of the EnKF for enhancing the forecasting skill of the SWE266

model, we evaluate the filter performance and robustness under different experimental267

scenarios. We implement the EnKF assuming: (i) the Manning coefficient to be constant268

equal to 0.0162 s/ 3√m, which means that the EnKF state vector only includes water depth269

and velocity, and (ii) the Manning coefficient is also unknown and try to estimate its value270

at every point of the model mesh; we refer to this case as the Joint-EnKF. In both cases271

we consider a perfect model scenario (Qk � 0). We then conduct a number of sensitivity272

experiments changing the ensemble size and the assimilation period, and evaluate the273

performances of the filterswith different combinations of localization and inflation values.274

The localization length is scaled according to the real river valleydimensions (5 km length).275

We select these scenarios to assess the performances of the standard EnKF (case (i)) and276

Joint-EnKF (case (ii)) under more challenging and imperfect modeling and observational277

conditions to demonstrate their capabilities to enhance the SWE model forecasting skills.278

The performance of the filters is evaluated based on the root-mean-square-errors (RMSE)279

of the water level, resulting from the forecast and analysis state estimates, as280

RMSEk �

√√√
1

Ny

Ny∑
i�1

(y i
k − ŷ i

k)2, (21)

281

where y i
k is the ith element of the observation at time k, ŷ i

k its corresponding forecast (or282

analysis) and Ny is the total number of observations. RMSE’s improvements, in terms283

of percentage, are also analyzed for all the gauges to evaluate the filters’ results. We284

also examine the spatial patterns of the estimated Manning’s field coefficients, and the285

ensemble spread as a measure of the uncertainties about the filters’ estimates.286
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5. Assimilation results287

5.1. Sensitivity to filtering parameters288

We first study the sensitivity of the EnKF and Joint-EnKF to the ensemble size, Ne . In289

realistic and large-scale hydraulic applications, one would be restricted by computational290

resources to using small ensembles. We conduct the experiments testing five ensemble291

sizes, Ne � 10, 25, 50, 100 and 200. Figs. 7 and 8 plot the RMSE of the water depth, as292

given in (21), averaged over the assimilation period, for the forecast and analysis as result-293

ing from the EnKF and the Joint-EnKF, respectively. Assimilation results from different294

combinations of ensemble size, localization and inflation are analyzed. In particular, we295

consider the solution with covariance localization length scales (relative to the real field296

site) of 100, 150, 200, 300, 400 and 500 meters and inflation values of 1.05, 1.1, 1.15 and 1.2.297

The overall accuracy of thewater depth estimates resulting from the EnKF and Joint-EnKF298

increases with increased ensemble size. EnKF and Joint-EnKF forecasts (Fig. 7) exhibit299

different behaviors: while the EnKF does not show a significant improvement in terms300

of RMSE with larger Ne (basically similar minimum RMSE values for different Ne), the301

Joint-EnKF estimates keep improving with increasing ensemble size. In particular, the302

RMSE of the EnKF solution quickly ceases to improve beyond 25 members only. This303

is consistent with the results of Fig. 9, which shows the RMSE of the water depth for304

the EnKF and Joint-EnKF, as they result from the best combination of ensemble size -305

localization - inflation in term of average RMSE.306

Even though the EnKF solution appears to be less sensitive to the choice of the filter’s307

parameters (Fig. 7) than the Joint-EnKF, a careful analysis of the filter solutions demon-308

strates the ability of the Joint-EnKF to provide better estimates (analysis and forecast)309

as compared with the observations. Simultaneously estimating the state and the Man-310

ning’s parameters with the Joint-EnKF reduces the uncertainties in themodel forecast and311

significantly enhances the overall performance of the assimilation system.312
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Figure 7: RMSE of the water surface elevation predictions as they result from the forecast estimates
obtained by the EnKF (left column) and Joint-EnKF (right column) for different combinations
of ensemble size Ne � (10, 25, 50, 100, 200), localization and inflation. White stars denote the
minimum RMSE value for each Ne used.

19



Figure 8: RMSE of thewater surface elevation predictions as they result from the analysis estimates
obtained by the EnKF (left column) and Joint-EnKF (right column) for different combinations
of ensemble size Ne � (10, 25, 50, 100, 200), localization and inflation. White stars denote the
minimum RMSE value for each Ne used.
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Figure 9: Comparison between EnKF (blue) and Joint-EnKF (red) RMSE trend of the water depth
forecast estimate, for different values of ensemble size, considering the best estimate reached by the
two filters: Joint-EnKF (localization = 500m, inflation = 1.15), EnKF (localization = 200m, inflation
= 1.15)

To further analyze the solutions of the EnKF and Joint-EnKF in comparison with that313

of the SWE model free-run (without assimilation) and the EnKF, we compare their water314

surface elevation estimates against the observations for each of the 21 gauges (Figs. 10315

and 11) considering the best combination, in terms of minimum RMSE, of ensemble size -316

localization - inflation (Ne � 100, radius = 200m, inflation = 1.15, for EnKF, and Ne � 200,317

radius = 500m, inflation = 1.15 for Joint-EnKF). The simulated event clearly exhibits the318

features of a dam break phenomena: the inflow hydrograph is based on a vertical raising319

stage followed by a slow falling limb. As a result, the dynamics exhibit a sharp front320

that occurs through the valley with high-velocity propagation and one-dimensional wave321

behavior inmany areas of the domain. Figs 10 and 11 show the efficiency of both EnKF and322

Joint-EnKF to improve the behaviour of the SWEmodel. Although a few of the 21 gauges323

are not particularly well estimated by any of the simulation scenarios (SWE model, EnKF324

and Joint-EnKF), comparison with experimental data suggests that the overall behavior of325

the flooding is well reproduced.326
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Closer examination of the results from theupstream section towarddownstreamshows327

that the level measurements at gauges P5, P9, P12, P13, P21, P23, P24, P25 and P26 are328

very well predicted by both EnKF and Joint-EnKF. The Joint-EnKF provided lower RMSE329

values at all of the aforementioned gauges compared to the EnKF, with improvements330

reaching up to 90%with respect to the SWEmodel. The SWEmodel predictions at gauges331

P9 and P12 are tightly connected, as P9 is located in front of the portion of the levee of the332

reservoir where overtopping occurred in both the physical and numerical models. The333

model, even though it reasonably underestimates thewater level at P9, does not accurately334

predict the levee overtopping. Indeed, the overtopping occurs 1.5 m closer to the reservoir335

intake, where the crest of the levee is lower. This is due to a run-up caused by a conversion336

of kinetic energy into potential energy, since the water level at P9 is lower than the top of337

the levee. However, this transfer cannot be reproduced by the SWE model (Prestininzi,338

2008), and thus the volumes of water entering the reservoir are likely inaccurately filling339

the reservoir and overestimating P12 levels. The delay of the hydrograph is due to the340

different modalities and locations of the overtopping.341

The water level at gauge P1 is well predicted by the Joint-EnKF, while the EnKF is342

less performant, providing only half of the improvement of the Joint-EnKF. EnKF and343

Joint-EnKF also improve the prediction of the water level at the P3, P8, P10, P18, S6S,344

S6D stations, by about 27 % to 57 %, on average. A bias is still clearly visible between345

the filters’ estimates and the measurements. This suggests that the flow at these locations346

is also affected by the incomplete physics of the SWE model, or to uncertainties in some347

other parameters inputs that are not being estimated as part of the filtering process (the348

topography, for instance). Again, the Joint-EnKF provides better estimates than the EnKF349

at almost all locations. In particular, station S6S requires a more extensive analysis as350

it is not clear why the SWE model completely fails to simulate the water depth, both351

qualitatively and quantitatively, with the EnKF and Joint-EnKF only slightly improving352

the solution. An explanation, in this particular case, can be suggested if we consider the353
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physical location of the station. S6S is deployed in the shadowed area: the relief located354

just upstream of the gauge deflects the flow towards the center of the valley, screening355

the gauge from the main flood wave. Since the front of inundation here travels parallel to356

the cross section of the valley, the marked difference in the measured levels at the same357

instant reveals the deflection effect. Moreover, the surface level at S6S does not exhibit a358

falling limb. Instead, its tail shows a slightly raising trend and suggests the occurrence of359

a relatively calm and steady recirculation.360

At P2, while the Joint-EnkF is able to improve the water level prediction by almost361

24%, the EnKF fails and provides a solution that is even worse than the SWE model. The362

large, low frequency observation of water surface at gauge S4 (during the first half of363

the simulation period) is well predicted by both EnKF and Joint-EnKF. However, while364

the peak level is almost exactly predicted, the falling limb is fairly well simulated by the365

EnKF, but not by the Joint-EnKF, whose performance, in terms of RMSE water level time-366

evolution, is similar to the model. The behavior of the water depth estimates at gauge367

P19 is fairly well predicted only during the first part of the simulation period, while in368

the second half, the filters fail to accurately predict the water level. Peak level at gauges369

P4 is well predicted by both EnKF and the Joint-EnKF, although the latter subsequently370

overestimates all the rest of the hydrograph, even providing a slightly worse solution (in371

terms of RMSE error) than that of the SWE model. The same conclusion can be made for372

gauge S8D, where the main peak is fairly well simulated, but the rest of the water depth is373

underestimated by both EnKF and Joint-EnKF. Limited performances of the filters at P4374

and S8D can be probably explained by the topography-related complexity of the flow at375

these specific locations, which was not fully accounted for in the prescribed model error376

statistics (presently through simple inflation). The EnKF and Joint -EnKF runs took about377

10 and 22 hours, respectively, using a 12 cores, 2.67 GHz and 48Gb RAMworkstation. The378

more time required by the Joint scheme is due to the larger number of variables of the joint379

state vector, which includes water height, velocities, and also the Manning coefficients.380
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Figure 10: Comparison between experimental data (black spots), results obtained with the SWE
model (green), EnKF forecast (blue) and EnKF analysis estimates (red). The shaded area represents
the 25 − 95th percentile of the forecast ensemble as it results from the EnKF.
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Figure 11: Comparison between experimental data (black spots), results obtained with the SWE
model (green), Joint-EnKF forecast (blue) and Joint -EnKF analysis estimates (red). The shaded
area represents the 25 − 95th percentile of the forecast ensemble as it results from the Joint-EnKF.
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Overall, the behaviours of the SWEmodel and EnKFs can be summarized as follows: 1)381

the peak level magnitude is well estimated almost everywhere by both model and filters,382

though occasionally delayed and underestimated by the SWEmodel; 2) the solution of the383

SWE model is smooth compared to the EnKF and Joint-EnKF solutions, which delineate384

the water flow dynamic much more accurately; and 3) both the EnKF and the Joint-EnKF385

are able to enhance the water depth estimation at almost all the locations, improving the386

SWE solution by up to 90% after assimilating the data, and 60% during forecasting, on387

average.388

For completeness, a quantitative analysis is also presented in Table 1, summarizing the389

RMSE values (in meters) comparing measured and predicted water depths of the SWE390

model (second column), Joint-EnKF (third column) and EnKF forecast estimates (fourth391

column). The results of the EnKFs are presented in terms of percentage improvement of392

the filters with respect to the SWE model prediction. The significantly better estimates393

of the filters compared to the free-run outlines the relevance of assimilating the gauges394

data into the flood model. On average, the Joint -EnKF is able to achieve better results for395

most of the gauges (16 out of 21) compared to the EnKF, demonstrating the relevance of396

estimating the parameters alongside the state. The close performances of the EnKF and397

Joint-EnKF are due to the robust initial Manning values, which were provided by ENEL398

specialists. Still, the Joint-EnKF was able to enhance the filter forecast results through399

improved Manning coefficients. Fig. 12 also compares the results of the SWE model,400

EnKF, and Joint-EnKF in terms of RMSE for every single station as they result from the401

best combination ensemble size - localization - inflation in term of average RMSE. Water402

level prediction at P12, P13, P23, P24 and P25 clearly demonstrate the ability of the two403

filters to provide better water depth estimates than the SWE model, reaching more than404

60% improvement compared to the model free-run. The large gap between the filters and405

the model curves confirms the previous assertion. Conversely, the water level at stations406

P4 and S8D are not well predicted by either the EnKF or the Joint-EnKF, somehow leading407

26



to a higher RMSE values than the SWE model.408

Gauges SWE Model Joint -EnKF(Impr.%) EnKF(Impr.%)
P1 0.0072 0.0048(33.61) 0.0059(18.08)
P2 0.0298 0.0227(23.756) 0.0302(-1.38)
P3 0.0142 0.0103(27.61) 0.0094(34.02)
P4 0.0085 0.0106(-24.06) 0.0087(-2.19)
P5 0.0175 0.0105(40.07) 0.0105(39.91)
P8 0.0340 0.0192(43.12) 0.0210(38.41)
P9 0.0148 0.0054(63.98) 0.0080(45.93)
P10 0.0168 0.0098(41.09) 0.0095(43.77)
P12 0.0535 0.0054(89.45) 0.0070(86.91)
P13 0.0368 0.0104(71.89) 0.0133(63.82)
P18 0.0392 0.0165(57.83) 0.0169(56.73)
P19 0.0156 0.0136(12.62) 0.0155(0.60)
P21 0.0246 0.0082(66.11) 0.0109(55.96)
P23 0.0263 0.0085(67.17) 0.0094(64.30)
P24 0.0408 0.0115(71.99) 0.0129(68.31)
P25 0.0214 0.0085(60.23) 0.0085(60.42)
P26 0.0341 0.0138(59.46) 0.0163(52.28)
S4 0.0145 0.0144(1.58) 0.0106(26.86)
S6S 0.0156 0.0111(28.52) 0.0129(17.61)
S6D 0.0170 0.0121(28.69) 0.0138(19.12)
S8D 0.0096 0.0119(-24.71) 0.0136(-42.17)

Table 1: RMSE of the forecast water depth estimate using Joint-EnKF and EnKF and improvement
with respect to the SWE model. Green and red values represent respectively the best (> 60%)
improvements and the negative performances of the filters for all the gauges.
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Figure 12: RMSE of the filters’ forecast water depth at the 21 gauges using the SWEmodel (green),
Joint-EnKF (red) and EnKF (blue). Data are assimilated every 1 s.

We further analyzed the spatial patterns of theManning coefficients as estimated by the409

Joint-EnKFusingdifferent ensemble sizes: 10, 25, 50, 100, 200, 500, 1000 and2000members.410

As shown in Fig. 13, which plots the estimated Manning values, a larger ensemble not411

only improves the RMSE of the water depth estimation but also better delineates the412

Manning areas and most importantly, provides a spatially smoother solution. The noisy413

pattern resulting from an ensemble smaller than 200 members is clearly improved after414

using larger ensembles Ne � 500, 1000 and 2000. This is consistent with the results415

of Li et al. (2012) and Gharamti et al. (2015) who suggested that larger ensembles are416

needed to efficiently handle the indirect nonlinear relation between the parameters and417

the assimilated observations in an EnKF.418
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Figure 13: Spatial pattern of the Manning forecast estimates values by the Joint-EnKF for different
ensemble values Ne � 10, 25, 50, 100, 200, 500, 1000 and 2000. Data are assimilated every 1 s.

A further experiment has been carried out by integrating the deterministic SWEmodel419

forwardwith the estimated parameter field by the Joint-EnKF at the end of the assimilation420

experiment. We used the spatially-varying Manning resulting from the best combination421

of ensemble sizeNe � 200, localization radius=500m, and inflation=1.15. The comparison422

with the original SWE model free run (without assimilation) revealed an improvement of423

about 10%.424

Considering this same combination of filter parameters, we further estimated only the425

Manning coefficient with the EnKF (i.e. we included only the Manning coefficient in the426

filter state vector). In terms of RMSE of the water level averaged over the assimilation427

period, the data assimilation system that estimated only the Manning coefficient reduced428

the error by about 10% compared to the SWEmodel free run, in agreement with the other429

results.430
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5.2. Sensitivity to the frequency of observations431

The sensitivity of the EnKF and Joint-EnKF to the size of assimilation interval of432

water depth observations was examined. Six scenarios were considered in which water433

depthmeasurementswere assimilated every 1, 2, 5, 10, 15, and 20 seconds. The filterswere434

implementedusing the best combination of ensemble size - radius - inflation obtained from435

the first set of the experiments and the standard deviation was set to the measurement436

error of 10−2m. Fig. 14 plots the RMSE of the water depth forecasts for the different437

assimilation intervals of the observations.438
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Figure 14: RMSE of the water depth using EnKF and Joint-EnKF filters for different data assimila-
tion intervals (1, 2, 5, 10, 15 and 20 s).

Both Joint-EnKF and EnKF are able to improve the solution as long as the assimilation439

periods with which the data are assimilated remains small, i.e. every 1 s, with an RMSE440

of 0.01216 and 0.01389, respectively. The estimated errors increase as the observation441

interval increases, reaching an RMSE of 0.0148, 0.01925, 0.0223, 0.024 and 0.0249 m, for442

the Joint-EnKF, and 0.01588, 0.01903, 0.02147, 0.02305 and 0.02446 m, for the EnKF. One443

may notice that when the data are frequently assimilated (every 5 s and less), the Joint444

-EnKF only slightly outperforms the EnKF. This is because, in this case, one can rely445
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on enough observations to adjust the model forecast and avoid its deviation from the446

true trajectory even with inaccurate Manning coefficients. Overall, both filters perform447

better when the data are assimilated more frequently. The Joint-EnKF seems to be more448

sensitive to the temporal size of assimilation interval, which increases the non linearity of449

the estimation problem, as has been also reported in Gharamti et al. (2015).450

6. Summary and conclusions451

A reconstruction and prediction experiment, based upon an experimentally repro-452

duced dam break event, was performed using a data assimilation framework based on a453

shallow water equation (SWE) model and an ensemble Kalman filter (EnKF). Numerical454

experiments assimilated real experimental data from the Toce physical model test used455

in the Concerted Action on Dambreak Modeling (CADAM) project. In this context, the456

physical model was a 1:100 scale model of a reach of the Toce River valley developed at457

the ENEL-HYDRO (National Institution for Electrical Energy). The concurrent estimation458

of the state of the system (composed of water height and velocity) together with the Man-459

ning coefficients across the domain was explored using a Joint-EnKF approach. Results460

suggest that the EnKF and Joint-EnKFwere both able to improve the SWEmodel behavior461

and forecasting skills, while more accurately reconstructing the propagation of such an462

impulsive wave over complex topography.463

Overall, the EnKF assimilation system was able to replicate the general development464

of the dynamic process and to reconstruct the inundation arrival time, the water surface465

elevation and the local peak values with significantly better accuracy than the SWEmodel466

free-run. Comparing the EnKF and the Joint-EnKF performances, we found that estimat-467

ing the parameters alongside the state significantly improves the filter’s results. However,468

large ensembles were needed in the Joint-EnKF to obtain robust estimates of the Manning469

field. The filter failed to improve the model behavior at two (out of 21) gauges, likely470

because of the unreliable ensemble statistics sampled from the model outputs at these471
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complex locations that are not well described by the physics of the numerical forecast472

model. This suggests the importance of treating the true source of errors in the model to473

obtain the best filters’ performances. The Joint-EnKF also behaved better when the data474

were assimilated more frequently.475

In this work, only the Manning field was estimated by the Joint-EnKF as it was the476

main unknown. However, this framework could be expanded to include other important477

parameters in the estimation process, such as the bathymetry elevation and the inflow478

hydrograph. The latter in particular, being a time-varying parameter, is generally poorly479

known and as such might need to be included in the estimation process as well. In480

future work, we will also explore ways to reduce the sensitivity of the Joint-EnKF to the481

size of the ensemble and borrow ideas from the dual state-parameters EnKF estimation482

framework (Ait-El-Fquih et al., 2016) to use different ensemble sizes, and even different483

update schemes (Ait-El-Fquih and Hoteit, 2018), for the state and parameters.484
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