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ABSTRACT

On the Lp-Integrability of Green’s function of Elliptic Operators

AbdulRahman Alharbi

In this thesis, we discuss some of the results that were proven by Fabes and Stroock

in 1984. Our main purpose is to give a self-contained presentation of the proof of this

results. The first result is on the existence of a “reverse Hölder inequality” for the

Green’s function. We utilize the work of Muckenhoupt on the reverse Hölder inequal-

ity and its connection to the A∞ class to establish a comparability property for the

Green’s functions. Additionally, we discuss some of the underlying preliminaries. In

that, we prove the Alexandrov-Bakelman-Pucci estimate, give a treatment to the Ap

and A∞ classes of Muckenhoupt, and establish two intrinsic lemmas on the behavior

of Green’s function.
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NOTATION AND ABBREVIATIONS

Ap and A∞ are the Muckenhoupt weights defined in page 32.

αd is the volume of the unit ball in Rd.

Ck(Ω) is the set of k-times continuously differentiable functions, u : Ω −→ R.

Ck
c (Ω) is the subset of Ck(Ω), consisting of compactly supported functions.

D(Ω) = C∞c (Ω) is the set of infinitely-differentiable, compactly-supported func-
tions.

D ′(Ω) is the dual of D(Ω); that is, the set of all continuous linear functionals from
D(Ω) to R.

|E| is the Lebesgue measure (volume) of the set E.

∇u is the gradient of a function u (which we consider as a column vector).

int(S) and S◦ is the interior of a given set, S.

L is an elliptic operator defined on page 9

Lz is the operator L, applied with respect to z

Ω is an open subset of Rd. Ω is a domain if it is also connected.

Tr (A) is the trace of matrix A; that is, the sum of its diagonal entries.

W k,p(Ω) is the Sobolev space of functions, u : Ω −→ R, which are (at least) k-times
weakly differentiable and have Dαu ∈ Lp for every multi-index |α| ≤ k.

a.e. is an abbreviation for almost everywhere.

l.s.c. is an abbreviation for lower-semi continuous.

ABP is an abbreviation for Alexandroff-Bakelman-Pucci estimate.
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Chapter 1

Introduction

In December 1984, Eugene Fabes and Daniel Stroock published a paper titled The

Lp-Integrability of Green’s Functions and Fundamental Solutions for Elliptic and

Parabolic Equations. Their main objective was to provide new treatments to (second-

order) differential elliptic operators of the form

Lu =
d∑

i,j=1

aij(x)∂xixju(x), (1.1)

and the associated Green’s functions and fundamental solutions. Such elliptic dif-

ferential operators often appear in the study of stochastic models and the optimal

control of diffusion processes (see Lions [9]), making them an essential component of

contemporary mathematics.

When talking about elliptic operators, there are two main forms they usually

appear in: (i) the divergence form, an example of which, is

L̃u =
d∑

i,j=1

∂xi
(
aij(x)∂xju(x)

)
,

and (ii) the non-divergence form, an example of which is the operator in (1.1). The

standard assumption on L and L̃ is that the coefficient matrix, a := (aij(x)), is

measurable on Ω ⊂ Rd, and that, for some fixed λ ∈ (0, 1),

λI ≤ a(x),
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in the sense of nonnegative definiteness. The formal adjoint of L, in (1.1), is

L∗v =
d∑

i,j=1

∂2
yiyj

(
aij(y)v(y)

)
. (1.2)

This operator is also called a uniformly elliptic operator, in double-divergence form.

However, it is rarely studied alone, and, in the literature, is often discussed simulta-

neously with its non-divergence counterpart.

Under the additional assumption that ≤ a(x) ≤ λ−1I, we are going to discuss two

main results from [5]. First, we establish an estimate on the measure induced by the

Green’s function, G(x, y), and prove the existence of a “reverse Hölder inequality”

for G; that is,

[
1

|Br|

∫
Br

G(x, y)d/(d−1) dy

](d−1)/d

≤ c

|Br|

∫
Br

G(x, y) dy. (1.3)

We prove that the measure (induced by G) is comparable to Lebesgue measure, in a

sense that, for a ball B ⊂ Ω, satisfying certain conditions, and measurable E ⊂ B,

we have

∫
E
G(x, y) dy∫

B
G(x, y) dy

≥ c

(
|E|
|B|

)τ
, (1.4)

where τ and c depend solely on d and λ.

Unfortunately, the proofs of the widely-cited results in [5] are not accessible for

students and those whom are new to the subject. Our purpose in this thesis is

to review these results, and to present their full proofs in a self-contained manner.

Accordingly, the thesis starts with a chapter on preliminary theorems and concepts,

which are needed in proving the results. In that chapter (Chapter 2), we prove

the Alexndroff-Bakelman-Pucci (ABP) estimate, which is an apriori estimate for the

strong solutions of Lu ≥ f in a bounded, open, domain, Ω ∈ Rd.
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Next, we investigate the Ap−classes and their properties. Those classes of func-

tions were first introduced by Muckenhoupt in [11], while studying the maximal func-

tion. The techniques Muckenhoupt used are useful to establishing some of our results.

A locally integrable function ω is said to be in the Ap−class if, for some constant

A > 0,

(
1

|B|

∫
B

ω(x) dx

) 1

|B|

∫
B

ω(x)−p
′/pdx

p/p′

≤ A.

It is easy to notice that the inequality is related to Hölder’s inequality, in someway

or another. What is not obvious, however, is the fact that this is a sort of “reversed”

Hölder inequality. We will prove this among other results. The proofs in that section

(Section 2.2) are based on the book of Stein [13]. The main difficulty we faced, in

this part of the thesis, was to adapt the proofs from the case of Rd to the case of

a bounded subset Ω ⊂ Rd, which required some attention to the behavior near the

boundary and to the change in conditions for each of our results.

The last section of Chapter 2 is concerned with Green’s function. In that section,

we introduce Green’s function and prove two of the properties that are necessary for

the completeness of the main chapter. Particularly, we prove that, for two sets A ⊂ B,

the corresponding Green’s functions GA and GB satisfy that GA(x, y) ≤ GB(x, y) for

all x, y ∈ A. We also establish a lower bound for the integral
∫
A
GB(x, y) dy .

In the main chapter, Chapter 3, we proceed with writing the proofs of the results

of Fabes and Stroock. We start by establishing the doubling property for (weak)

adjoint solutions (i.e. solutions of L∗v = 0); that is, there is some constant c that

depends only on λ and d such that

∫
B2r(z)

v(x) dx ≤ c

∫
Br(z)

v(x) dx
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for all r > 0, as long as B4r ⊂ Ω, the domain of the problem. Afterwards, we show

that such functions also satisfy a reverse Hölder inequality, similar to (1.3). In the

following section, we extend the existence of a reverse Hölder inequality to the Green’s

function, G, and establish (1.3). We conclude the chapter by proving inequality (1.4).

The focus in the writing this chapter is on writing the proofs fully and explicitly.

There are some gaps and assertions that were left unproven by Fabes and Stroock, in

that paper. We also adjust the constants, in the conditions of theorems to make the

theorems consistent. asserts (1.4). Most of the input we have on this chapter appear

in the form of the preliminaries of Chapter 2. We reserve appendix for minor results

that are necessary but might affect the flow of the presentation.
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Chapter 2

Preliminary Concepts and Results

In this chapter, we present and prove a number of preliminary concepts and technical

tools that are needed for establishing the results of Fabes and Stroock [5]. The first

of these tools is the Alexandroff-Bakelman-Pucci (ABP) estimate, which we prove

in Section 2.1. In Section 2.2, we discuss a class of functions, characterized by the

A∞ (doubling) property, which is crucial to the main chapter, Chapter 3. In Section

2.3, we define Green’s function and discuss some of its elementary properties, in

preparation of the main chapter. This self-contained presentation intended to make

the material accessible to readers whom are unfamiliar with the topic.

2.1 Alexandroff-Bakelman-Pucci (ABP) Estimate

Before we introduce the estimate, let’s discuss the following example, which illustrates

the motivation behind the estimate.

Example 2.1.1. Let a, r be nonzero real numbers, with r > 0, and consider the

differential equation

{
uxx(x) = a for all x ∈ (0, r),

u(0) = 0 and u(r) = 1.

Direct computations give u(x) = 1
2
ax2 + (r−1− 1

2
ar)x. We know that u is a parabola;

hence, when uxx = a > 0, u is convex. Then, the maximum of u must lie on the

boundary of the domain, {0, r}. Alternatively, when uxx = a < 0, u is concave and
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the maximum may lie in the interior or on the boundary of the domain.

This idea of convexity and concavity is the main mechanism that ABP estimate

aims to capture. It does this with a general (second-order) elliptic operator. To give

an apriori bound, the key idea is to search for areas of concavity (and convexity),

and extracts the possible contributions they may add to the maximum (or minimum)

value of u in Ω. For this example, we can use a special case of the ABP estimate

(Theorem 2.1.15) to establish the following apriori estimate.

sup
x∈(0,r)

u(x) ≤ sup{u(0), u(r)}+
r

2
×
(∫ r

0

∣∣∣a
1

∣∣∣1)1

= 1 +
r2|a|

2
.

We can easily verify that, for x ∈ [0, r],

u(x) = x
(1

2
a(x− r) + r−1

)
≤ r
(1

2
|a| |x− r|+ r−1

)
≤ r2|a|

2
+ 1,

which illustrate the validity of the ABP estimate. N

With this example in mind, we aim to establish an estimate of the same nature,

but in a more general setting. So, let Ω ⊂ Rd be bounded, open and connected. Let

a(x) = (aij(x)) be a matrix-valued function with values in Rd×d, let b(x) = (bi(x)) be

vector-valued function with values in Rd, and let c(x) be real-valued scalar function,

all defined on Ω. We set D(x) := (det a(x))1/d, and impose, further, the following

assumptions:

Assumption 2.1.2.

� The functions a, b, and c are measurable.

� The matrix function a(·) is uniformly bounded and positive definite. More

precisely, there are positive constants, λ and Λ, with λ ≤ Λ, such that

λ |η|2 ≤ ηTa(x) η ≤ Λ |η|2 for every x ∈ Ω and every η ∈ Rd.
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� |b|/D ∈ Ld(Ω).

� f/D ∈ Ld(Ω).

� c ≤ 0 in Ω.

Under Assumption 2.1.2, we can define a (uniformly) elliptic operator, which is

an operator that has the form

Lu :=
∑
i,j

aij(x)Diju+
∑
i

bi(x)Diu+ c(x)u. (2.1)

Remark 2.1.3. Because the eigenvalues of a(x) are bounded by λ and Λ, we also

have that 0 < λ ≤ (det a(x))1/d = D(x) ≤ Λ for all x ∈ Ω.

Given this frame of work, our goal for the rest of the section is to establish the

ABP estimate, stated below, for twice-weakly-differentiable functions, u, that satisfy

Lu ≥ f , almost everywhere (a.e.) in Ω. Such solutions are called strong solutions.

Note that we base our proofs, in this section, on Gilbarg and Trudinger [6], and

adapt few definitions and remarks from Braga, Figalli, and Moreira [2].

2.1.1 Contact Sets and Normal Mappings

Upper contact sets and normal mappings are the main technical tools we need for the

proof of the ABP estimate below. To clarify the definitions, we start by discussing

affine functions and concave envelopes.

Definition 2.1.4. Let V be a real vector space. A real-valued function on V , f , is

affine if f(θx+ (1− θ)y) = θf(x) + (1− θ)f(y) for every x, y ∈ V and all θ ∈ (0, 1).

Let g : Ω −→ R be a concave function. We know that, at every point x ∈ Ω, there

exists an affine function, fx : Rd −→ R, such that fx(x) = g(x) and fx(y) ≥ g(y) for

every y ∈ Ω; i.e. f supports g from above. The drawback is that this is specific for
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concave functions, and it is not true in general. To address this issue, we introduce

the concept of concave envelopes.

Definition 2.1.5. Let u : Ω −→ R be a continuous function. The concave envelope

of u, Cu, is the function

Cu(y) := inf
{
v(y) : v is affine in Rd and u(x) ≤ v(x)∀x ∈ Ω

}
(2.2)

for every y ∈ Ω.

Remark 2.1.6.

i. The concave envelope is concave because it is an infimum of concave functions.

ii. A function, u, is concave if and only if Cu(x) = u(x) for every x ∈ Ω.

Clearly, Cu(x) ≥ u(x). However, the set of points where equality holds is of

primary interest to us.

Definition 2.1.7. Let u : Ω −→ R be a continuous function. The upper contact set

of u, Γ+
u or simply Γ+, is

Γ+ =
{
y ∈ Ω : u(y) = Cu(y)

}
. (2.3)

Remark 2.1.8.

i. Because of Remark 2.1.6, a function u is concave if and only if Γ+
u = Ω.

ii. We can view Γ+ as the set of points of Ω where the graph of u can be placed

below some support hyperplane in Rd+1; that is,

Γ+ =
{
y ∈ Ω : ∃ p ∈ Rd, u(x) ≤ u(y) + p · (x− y) ∀x ∈ Ω

}
. (2.4)
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iii. Suppose u ∈ C1(Ω), and let y ∈ Γ+. Then, u(x) ≤ u(y)+Du(y) ·(x−y) for every

x ∈ Ω since any support hyperplane is tangent to the graph of u. Moreover, by

a continuity argument, we can readily see that Γ+ is closed.

iv. As asserted by Lemma A.2, in the appendix, when u ∈ C2(Ω), the Hessian matrix

D2u(y) = [Diju(y)] is negative semi-definite for every y ∈ Γ+.

Definition 2.1.9. Let u : Ω −→ R be a continuous function. The normal mapping of

a point y ∈ Ω with respect u, denoted χu(y) or simply χ(y), is the set of all “slopes”

of support hyper-planes at y that lie above the graph of u; that is,

χ(y) =
{
p ∈ Rd : u(x) ≤ u(y) + p · (x− y)∀x ∈ Ω

}
. (2.5)

Remark 2.1.10. i. It is clear that χ(y) 6= φ if and only if y ∈ Γ+.

ii. As asserted by Lemma A.1, in the appendix, if u ∈ C1(Ω) and y ∈ Γ+, then

χ(y) = {Du(y)}. In this case, we identify χ(y) with the vector Du(y).

iii. We use χu(Ω) to denote the union of the normal mappings of all points in Ω.

iv. For a general set S ⊂ Rd+1, which is not necessarily a graph, the normal mapping

is the set of all support hyper-planes lying above S; that is,

χS(Ω) := {p ∈ Rd : ∃a ∈ R s.t. the graph of a+ p · x in Ω

touches S and lies above it}.

The concept of a cone with an arbitrary connected, bounded base, in Rd, is es-

sential for the proof. For a connected and bounded subset, E ⊂ Rd, a cone, K, of

vertex (v, s) ∈ E × R and base ∂E is the collection of all segments connecting the
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point (v, s) and the set ∂E × {0} in Rd+1; that is,

K =
⋃{

t(v, s) + (1− t)(z, 0) : t ∈ [0, 1] and z ∈ ∂E
}
. (2.6)

Below, we highlight am important example, where we derive an explicit formula for

the normal mapping of a cone with a spherical base.

Example 2.1.11. Let B = Br(z) be a ball, in Rd, with radius r > 0 and center z,

and let β > 0 be constant. Let u be a function whose graph is a cone of vertex (z, a)

and base ∂B; more explicitly,

u(x) := a

(
1− |x− z|

r

)
.

In this case, the normal mapping can be expressed explicitly by

χ(y) =

{ −a(y−z)
r(|y−z|) for y 6= z,

Ba/r(0) for y = z.
(2.7)

It is worth noting, as well, that χ(B) = χ(z), which comes to aid in a later discussion.

N

The next lemma exhibits another attribute of cones, which is needed for estab-

lishing Lemma 2.1.14. We defer the proof to the appendix (see page 64).

Lemma 2.1.12. Let u ∈ C2(Ω)∩C0(Ω) be a function with a positive maximum at an

interior point, y ∈ Ω. Assume further that u is nonpositive on ∂Ω. Let K be a cone

of vertex (y, u(y)) and base ∂Ω. Then, χK(Ω) ⊂ χu(Ω), where χf (Ω) =
⋃
x∈Ω

χf (x).

2.1.2 The ABP Estimate

In this subsection, we present a detailed proof of the ABP estimate, which is stated

in the following theorem.



19

Theorem 2.1.13. (the ABP estimate) Let Ω ⊂ Rd be bounded, open, and con-

nected. Suppose that u ∈ W 2,d
loc (Ω) ∩ C0(Ω) solves Lu ≥ f in Ω. Then,

sup
x∈Ω

u(x) ≤ sup
x∈∂Ω

u+(x) + c ‖f/D‖Ld(Ω) (2.8)

for a constant c that depends only on d, diam(Ω), and ‖b/D‖Ld(Ω).

Before presenting the proof of the theorem, we need to establish several auxiliary

results. Our first result, the lemma below, provides an upper-bound for functions,

u ∈ C2(Ω), based solely on information about u on ∂Ω and about D2u in Γ+.

Lemma 2.1.14. Let u be an arbitrary function in C2(Ω) ∩ C0(Ω) . Then,

sup
x∈Ω

u(x) ≤ sup
x∈∂Ω

u(x) +
diam(Ω)

α
1/d
d

(∫
Γ+

| detD2u|
)1/d

, (2.9)

where αd is the volume of the unit-ball in Rd, and diam(Ω) is the diameter of Ω.

Proof. 1. Without loss of generality, we can replace u with ũ := u− sup∂Ω u. Thus,

it is enough to prove the lemma under the assumption u ≤ 0 on ∂Ω. Now, due to

Remarks 2.1.6 and 2.1.8, the Lebesgue measure of the normal mapping of Ω satisfies

|χ(Ω)| =
∣∣χ(Γ+)

∣∣ =
∣∣Du(Γ+)

∣∣ =

∫
Du(Γ+)

dp. (2.10)

Now, we want to apply the classical change of variables formula. However, we are

not assured that Du(·) is one-to-one on Γ+. So, we can only assert the inequality

∫
Du(Γ+)

dp ≤
∫

Γ+

| det(D2u)|dy. (2.11)

For a precise proof, refer to Lemma A.3, in the appendix.

2. For the next step, we give an estimate on u in terms of |χ(Ω)|. Notice that,
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if u has no positive maximum, then the conclusion of the lemma is obvious (bearing

in mind the previous assumption, sup∂Ω u = 0). So, we may assume that u attains a

positive maximum at an interior point y ∈ Ω.

Now, let K be a cone of vertex (y, u(y)) and base ∂Ω, and let J be another cone of

vertex (y, u(y)) and base ∂Bdiam(Ω)(y). According to Lemma 2.1.12, χK(Ω) ⊂ χu(Ω).

Moreover, we can easily see that J lies above K, and that χJ(y) ⊂ χK(y). Also, as

pointed in Example 2.1.11, χJ(Ω) = χJ(y); hence, χJ(Ω) ⊂ χK(Ω). Consequently,

|χJ(Ω)| ≤ |χK(Ω)| ≤ |χu(Ω)|.

Combining this inequality with (2.7), 2.10, and (2.11), we obtain

αd

(
u(y)

diam(Ω)

)d
≤
∫

Γ+

∣∣detD2u
∣∣ .

By rearranging the terms, we obtain

sup
Ω

= u(y) ≤ diam(Ω)

α
1/d
d

∫
Γ+

∣∣detD2u
∣∣1/d

,

which concludes the proof of the lemma.

A special case of Theorem 2.1.13 occurs when bi = c = 0 (i.e. Lu =
∑

i,j a
ijDiju).

In this case, the estimate (2.8), for C2 function, follows directly from Lemma 2.1.14.

Theorem 2.1.15. (A special case of the ABP Estimate). Let u be an arbitrary

function in C2(Ω) ∩ C0(Ω), then

sup
Ω
u ≤ sup

∂Ω
u+

diam(Ω)

α
1/d
d d

∣∣∣∣∣
∣∣∣∣∣
∑

i,j a
ijDiju

D

∣∣∣∣∣
∣∣∣∣∣
Ld(Γ+)

. (2.12)

Proof. Let A and B be positive semi-definite symmetric matrices. We recall that
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det(AB) is the product of the eigenvalues of AB, and Tr(AB) is their sum. Accord-

ingly, the Arithmetic Mean-Geometric Mean inequality (AM-GM) gives

(det(A) det(B))1/d = det(AB)1/d ≤ Tr(AB)

d
. (2.13)

Recall that D2u is negative semi-definite in Γ+. Thus, with A = −D2u and B = a,

∣∣detD2u(y)
∣∣ = det(−D2u(y)) ≤ 1

Dd

(
−
∑

i,j a
ijDiju(y)

d

)d

, (2.14)

for every y ∈ Γ+. By applying Lemma 2.1.14, we obtain

sup
Ω
u ≤ sup

∂Ω
u+

diam(Ω)

α
1/d
d

 ∫
Γ+

∣∣detD2u
∣∣1/d

≤ sup
∂Ω

u+
diam(Ω)

α
1/d
d

 ∫
Γ+

(
−
∑

i,j a
ijDiju

Dd

)d
1/d

= sup
∂Ω

u+
diam(Ω)

α
1/d
d d

∣∣∣∣∣
∣∣∣∣∣
∑

i,j a
ijDiju

D

∣∣∣∣∣
∣∣∣∣∣
Ld(Γ+)

.

This proves the special case.

Our next proposition combines the ideas used in the proofs of the last two results

with slight modifications. By doing so, we can incorporates the special case, stated

in Theorem 2.1.15, into the proof of Theorem 2.1.13.

Proposition 2.1.16. Let g ∈ L1
loc(Ω) be non-negative, and let u ∈ C2 (Ω) ∩ C0

(
Ω
)

be arbitrary. Then,

∫
B
M̃

(0)

g ≤
∫

Γ+

g(Du)
∣∣ detD2u

∣∣ ≤ ∫
Γ+

g(Du)

(
−
∑

i,j a
ijDiju

D d

)d

, (2.15)

where M̃ := (supΩ u− sup∂Ω u)/ diam(Ω).
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Proof. This is a porism that follows by combining the proofs of the last two results

and using Example 2.1.11. Indeed, the right-hand-side inequality,

∫
Γ+

g(Du)
∣∣ detD2u

∣∣ ≤ ∫
Γ+

g(Du)

(
−
∑

i,j a
ijDiju

D d

)d

,

is a direct consequence of (2.14). To prove the other part of the inequality, we recall

first that BM̃(0) ⊂ χu(Ω), which we established in the proof of Lemma 2.1.14 (the

case supΩ u = sup∂Ω u is obvious). Therefore,

∫
B
M̃

(0)

g ≤
∫

χu(Ω)

g.

Using a similar argument to the one we used to establish (2.11), we can apply the

change of variables formula to obtain that

∫
χu(Ω)

g ≤
∫

Γ+

g(Du)
∣∣detD2u

∣∣ . (2.16)

This proves the proposition.

Now, we are ready present the proof of Theorem 2.1.13.

Proof of Theorem 2.1.13. We divide this proof into three steps:

I. We prove the estimate for u ∈ C2(Ω) ∩ C0(Ω), with u ≥ 0 and sup∂Ω u = 0.

II. We extend the proof for any u ∈ C2(Ω) ∩ C0(Ω).

III. Lastly, we extend the proof to the case u ∈ W 2,d
loc (Ω) ∩ C0

(
Ω
)
.

I. Let u ∈ C2(Ω) ∩ C0(Ω) be a nonnegative function that solves Lu ≥ f in Ω.

Suppose further that sup∂Ω u = 0, and set M̃ = supΩ u/ diam(Ω). Let µ > 0 be a
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constant, which we will choose appropriately at the end of the proof. Define, also, a

(weight) function,

g(p) :=
(
|p|d/(d−1) + µd/(d−1)

)1−d
.

To prove the theorem, we need to find an upper-bound for M̃ of the form c ‖f/D‖Ld(Γ+),

which we do as follows.

1. Notice that

αd log

(
M̃d

µd
+ 1

)
= αd

M̃∫
0

(rd + µd)−1 dr =

∫
B
M̃

(0)

(|p|d + µd)−1 dp.

Additionally, by Jensen’s inequality, we have

21−d g(p)−1 =

(
1

2
|p|d/(d−1) +

1

2
µd/(d−1)

)d−1

≤ 1

2
|p|d +

1

2
µd.

Therefore,

αd log

(
M̃d

µd
+ 1

)
=

∫
B
M̃

(0)

(|p|d + µd)−1 dp ≤ 2d−2

∫
B
M̃

(0)

g(p) dp. (2.17)

2. Next, we want to find an adequate upper-bound for the right integral in (2.17).

Recall that, by Proposition 2.1.16, we have

∫
B
M̃

(0)

g ≤
∫

Γ+

g(Du)

(
−
∑

i,j a
ijDiju

D d

)d

. (2.18)

Additionally, since Lu ≥ f , u ≥ 0, and c ≤ 0, we have

−
∑

i,j a
ijDiju

Dd
≤
−
∑

i,j a
ijDiju− cu
Dd

≤
∑

i b
iDiu− f
Dd

=
b ·Du− f
Dd

.



24

Moreover, by Cauchy-Schwartz and triangle inequalities, we have

∑
i b
iDiu− f
Dd

≤ |b| |Du| − |f |
Dd

.

Combining these inequalities with (2.18), we obtain

∫
B
M̃

(0)

g ≤
∫

Γ+

g(Du)

(
|b| |Du| − |f |
D d

)d
. (2.19)

Combining this inequality with (2.17), we get

αd log

(
M̃d

µd
+ 1

)
≤ 2d−2

∫
Γ+

g(Du)

(
|b| |Du| − |f |
D d

)d
. (2.20)

3. Now, notice that, by the (discrete) Hölder inequality, we have

|b||p|+ |f | ≤ (|b|d + (µ−1|f |)d)1/d (|p|d/(d−1) + µd/(d−1))(d−1)/d︸ ︷︷ ︸
g(p)−1/d

.

If we raise the inequality to the power d and multiply by g(p), we obtain

g(p) (|b||Du|+ |f |)d ≤ |b|d + (µ−1|f |)d.

In particular, when p = Du, we get

g(Du)

(
|b||Du|+ |f |
Dd

)d
≤ |b|

d + µ−d|f |d

Dddd
. (2.21)

By incorporating (2.21) into (2.20), we find that

αd log

(
M̃d

µd
+ 1

)
≤
∫

Γ+

|b|d + µ−d|f |d

Dddd
.
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Equivalently,

M̃d

µd
+ 1 ≤ exp

[
1

αd dd

(
µ−d

∫
Γ+

|f |d

Dd
+

∫
Γ+

|b|d

Dd

)]
. (2.22)

4. Now, we are ready to choose the constant µ. If f 6= 0 almost everywhere in Γ+,

we set µ = ‖f/D‖Ld(Γ+) > 0. In this case, with a little of arithmetic, (2.22) becomes

M̃ ≤ ‖f/D‖Ld(Γ+)

{
exp

[
1

αd dd

(
1 +

∫
Γ+

|b|d

Dd

)]
− 1

}1/d

. (2.23)

On the other hand, if f = 0 almost everywhere in Γ+ we let µ → 0+. Albeit, the

estimate (2.23) is satisfied in this case, as well. By setting

C :=

{
exp

[
1

αd dd

(
1 +

∫
Γ+

|b|d

Dd

)]
− 1

}1/d

,

we see that

sup
Ω
u ≤ C diam(Ω) ‖f/D‖Ld(Γ+) ≤ C diam(Ω) ‖f/D‖Ld(Ω) . (2.24)

Clearly, the constant, c := C diam(Ω), satisfies the criterion we wanted.

II. Let u ∈ C2(Ω) ∩ C0(Ω), and set v := u − sup+
∂Ω. If u ≤ 0, on Ω, the estimate is

obvious. Thus, assume that u > 0 somewhere in Ω. Let {Ci}i∈J be the collection of

connected components of the set, Ω+ = {x ∈ Ω : v(x) > 0}, for some index set J .

Notice that Lv = Lu− c(x) sup∂Ω u
+ ≥ Lu ≥ f . Also, sup∂Ω v ≤ 0; hence, v ≡ 0 on

∂Ci for every i ∈ J . Therefore, we can apply estimate (2.24), and obtain

sup
Ci

v ≤ C diam(Ci) ‖f/D‖Ld(Ci)
≤ C diam(Ω) ‖f/D‖Ld(Ω) .
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Rewriting v = u− sup∂Ω u
+, we have that

sup
Ci

u ≤ sup
∂Ω

u+ + C diam(Ω) ‖f/D‖Ld(Ω)

for every i ∈ J . Thus,

sup
Ω
u = sup

i∈J
sup
Ci

u ≤ sup
∂Ω

u+ + C diam(Ω) ‖f/D‖Ld(Ω) . (2.25)

III. At this stage, we need to extend the result to the case u ∈ W 2,d
loc (Ω) ∩ C0

(
Ω
)
.

We achieve this by the following approximation argument.

1. Consider the case when L is uniformly elliptic in Ω and |b| /D is bounded. Let

{um} be a sequence in C2(Ω) ∩ C0(Ω), such that um → u in W 2,d
loc (Ω). For every

ε > 0, and a suitable Ωε ⊂⊂ Ω (where ∪ε>0Ωε = Ω), we can assume that um → u in

W 2,d(Ωε) and um ≤ ε+ sup∂Ω u on ∂Ωε.

Under these assumptions, we can apply (2.25) to um, and obtain that

sup
Ωε

u ≤ ε+ sup
∂Ω

u+ +
C

λ

∥∥∥∥∑
i,j

aijDij(um − u) +
∑
i

biDi(um − u)

∥∥∥∥
Ld(Ωε)

+ c ‖f/D‖Ld(Ωε)
.

Since {um} converges to u uniformly in Ωε, we can take m→∞ to establish that

sup
Ωε

u ≤ ε+ sup
∂Ω

u+ + c ‖f/D‖Ld(Ωε)
. (2.26)

Taking the limit as ε→ 0, we obtain (2.8).
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2. For the general case, let η > 0 and set

Lηu := Lu+ η(Λ + |b|)∆u

=
∑
i,j

(
aij + δijη(Λ + |b|)

)
Diju+

∑
i

biDiu+ cu.

Notice that Lη satisfies the earlier restriction. Thus, as in (2.26), we have

sup
Ωε

u ≤ ε+ sup
∂Ω

u+ + C

[∥∥∥∥η(Λ + |b|)∆u
Dη

∥∥∥∥
Ld(Ωε)

+

∥∥∥∥ fD
∥∥∥∥
Ld(Ωε)

]
.

Now, we let η → 0, and use the Dominated Convergence Theorem (DCT) to arrive

at inequality (2.26). There, we take ε → 0, and obtain the general case of Theorem

2.1.13.
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2.2 The Ap and A∞ Classes

In this section, we discuss a class of functions called the Ap class. Some authors refer

to it as Muckenhoupt weights since Muckenhoupt was the first to introduced them

and establish bounds on Hardy-Littlewood maximal function (see [14] and [11]).

There are two main results in this section; both crucial to the material of the

main chapter, Chapter 3. Those results have appeared in Coifman and Fefferman

[1], presented in a concise format. The detailed proofs, however, are adapted from

Stein [13], where a broader investigation of the subject can be found. The aim of the

following presentation is to establish the necessary tools for the main chapter, while

providing an adequate notion about the Ap class.

Unless otherwise specified, in this section, Ω denotes an open subset of Rd, B

denotes a ball, and Q denotes a cube whose sides are parallel to the coordinate-axes.

We, also, impose the following assumptions on the measures we use within this section.

Assumption 2.2.1. Let µ be a measure on a set Ω ⊂ Rd, we assume that

i. µ is a positive Borel measure.

ii. µ is a doubling measure; that is, there is constants c > 1 such that, for every

x ∈ Ω and every positive r < dist(x, ∂Ω), we have µ(B2r(x)) ≤ cµ(Br(x)).

iii. For every open U ⊂ Ω and r > 0, the mapping x 7→ µ(Br(x) ∩ U) is continuous.

Note that we will, later, introduce a measure whose density is a function of class

Ap. Our results will show that such functions satisfy the above assumptions. Thus,

all the proofs we present are valid for such measures.

2.2.1 The Dyadic Maximal Function

As mentioned in the introduction of the section, the study of maximal function was the

main motivation to explore the Ap classes. In fact, the proofs and results show that
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the maximal function is ingrained in the definitions and properties of those classes.

However, we are also going to use a variant of the maximal function, called the dyadic

maximal function. For that purpose we introduce the notion of dyadic cubes.

Definition 2.2.2. Let Q∆
k be the family of all closed cubes that have sides of length

2−k and vertices (corners) of the form (2−km1, ..., 2
−kmd), where m1, ...,md are inte-

gers. Let Q∆ :=
⋃
k∈ZQ∆

k . An element of Q∆ is called a dyadic cube.

Remark 2.2.3.

1. We can obtain a family, Q∆
k , from Q∆

0 by rescaling; Q∆
k = 2−kQ∆

0 .

2. Every Q ∈ Q∆
0 has vertices with integers coordinates. Thus, Q∆

0 is countable,

and so is Q∆. Therefore, any collection of dyadic cubes is at most countable.

3. Bisecting the sides of a dyadic cube Q ∈ Q∆
k creates 2d cubes in Q∆

k+1. Each of

these cubes is a child of Q, and Q is called the parent. Figure 2.2.1 depicts the

layout of the Q∆
0 -cubes in R2, and shows how Q∆

1 is obtained by bisection.

4. Every cube Q ∈ Q∆
k has a unique parent in Q∆

k−1 as depicted by the figure

below.

5. Every open set is the union of dyadic cubes, as shown in Lemma B.1.1.

Figure 2.1: Q∆
0 “giving birth” to Q∆

1
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For our next step, we are going to veer our attention to the study of maximal

function with respect to measures beyond the Lebesgue measure; namely, measures

that satisfy Assumption 2.2.1.

With the notions we defined above, we can proceed to discussing the maximal

function and its dyadic variant.

Definition 2.2.4. Let Ω ⊂ Rd be open, and let µ be a measure satisfying Assumption

2.2.1. For a locally integrable function, f : Ω −→ R, we define the maximal function

of f with respect to µ, f ∗µ, by

f ∗µ(x) := sup
B3x

1

µ(B)

∫
B

|f | dµ, for all x ∈ Ω, (2.27)

where the supremum is taken over all the balls B ⊂ Ω that contain x.

Definition 2.2.5. Let Ω ⊂ Rd be open, and let µ be a measure defined on Ω,

satisfying Assumption 2.2.1. For a locally integrable function f : Ω −→ R, we define

the dyadic maximal function of f with respect to µ, f∆
µ , by

f∆
µ (x) = sup

Q∈Q∆

Q3x

1

µ(Q)

∫
Q

|f | dµ, for all x ∈ Ω, (2.28)

where the supremum is taken over all dyadic cubes Q ⊂ Ω such that x ∈ Q.

Remark 2.2.6.

i. The maximal functions we defined in (2.27) and (2.28) are said to have the

non-centered form, while the centered form requires that the integration domain

B = Br(x), for some r > 0.

ii. When µ is the Lebesgue measure, we use f ∗ and f∆ in place of f ∗µ and f∆
µ .

iii. Lebesgue Differentiation Theorem (see [4], Section 1.7) tells us that, except for a
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set of measure zero, limQ→{x} µ(Q)−1
∫
Q
|f | dµ = |f(x)|, where the limit is taken

over dyadic cubes Q that contain x. Therefore, f∆
µ ≥ |f |, µ-a.e.

The following proposition is an essential result for the subsequent discussion of

Ap-classes.

Proposition 2.2.7. Let Q∆ ⊂ Rd be a dyadic cube. Consider a measure µ that

satisfies Assumption 2.2.1, and suppose that 0 < µ(Q∆) <∞. Let f : Q∆ −→ R be a

locally integrable function, and let α ≥ µ(Q∆)−1
∫
Q∆
|f | dµ be a constant. Lastly, set

Sα := {x ∈ Q∆ : f∆
µ (x) > α}. Then, there is a collection Q = {Qj} of dyadic cubes

and a constant δ > 0, depending only on µ and d, such that

i.
⋃∞
i=1 Qi = Sα,

ii. the members of Q have disjoint interiors (i.e. Q◦i ∩Q◦j = ∅ for every j 6= i),

iii. and α < 1
µ(Qj)

∫
Qj
|f | dµ ≤ δ−1 α for every j.

Proof. Observe, first, that for every x ∈ Ωα, there is a dyadic cube Q ⊂ Ωα that

contains x. In particular, because Ωα has a finite measure, we can select a maximal

dyadic cube Q ⊂ Ωα that contains x and satisfies

α <
1

µ(Q)

∫
Q

|f | dµ.

Notice that, although it is a dyadic cube, Q 6= Q∆ by the choice of α. Therefore, the

immediate dyadic parent of Q is a contained in Q∆ (possibly Q∆ itself).

Let Q = {Qj} be the collection of all maximal dyadic cubes. Remark 2.2.3 shows

that these cubes have disjoint interiors. Then, the inequality

α <
1

µ(Qj)

∫
Qj

|f | dµ
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holds for every j. This proves claims (i) and (ii), as well as the left hand side inequal-

ity of claim (iii). To complete the verification of claim (iii), we use the assumption

that µ is a doubling measure; that is, there is a constant δ ∈ (0, 1) such that, for

every cube Q ⊂ Q∆ and every measurable subset E ⊂ Q, we have

|E| ≥ 1

2d
|Q| =⇒ µ(E) ≥ δµ(Q).

Now, for every j, let Q′j be the (unique) parent dyadic cube of Qj, which has

twice the side length of Qj. Observe that |Qj| = 2−d
∣∣Q′j∣∣; hence, µ(Qj) ≥ δµ(Q′j).

Moreover, due to the maximality of Qj and the fact that Q′j ⊂ Q∆, we have

1

µ(Q′j)

∫
Q′j

|f | dµ ≤ α.

Combining those observations, we conclude that

1

µ(Qj)

∫
Qj

|f | dµ ≤ δ−1 1

µ(Q′j)

∫
Q′j

|f | dµ ≤ δ−1α.

2.2.2 Defining the Ap and A∞ Classes

In this subsection, we formulate a general definition for the Ap and A∞ classes. How-

ever, we are mostly interested in the special case where λ is the Lebesgue measure

and µ is absolutely continuous with respect to the Lebesgue measure. Additionally,

note that, depending on the application, we are going to alternate between the cubes

and balls in these definitions. This is valid, as our presentation will clarify.

Definition 2.2.8. Let p > 1 and p ′> 1 satisfy 1/p ′ + 1/p = 1. Let λ and µ be

(positive) measures defined Ω. Assume further that µ is locally absolutely continuous

with respect to λ (i.e. µ � λ on every bounded subset of Ω), and let dµ/dλ be the
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Radon–Nikodym derivative. We say that µ is of class Aλp(Ω) if and only if there is a

constant A ∈ (0,+∞) such that, for every ball B ⊂ Ω,

µ(B)

λ(B)

 1

λ(B)

∫
B

(
dµ

dλ

)−p′/p
dλ

p/p′

≤ A. (2.29)

The infimum of all such A’s is called the Ap bound.

Remark 2.2.9. In the special case, for which λ is the Lebesgue measure, we use the

notation Ap(Ω). Also, by setting ω = dµ/dλ, the condition in (2.29) becomes

(
1

|B|

∫
B

ω(x) dx

) 1

|B|

∫
B

ω(x)−p
′/pdx

p/p′

≤ A. (2.30)

In Theorem 2.2.17, we show that the union of all Ap classes (for a finite p) is

totally characterized by a single property. This is called the A∞ property.

Definition 2.2.10. We say that a non-negative function ω is of class A∞(Ω) if and

only if ω ∈ L1
loc(Ω) and, for any α ∈ (0, 1), there exist a β ∈ (0, 1) such that for all

balls B ⊂ Ω and all measurable subsets F ⊂ B, we have that

|F | ≥ α|B| =⇒ µω(F ) ≥ βµω(B), (2.31)

where µω(S) :=
∫
S
ω(x) dx.

Remark 2.2.11.

i. Applying Hölder’s inequality on the left hand side of (2.29) gives us that A ≥ 1.

ii. For historical reasons, (2.31) is usually called the doubling property (see [13]).
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iii. Taking E = B r F , the statement in 2.31 becomes

γ|B| ≥ |E| =⇒ δµω(B) ≥ µω(E), (2.32)

where γ = (1− α) and δ = (1− β), which is an equivalent form of the definition.

iv. Every cube, Q, can be squeezed between two concentric balls, B1 and B2, for

which |B1| = αd2
−d|Q| and |B2| = αd2

−ddd/2|Q|, where αd is the volume of the

unit ball. Therefore, when λ is a doubling measure, we can restate Definitions

2.2.8 and 2.2.10 using cubes.

v. If ω satisfies (2.31) for fixed α and β, we say ω satisfies the weak A∞ property.

2.2.3 Some Properties of the Ap and A∞ classes

The proof of the main theorem of this section requires a number of auxiliary results,

which we establish in this subsection. The following observation, shows that the A∞

property is invariant under scaling, dilation, and translation. This observation allows

us to simplify some of the forthcoming proofs.

Lemma 2.2.12. Let ω ∈ A∞(Ω), a and b be positive real numbers, and h ∈ Rd.

Also, set ω̂(x) := aω(bx + h) and Ω̂ = b−1(Ω − h) (Ω shifted and rescaled). Then,

ω̂ ∈ A∞(Ω̂).

Proof. Let α ∈ (0, 1), and let F ⊂ Q ⊂ Ω̂ satisfy |F | ≥ α|Q|. Then, bF + h ⊂

bQ+ h ⊂ Ω, and |bF + h| ≥ α|bQ+ h|. Thus, there is a β ∈ (0, 1) such that

∫
bF+h

ω(y)dy ≥ β

∫
bQ+h

ω(y)dy.
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Therefore, by changing variables and multiplying be the constant a, we have

∫
F

aω(bx+ h)dx ≥ β

∫
Q

aω(bx+ h)dx.

This implies that

∫
F

ω̂(x)dx ≥ β

∫
Q

ω̂(x)dx.

Hence, ω̂ satisfy the A∞ property on Ω̂.

Remark 2.2.13. Similarly, the weak A∞ class is invariant under scaling and dilation.

Now, we turn our attention to average functions of the form

fB =
1

|B|

∫
B

|f(y)| dy and f̂B =
1

λ(B)

∫
B

|f | dλ. (2.33)

Such functions appear in the definition of the maximal function (Definition 2.2.4)

and the definition of the Ap class (Definition 2.2.4). Thus, they reflect several of their

properties.

Proposition 2.2.14. Let p > 1. Let µ and λ be (positive) measures that are absolutely

continuous with respect to each other’s. Suppose that µ ∈ Aλp(Ω). Then, there exists

c > 0 such that, for all non-negative measurable functions f ,

(f̂B)p ≤ c

µ(B)

(∫
B

fpdµ

)
. (2.34)

where f̂B = (λ(B))−1
∫
B

|f | dλ.

Moreover, the minimum c that satisfies this property is the Ap bound of µ.

Proof. We want to show that (2.29) necessitates (2.34). Let λ, µ, and f̂B be as in
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the statement of the proposition. By Hölder’s inequality,

(f̂B)p =

 1

λ(B)

∫
B

fdλ

p

=

 1

λ(B)

∫
B

f

(
dµ

dλ

)1/p(
dµ

dλ

)−1/p

dλ

p

≤ 1

λ(B)p

∫
B

fp
(
dµ

dλ

)
dλ

∫
B

(
dµ

dλ

)−p′/p
dλ

p/p′

.

Since p/p+ p/p′ = p and
(
dµ
dλ

)
dλ = dµ, we have

 1

λ(B)

∫
B

fpdµ

 1

λ(B)

∫
B

(
dµ

dλ

)−p′/p
dλ

p/p′ [(
µ(B)

λ(B)

)−1
µ(B)

λ(B)

]
︸ ︷︷ ︸

=1

=

(
µ(B)

λ(B)

)−1
 1

λ(B)

∫
B

fpdµ

(µ(B)

λ(B)

) 1

λ(B)

∫
B

(
dµ

dλ

)−p′/p
dλ

p/p′

Then, using the definition of the Ap class, we obtain

(f̂B)p ≤
(
µ(B)

λ(B)

)−1
 1

λ(B)

∫
B

fpdµ

A

= Aµ(B)−1

∫
B

fpdµ.

Here, A is the constant in Definition 2.2.8. Setting c = A, we conclude the proof.

When λ is the Lebesgue measure and µ = µω, we have the special case stated in

this corollary.

Corollary 2.2.15. Let ω be a non-negative function. Assume that ω ∈ Ap(Ω), for

some p > 1. Then, there exist a constant c > 0 such that for all non-negative
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measurable functions f

(fB)p ≤ c

µω(B)

(∫
B

fp(y)ω(y)dy

)
. (2.35)

Moreover, the minimum c that satisfies this property is the Ap−bound.

Remark 2.2.16. From Remark 2.2.11, we know that the Ap−bound is at least 1.

Therefore, c ≥ 1.

The following theorem provides one of the two technical tool we need from this

section. It is, also, the first indicator of the relation between the A∞ class and the

union of all Ap classes.

Theorem 2.2.17. Let ω ∈ Ap(Ω) for some p > 1. Then, the following properties

hold.

I. There is a positive real number c such that, for every ball B ⊂ Ω and every

measurable subset E ⊂ B, we have that

µω(E)

µω(B)
≥ c

(
|E|
|B|

)p
. (2.36)

II. The measure µω is a doubling measure; that is, for every α ∈ (0, 1), there exits a

constant γ ∈ (0, 1) such that, for every ball B ⊂ Ω and every measurable subset

E ⊂ B,

α |B| ≤ |E| =⇒ γ µω (B) ≤ µω (E) . (2.37)
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III. Lastly, we have that

⋃
p′∈(1,∞)

Ap′(Ω) ⊂ A∞(Ω).

Proof. I. To prove the first claim, we consider a ball B ⊂ Ω and an arbitrary

measurable subset E ⊂ B. Let f := χE be the characteristic function of E. By

virtue of Corollary 2.2.15, we know that, for some constant c ′ > 0,

fpB =

(
|E|
|B|

)p
≤ c ′

µω (B)
µω (E) .

Setting c = 1/c ′ , we obtain that

c

(
|E|
|B|

)p
≤ µω(E)

µω(B)
,

proving the claim.

II. The second result is a direct observation from the previous inequality. Assume

that α |B| ≤ |E| for some 0 < α < 1. Then,

c ατµω (B) ≤ c

(
|E|
|B|

)τ
µω (B) ≤ µω(E)

µω(B)
µω (B) = µω (E) .

Setting γ := ατc, we prove the claim (2.37).

III. The previous properties show that ω ∈ A∞(Ω), as in Definition 2.2.10. Since

ω ∈ Ap was chosen arbitrarily, Ap ⊂ A∞. Moreover, p > 1 was also chosen

arbitrarily; hence,

⋃
p′∈(1,∞)

Ap′(Ω) ⊂ A∞(Ω).
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Another essential characteristic of the Ap classes is the (so-called) reverse Hölder

inequality, which controls the fluctuations of Ap(Ω) weights. The following proposition

describes this inequality and assures that every A∞ weight retains some variant of this

inequality. This proposition is not essential for the purpose of this thesis. However,

for the sake of completeness, we state it without a proof. (Refer to Stein [13], for a

proof).

Proposition 2.2.18. Suppose that ω ∈ A∞(Ω). Then, for some constants c > 1 and

r > 1 and for every cube Q ⊂ Ω, we have that

 1

|Q|

∫
Q

ωrdx

1/r

≤ c

|Q|

∫
Q

ωdx. (2.38)

Remark 2.2.19. Such an inequality is called the reverse Hölder inequality. Without

the constant c, the inequality becomes Hölder’s inequality with a reversed comparison

sign.

2.2.4 Equivalence of the A∞ Property and Reverse Hölder

Inequality

Here, we discuss the main result of this section, which is stated in the following

theorem.

Theorem 2.2.20. Let ω be a non-negative function. Then, ω is of class A∞ if

and only if ω satisfies a reverse Hölder inequality for some r ∈ (1,∞). Moreover,

ω ∈Ap(Ω) for some p > 1.

Proof. 1. Proposition 2.2.18 stated above asserts that if ω ∈ A∞(Ω), then it satisfies

a reverse Hölder inequality for some r > 0. So, we treat the case where ω is a
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nonnegative function that satisfies a reverse Hölder inequality of the form

(
1

|Q|

∫
Q

ωr dx

)1/r

≤ c
1

|Q|

∫
Q

ω dx (2.39)

for some r ∈ (1,∞) and all cubes Q ⊂ Ω. Notice that, for every 1 < s < r, the

following (Lyapunov) inequality holds

(
1

|Q|

∫
Q

ωs dx

)1/s

≤
(

1

|Q|

∫
Q

ωr dx

)1/r

for all cubes Q ⊂ Ω.

2. Our first claim is that Lebesgue measure is an Aω∞ weight; that is, for every

γ ∈ (0, 1), there is a δ ∈ (0, 1) such that, for every cube Q ⊂ Ω and every measurable

subset E ⊂ Q, we have

µω(E) ≤ γµω(Q) =⇒ |E| ≤ δ |Q| . (2.40)

To show this, suppose that µω(E) ≤ γ µω(Q), for some E, Q, and γ as above. Let

r′ be the dual exponent of r and set F := Q \ E. We know from Hölder’s inequality

that

µω(F ) =

∫
F

w dx =

∫
Q

χFω dx ≤
(∫

Q

χr
′

F dx

)1/r′ (∫
Q

ωr dx

)1/r

.

Combining this with inequality (2.39), we get

µω(F ) ≤
(∫

Q

χr
′

F dx

)1/r′ (
c |Q|1/r 1

|Q|

∫
Q

ω dx

)
= |F |1/r

′
c
|Q|1/r

|Q|
µω(Q).
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Since 1/r + 1/r′ = 1 and F ∪ E = Q, we obtain

1− µω(E)

µω(Q)
=

µω(F )

µω(Q)
≤ c

(
|F |
|Q|

)1/r′

= c

(
1− |E|
|Q|

)1/r′

.

Therefore,

1− γ ≤ c

(
1− |E|
|Q|

)1/r′

and
|E|
|Q|
≤ 1−

(
1− γ
c

)r′
.

Set δ := 1− [(1− γ) /c ]r
′

and notice that c ≥ 1. Thus, δ ∈ (0, 1), which confirms the

claim.

3. Now, fix γ ∈ (0, 1) and set δ = 1 − [(1− γ) /c ]r
′
. Let Q ⊂ Ω be a given

cube (with side parallel to the coordinates), and let Q0 ∈ Q∆
0 be a unit-volume

dyadic cube. Select a, b > 0 and h ∈ Rd such that Q = bQ0 + h and µω̂(Q0) = 1,

where ω̂(x) := aω(bx + h). By the classical change of variables formula and because

|bQ′ + h| = bd |Q′|, we have that

1

|Q′|

∫
Q′
ω̂s(x) dx =

as

|bQ′ + h|

∫
bQ′+h

ωs(y) dy (2.41)

for every cube Q′ ⊂ Ω̂ := b−1(Ω − h) and every s ∈ R. Applying this to inequality

(2.39), we see that ω̂ satisfies the same reverse Hölder inequality of ω. Namely, for

every cube Q′ ⊂ Ω̂,

(
1

|Q′|

∫
Q′
ω̂r dx

)1/r

≤ c
1

|Q′|

∫
Q′
ω̂ dx. (2.42)

Moreover, identity (2.41) guarantees that, for every E ⊂ Q′,

µω̂(E) ≤ γµω̂(Q′) =⇒ |E| ≤ δ |Q′| . (2.43)



42

We claim that, there is a constant Cδ,γ, depending only on λ and δ, such that

∫
Q0

ω̂1−p′ dx ≤ Cδ,γ.

Set f = ω̂−1 and η = (δγ)−1. Consider the sets Sk := {x ∈ Q0 : f∆
ω̂ (x) > ηk} for

every k ≥ 0, and notice that ηk ≥ 1 = µω̂(Q0)−1
∫
Q0
fω̂ dx. By Proposition 2.2.7, we

can write Sk =
⋃
j Q

k
j , where {Qk

j} are dyadic cubes with disjoint interiors. Moreover,

for each Qk
j ,

ηk µω̂(Qk
j ) <

∫
Qkj

f(x) ω̂(x) dx ≤ δ−1 ηk µω̂(Qk
j ). (2.44)

By summing over all j’s and substituting f = ω̂−1, we obtain

ηk µω̂(Sk) < |Sk| ≤ δ−1 ηk µω̂(Sk).

Notice that Sk ⊂ Sk−1; hence, |Sk| ≤ |Sk−1|, and

ηk µω̂(Sk) < |Sk| ≤ |Sk−1| ≤ δ−1 ηk−1 µω̂(Sk−1).

In particular, µω̂(Sk) < δ−1 η−1 µω̂(Sk−1) = γ µω̂(Sk−1).

Now, property (2.43) asserts that |Sk| ≤ δ |Sk−1|; hence, |Sk| ≤ δk |S0| ≤ δk.

Moreover, as in Remark 2.2.6, we have that f ≤ f∆
ω̂ a.e. Therefore, for every real
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number p > 1 and its dual p′,

∫
Q0

ω̂1−p′ dx =

∫
Q0

f p
′−1 dx ≤

∫
Q0

(f∆
ω̂ )p

′−1 dx

=

∫
Q0\S0

(f∆
ω̂ (x))p

′−1 dx+
∞∑
k=0

∫
Sk\Sk+1

(f∆
ω̂ (x))p

′−1 dx

≤
∫
Q0\S0

1 dx+
∞∑
k=0

∫
Sk\Sk+1

(
ηk+1

)p′−1
dx

≤ |Q0|+
∞∑
k=0

|Sk|
(
ηk+1

)p′−1 ≤ 1 + η p
′−1/(1− δ η p′−1).

(2.45)

Select p′ > 1 small enough such that 1 > δ η p
′−1; for example, p′ = 1 + 1

2 ln(η)
ln(δ−1).

Since η depends only on δ and γ, the value p = (1 − 1/p′)−1 also depends only on δ

and γ. Therefore, by setting Cδ,γ = 1 + η p
′−1/(1− δ η p′−1) we verify the claim.

4. Finally, we observe that the identity in (2.41) and our choice of
∫
Q0
ω̂(x) dx = 1

give us

(
1

|Q|

∫
Q

ω dy

)p′/p
1

|Q|

∫
Q

ω−p
′/p dy =

a1−p′

|bQ0 + h|

∫
bQ0+h

ω1−p′ (y) dy =

∫
Q0

ω̂1−p′ dx ≤ Cδ,γ.

Equivalently,

(
1

|Q|

∫
Q

ω dy

)(
1

|Q|

∫
Q

ω−p
′/p dy

)p/p′
≤ C

p/p′

δ,γ . (2.46)

Here, Cγ,δ and p are independent of the choice of cube Q. Thus, we conclude that w

is an Ap measure.
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2.3 Green’s Function

There are multiple approaches in the literature to defining Green’s function. Krylov

[7] and Rudin [12], for example, view Green’s function from a functional analytic

perspective, and define it as a distribution. To make the presentation accessible, we

describe, below, the definition of Green’s function for an elliptic operator that we

follow in this Thesis.

Let Ω be a smooth open subset of Rd. Let λ be a real number in (0, 1), and let

a := (aij(·)) be a smooth, symmetric, d× d matrix–valued function on Ω, such that

λI ≤ a(x) ≤ 1

λ
I, (2.47)

in the sense of positive definiteness. We are interested in properties of the operator

Lu :=
d∑

i,j=1

aij(x)
∂2u

∂xi∂xj
(x), (2.48)

which, in this case, is described as an elliptic operator in non-divergence form. We

also, consider its formal adjoint

L∗v :=
d∑

i,j=1

∂2

∂yi∂yj

(
aij(y)v(y)

)
. (2.49)

In our context, a weak solution of L∗v = 0 in Ω is a function a locally integrable that

satisfies
∫

Ω
v Lu dy = 0 for every nonnegative test function u ∈ C∞c (Ω). Equivalent

notion is assumed for L∗v ≤ 0 and L∗v ≥ 0.

2.3.1 Defining Green’s Function

The intuition behind the definition of Green’s function comes from the well-known

Poisson representation formula for Laplace equation and the heat equation.
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Definition 2.3.1. Let L be an elliptic operator, and let Ω be a subset of Rd. Consider

a map, x 7−→G(x, ·), which maps x∈Ω to a distribution G(x, ·)∈D ′(Ω). Suppose,

further, that G solves


L∗yG(x, y) = −δ(x− y) for every y ∈ Ω

G(x, y) = 0 for every y ∈ ∂Ω,

in the sense of distributions, where δ is Dirac’s delta; that is,

v(x) = −
∫

Ω

L∗yG(x, y) v(y) dy = −
∫

Ω

G(x, y) Lv(y) dy (2.50)

for every v ∈ C∞c (Ω). We say G is Green’s function of L corresponding to Ω.

Remark 2.3.2. By applying integration by parts formally, we have

u(x) = −
∫

Ω

L∗yG(x, y) u(y) dy

= −
∫

Ω

G(x, y)Lu(y) dy +

∫
∂Ω

d∑
i,j=1

G(x, y)︸ ︷︷ ︸
= 0

aij(y)uyi(y)νj dS(y)

−
∫
∂Ω

d∑
i,j=1

(
aij(y)G(x, y)

)
yj
u(y)νi dS(y).

In particular, if u solves


Lu = ϕ in Ω

u = g on ∂Ω,

(2.51)

we have the representation formula

u(x) = −
∫

Ω

G(x, y)ϕ(y) dy −
∫
∂Ω

d∑
i,j=1

(
aij(y)G(x, y)

)
yj
g(y)νi dS(y). (2.52)
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This identity holds whenever ∂Ω is of class C2. However, this is a mere heuristic

approach to derive it. For a precise proof, refer to Miranda [10].

2.3.2 Intrinsic Properties of Green’s Function

Our first lemma establishes an intrinsic inequality between Green’s functions for the

same operator, L, but that correspond to two distinct nested sets.

Lemma 2.3.3. Let BR ⊂ Rd be a ball of radius R > 0, and let Br ⊂ Rd be another

ball, concentric with BR, such that R > r > 0. Let L be an elliptic operator defined

on BR as above. Let GR be Green’s function of L, corresponding to BR, and let Gr

be that, corresponding to Br. Then, GR(x, y) ≥ Gr(x, y) for every x, y ∈ Br.

Proof. 1. Suppose the hypotheses above hold. Let u ∈ C∞c (BR) be a function

supported in Br (i.e. suppu ⊂ Br). Then, by the definition of Green’s function, we

have

u(x) = −
∫
BR

L∗GR(x, y) u(y) dy = −
∫
Br

L∗GR(x, y) u(y) dy,

and

u(x) = −
∫
Br

L∗Gr(x, y) u(y) dy.

Therefore, for a fixed x ∈ Br and for every u ∈ C∞c (Br),

∫
Br

(L∗GR(x, y)− L∗Gr(x, y)) u(y) dy = 0.

This means that W (y) = GR(x, y)−Gr(x, y) is a weak solution of{
L∗W (y) = 0 in Br

W (y) = GR(x, y) on ∂Br.
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Let ϕ ∈ C∞c (Br) be a nonnegative function, ϕ 6≡ 0, and let u be a solution of{
Lu = ϕ in Br

u = 0 on ∂Br.

By the definition of Green’s function, we have that

0 =

∫
Br

W (y)Lu(y) dy −
∫
∂Br

∑
i,j

W (y)aij(y)uyi(y)νj dS(y).

This can be rewritten as∫
Br

W (y)ϕ(y) dy =

∫
∂Br

GR(x, y)
(
Du(y) a(y)ν

)
dS(y). (2.53)

2. Our next step is to show that Du(y) a(y)ν ≥ 0 for every y ∈ ∂Br. (This

directional derivative is sometimes called conormal derivative; e.g. Miranda [10]).

To simplify the proof, fix y ∈ ∂Br, and consider an arbitrary symmetric, positive-

definite matrix, A. Let α and β be positive real numbers such that αI ≤ A ≤ βI.

Let ε > 0 be small enough so that y − εAν ∈ Br (e.g. ε = Rαβ−2), and set

g(t) := u (y − ε(1− t)Aν) for t ∈ [0, 1]. Notice that, by the maximum principle,

u ≤ sup∂Br u = 0; hence, g(t) ≤ g(1) = 0. Therefore,

Du(y)εAν = g′(1) = lim
δ→0+

g(1− δ)
−δ

≥ 0.

By dividing by ε, we obtain that Du(y)Aν ≥ 0. Since A is arbitrary and y is fixed,

we can set A = a(y). Then, we obtain Du(y)a(y)ν ≥ 0. Combining this with (2.53),

we get

∫
Br

W (y)ϕ(y) dy ≥ 0

for every ϕ ∈ C∞c (Br). Thus, W (y) ≥ 0 and GR(x, y) ≥ Gr(x, y).

For a fixed x ∈ Ω, the Green’s function, G(x, y), decays, as y approaches the

boundary, in a controlled and moderate manner. The following lemma captures this
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behavior.

Lemma 2.3.4. Let r > 0 and δ ∈ (0, 1) be arbitrary. Consider an open ball, Br, of

radius r. Let L be an elliptic operator defined as in (1.1). Let Gr be Green’s function

for L with respect to Br. Then, for every x ∈ Bδr, we have

∫
Bδr

Gr(x, y) dy ≥ λ
(δr)2 − |x|2

2d
,

where, Bδr is a ball of radius δr, concentric with Br. In particular,

inf
x∈B2r/3

∫
B5r/6

Gr(x, y) dy ≥ λr2

8d
.

Proof. Let Gδ be the Green’s function for L with respect to Bδr. Then, we fix

x ∈ Bδr, and notice that, since Gδ, as a distribution, solves L∗yGδ(x, y) = −δ(x − y)

in Bδr, we have

1 = −
∫
Bδr

L∗yGδ(x, y) dy = −
∫
∂Bδr

d∑
i,j=1

∂yi
(
aij(y)Gδ(x, y)

)
νj dS(y). (2.54)

On the other hand, if we use the test function |y|2 − |x|2, we obtain

0 = −
∫
Bδr

L∗yGδ(x, y)
(
|y|2 − |x|2

)
dy

= −
∫
Bδr

Gδ(x, y)Ly
(
|y|2 − |x|2

)
dy

−
∫
∂Bδr

d∑
i,j=1

∂yi
(
aij(y)Gδ(x, y)

) (
|y|2 − |x|2

)
νj dS(y)

= −2

∫
Bδr

Gδ(x, y)Tr(a(y)) dy

−
(
δ2r2 − |x|2

) ∫
∂Bδr

d∑
i,j=1

∂yi
(
aij(y)Gδ(x, y)

)
νj dS(y).
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Combining this with (2.54), we obtain

∫
Bδr

Gδ(x, y) 2 Tr(a(y)) dy = δ2r2 − |x|2 .

By our assumptions on a(y), we have that

δ2r2 − |x|2 =

∫
Bδr

Gδ(x, y) 2 Tr(a(y)) dy ≤ 2(dλ−1)

∫
Bδr

Gδ(x, y) dy.

Moreover, by Lemma 2.3.3, Gr(x, y) ≥ Gδ(x, y) for every x, y ∈ Bδr. Therefore,

∫
Bδr

Gr(x, y) dy ≥
∫
Bδr

Gδ(x, y) dy = λ
δ2r2 − |x|2

2d
.

This proves the main part of the lemma. To prove the second part, set δ = 5/6 and

take x ∈ B2r/3. Then,

∫
B5r/6

Gr(x, y) dy ≥ λ
(5r/6)2 − |x|2

2d

≥ λ
(5r/6)2 − (2r/3)2

2d
=
λr2

8d
.
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Chapter 3

Fabes and Stroock Estimates

In this chapter, we present some results from Fabes and Stroock [5]. To make the

presentation accessible, we follow Fabes and Stroock’s notation. In particular,

� Ω denotes an open subset of Rd.

� Br denotes an open ball of radius r (with a center specified as needed), and

� Bkr denotes a ball of radius kr that is concentric with Br.

� Qs denotes a cube with side-length s, whose sides are parallel to the axes, and

� Qks denotes another such cube, which is concentric with Qs; that is, Qks is a

homothetized (rescaled) version of Qs with respect to its center.

3.1 Introduction to the Problem

Let λ be a positive real number such that 0 < λ < 1, and let a := (aij(·)) be a

smooth, symmetric, d× d matrix–valued function on Rd, that satisfies

λI ≤ a(x) ≤ 1

λ
I, (3.1)

in the sense of positive definiteness. Under the prior assumptions on a(·), we define

the (uniformly) elliptic operator, L, and its formal adjoint, L∗, by (1.1) and (1.2),

respectively.
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The operator L∗, in (1.2), often appears in differential equations that model prob-

ability measures arising from stochastic processes (see [9]). In particular, the ellip-

tic equation (3.2), below, models the steady state of some “value-functions” in the

stochastic setting. Its adjoint equation, (3.3), models the probability distribution of

the driving stochastic process, at the steady state.

Intuitively, when particles are moving according to a (stochastic) diffusion pro-

cess, concentrations at few points are not expected—because things are “diffusing”.

Additionally, the coefficients, aij, which describe the diffusivity of the medium, are

smooth and bounded by (3.1). Virtually, this should prevent particles from migrat-

ing in a single direction, and fairly apportions the movement of particles between

directions, based on the diffusion coefficients.

In this chapter, we study the operators L and L∗, and quantitatively investigate

these intuitions. In particular, we establish bounds on (weak) solutions of

Lu(x) = 0 for x ∈ Ω, (3.2)

and the, so-called, adjoint problem

L∗v(y) = 0 for y ∈ Ω. (3.3)

We also investigate the associated Green’s function, G(x, y), which, as discussed

before in Section 2.3, satisfies L∗yG(x, y) = −δ(x − y), in the sense of distributions.

In our context, a function v ∈ L1
loc (Ω) is called a weak solution of (3.3) if it satisfies∫

Ω
v Lu dy = 0 for every nonnegative (test function) u ∈ C∞c (Ω). An equivalent

notion is assumed for weak solutions of L∗v ≤ 0 and L∗v ≥ 0. Note, also, that a

solution of (3.3) is often called an adjoint solution, as we will often do in this chapter.
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3.2 A Reverse Hölder Inequality for Adjoint Solutions

In this part of the thesis, we examine the ratio between the measures of concentric

balls and other nested sets (e.g. m (B2) /m (B1)), where m is a measure whose density

solves the adjoint problem (3.3). The following lemma, concerned with this question,

establishes what we call the doubling property for a measure.

Lemma 3.2.1. There exists a constant c = cλ,d, depending only λ and d, such that

for every nonnegative weak solution, v, of the problem L∗v ≤ 0, in Ω, and for every

ball Br for which B 4
3
r ⊂ Ω, we have

∫
Br

v(y) dy ≤ c

∫
Br/2

v(y) dy. (3.4)

Proof. Let Br ⊂ Ω and v be as in the statement. Without loss of generality, we

assume that Br is centered at the origin. Fix δ ∈ (0, 1) and define

h(x) =


[

(1 + δ)2 r2 − |x|2
]2

for x ∈ B(1+δ)r

0 otherwise.

Then, for x ∈ B(1+δ)r, we have that

Lh(x) = 8
d∑

i,j=1

aij(x)xixj − 4
(
(1 + δ)2 r2 − |x|2

) d∑
i=1

aii(x). (3.5)

Since λ ≤ a(x) ≤ 1/λ and x ∈ B(1+δ)r, we obtain

Lh(x) ≤ 8

λ
|x|2 − 4

(
(1 + δ)2 r2 − |x|2

)
λd ≤ 8

λ
(1 + δ)2r2,

and

Lh(x) ≥ 8λ |x|2 − 4
(
(1 + δ)2 r2 − |x|2

) d
λ
≥ −4(1 + δ)2r2 d

λ
.
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Additionally, when (1 + δ) r > |x| ≥ (1− δ) r, (3.5) gives

Lh(x) ≥ 8

λ
r2
(
λ2 (1− δ)2 − 2δ d

)
.

Due to these inequalities, we can fix a small δ > 0, depending only on d and λ, and

obtain positive constants c1 and c2, depending only on d and λ, such that


Lh(x) ≥ c1r

2 for r ≥ |x| ≥ (1− δ) r,

Lh(x) ≥ 0 for (1 + δ) r > |x| ≥ (1− δ) r, and

|Lh(x)| ≤ c2r
2 for (1 + δ) r > |x| .

(3.6)

Now, according to (3.6), we have

c1

∫
Br\B(1−δ)r

v(y) dy ≤
∫
Br\B(1−δ)r

v(y)L
(
h/r2

)
dy

≤
∫
B(1+δ)r\B(1−δ)r

v(y)L
(
h/r2

)
dy.

Using this inequality and (3.6) once more, we have

∫
B(1+δ)r

v(y)L
(
h/r2

)
dy =

∫
B(1+δ)r\B(1−δ)r

v(y)L
(
h/r2

)
dy +

∫
B(1−δ)r

v(y)L
(
h/r2

)
dy

≥ c1

∫
Br\B(1−δ)r

v(y) dy +

∫
B(1−δ)r

v(y)(−c2) dy

= c1

∫
Br

v(y) dy − (c1 + c2)

∫
B(1−δ)r

v(y) dy.

(3.7)

On the other hand, since v is a weak solution of L∗v ≤ 0, we have

0 ≥
∫
B(1+δ)r

v(y)L
(
h/r2

)
dy. (3.8)
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Therefore, by combining (3.7) and (3.8), we obtain

c1 + c2

c1

∫
B(1−δ)r

v(y) dy ≥
∫
Br

v(y) dy.

By iteration, there is a positive integer k = kδ such that (1− δ)k ≤ 1/2 and

(1 + c2/c1)k
∫
Br/2

v(y) dy ≥ (1 + c2/c1)k
∫
B

(1−δ)kr

v(y) dy ≥
∫
Br

v(y) dy. (3.9)

Setting c = (1 + c2/c1)k proves the lemma.

Remark 3.2.2. i. To established the bound in (3.8), we exploited the definition

of weak solutions. Unfortunately, our definition requires the test function, h,

to be in C∞c (Ω). Clearly, h is not in C∞c (Ω). However, we also know that

h ∈ C1
c (Ω) ∩ W 2,∞(Ω). And, by a smooth-approximation argument, we can

extend the property of weak solution to include such test functions. (See Lemma

C.2 in the appendix).

ii. This proof works, as well, when v is Green’s function for L since it satisfies

L∗yG(x, y) ≤ 0 in the weak sense.

Now, observe that every cube in Rd, with sides of length s, is circumscribed in a

ball whose radius is 1
2

d
√
d s. Such a cube also circumscribes a ball whose radius is 1

2
s.

With this observation, we can extend Lemma 3.2.1 to cubes, as formulated by the

following corollary.

Corollary 3.2.3. Let b = d
√
d/2 and let Qs ⊂ Ω be a cube of side length s. Let Bbs be

the smallest ball that contains Qs, and suppose that B 4
3
bs ⊂ Ω. Then, there exists a

constant c, depending only on λ and d, such that, for every v ≥ 0 that solves L∗v ≤ 0

weakly, in Ω,

∫
Qs

v(y) dy ≤ c

∫
Qs/2

v(y) dy. (3.10)
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Proof. Suppose Qs satisfies the hypothesis. By Lemma 3.2.1, every k ≥ 0 stratifies

∫
Bbs

v(y) dy ≤ ck1

∫
B
bs/2k

v(y) dy,

for some c1 = c1(λ, d). Since v ≥ 0, we have that
∫
Qs
v(y) dy ≤

∫
Bbs

v(y) dy. Further

more, there is a k ∈ N, depending only on d, such that b ≤ 2k−2. For that k, we have

Bbs/2k ⊆ Bs/4 ⊂ Qs/2. Therefore,

∫
Qs

v(y) dy ≤
∫
Bbs

v(y) dy ≤ ck1

∫
B
bs/2k

v(y) dy ≤ ck1

∫
Qs/2

v(y) dy.

Setting c := ck1, we conclude the proof.

A measure that satisfies the doubling property, which we saw above, often pos-

sesses another related property, which called the reverse Hölder inequality (see [13]).

The following theorem shows that (weak) adjoint solutions, that solve (3.3), possess

such a property.

Theorem 3.2.4. There exists a constant c = cλ,d, depending only on λ and d, such

that for every nonnegative weak solution of L∗v = 0 in Ω, and for every ball Br, for

which B2r ⊂ Ω, the following inequality holds.

[
1

|Br|

∫
Br

v(y)d/(d−1) dy

](d−1)/d

≤ c
1

|Br|

∫
Br

v(y) dy.

Proof. Since v ≥ 0, we can (by Lemma C.1) bound the Ld/(d−1)−norm of v by

‖v‖Ld/(d−1) ≤ sup

{∫
Br

v(y)ϕ(y) dy : ϕ ∈ C∞c (Br), ϕ ≥ 0, ‖ϕ‖Ld ≤ 1

}
. (3.11)

To exploit this fact, let ϕ ∈ C∞c (Ω) be a nonnegative function such that ‖ϕ‖Ld ≤ 1
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and supp(ϕ) ⊂ Br. Let u solve


Lu = ϕ in B2r

u = 0 on ∂B2r.

Because ϕ is smooth, we know that u is smooth (for a proof, see [3]). Moreover, by

the Alexandroff-Bakelman-Pucci (ABP) estimate (Theorem 2.1.15), we have

‖u‖L∞(B2r)
≤ 4r

α
1/d
d d

∥∥∥∥∥ ϕ

det (a(x))1/d

∥∥∥∥∥
Ld(Br)

≤ c1r ‖ϕ‖Ld(Br)
≤ c1r, (3.12)

where αd is the volume of the unit ball and c1 is dependent on d and λ only.

Next, we take a cutoff function ξr ∈ C∞c (B2r) such that ξr = 1 on Br and

supp(ξr) ⊂ B3r/2. We also require that, there is θ > 0, such that
∣∣∣ ∂β∂xβ ξr∣∣∣ ≤ θr−|β| for

every multi-index β with |β| ≤ 2. Then, because L∗v = 0, we have that

0 =

∫
B3r/2

vL (ξru) dx =

∫
B3r/2

v

(
ξrLu+ 2

d∑
i,j=1

aij(x)
∂ξr
∂xj

∂u

∂xi
+ Lξr u

)
dx. (3.13)

Additionally, by Cauchy-Schwartz inequality, and due to our choice of
∣∣∣ ∂∂xi ξr∣∣∣ ≤ θr−1,

we have ∣∣∣∣∣
d∑

i,j=1

aij(x)
∂ξr
∂xj

∂u

∂xi

∣∣∣∣∣ =
∣∣∇u a(x)∇ξTr

∣∣
≤ |∇u| ‖a(x)‖

∣∣∇ξTr ∣∣ ≤ |∇u|λ−1θ
√
dr−1.
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Therefore, by Hölder’s inequality and the fact that 3r/2 ≤ 2r.

∫
B3r/2

v

∣∣∣∣∣
d∑

i,j=1

aij
∂ξr
∂xj

∂u

∂xi

∣∣∣∣∣ dx ≤ θ
√
d

rλ

∫
B3r/2

v |∇u| dx

≤ θ
√
d

rλ

(∫
B3r/2

v dx

)1/2(∫
B2r

v|∇u|2 dx
)1/2

. (3.14)

Additionally, Lemma C.5 (in appendix) gives us that |Lξr| ≤ θλ−1r−2 (d!)1/d. Thus,

combining this with (3.12), we obtain

∫
B3r/2

v |u| |Lξr| dx ≤
∫
B3r/2

v ‖u‖L∞(B2r)
θλ−1r−2 (d!)1/d dx ≤ c1θλ

−1r−1 (d!)1/d

∫
B3r/2

v dx.

(3.15)

Combining all of (3.12)-(3.15), we get

∫
Br

vϕ =

∫
B3r/2

vξrLu = −
∫
B3r/2

v

(
2

d∑
i,j=1

aij(x)
∂ξr
∂xj

∂u

∂xi
+ Lξr u

)
dx

≤ c2r
−1

∫
B3r/2

v dx+

(∫
B3r/2

v dx

)1/2(∫
B2r

v|∇u|2 dx
)1/2

 (3.16)

fo a suitable c2, which depends only on λ and d.

Now, recall that λI ≤ a(x) and Lu = ϕ. Thus, we have

∫
B2r

v λ |∇u|2 dx ≤
∫
B2r

v

(
d∑

i,j=1

aij(x)
∂u

∂xi

∂u

∂xj

)
dx =

1

2

∫
B2r

v
(
L
(
u2
)
− 2uϕ

)
dx.

(3.17)

Notice that ∇(u2) = 0 and u2 = 0 on ∂B2r. Therefore, because L∗v = 0 in B2r, we

have that
∫
B2r

vL(u2) = 0 (see Lemma C.2 in the appendix). Combining this with



58

(3.17) and (3.12), we obtain

∫
B2r

vλ |∇u|2 dx ≤
∫
B2r

v|u|ϕdx

≤
∫
B2r

v ‖u‖L∞(B2r)
ϕdx ≤ c1r

∫
B2r

vϕ dx = c1r

∫
Br

vϕ dx.

(3.18)

Accordingly, bounding the right hand side of (3.16) by (3.18), we get

r

∫
Br

vϕ dx ≤ c2

∫
B3r/2

v dx+

(∫
B3r/2

v dx

)1/2(
c1r

λ

∫
Br

vϕ dx

)1/2
 . (3.19)

For clarity, set z = r
∫
Br
v ϕ dx and w =

∫
B3r/2

v dx. Then, (3.19) becomes

z ≤ c2 (w +
c1

λ
w1/2z1/2).

We can easily deduce (see Lemma C.6) that

z ≤

[(
c−1

2 +
c2

1

4λ2

)1/2

− c1

2λ

]−2

w.

Thus,

r

∫
Br

vϕ dx ≤ c3

∫
B3r/2

v dx

for some c3 that depends only on λ and d.

Now, by Lemma 3.2.1, we have

r

∫
Br

vϕ ≤ c3

∫
B3r/2

v dx ≤ c4

∫
B3r/4

v dx ≤ c4

∫
Br

v dx (3.20)
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for an appropriate c4. Lastly, by combining (3.20) and (3.11), we have

[∫
Br

v(y)d/(d−1) dy

](d−1)/d

≤ sup
ϕ

∫
Br

v(y)ϕ(y) dy ≤ cr−1

∫
Br

v(y) dy.

This concludes the proof.

By an argument similar to that of Corollary 3.2.3, we obtain the following result.

Corollary 3.2.5. Let b = d
√
d/2 and let Qs ⊂ Ω be a cube of side length s. Let Bbs

be the smallest ball that contains Qs, and suppose that B2bs ⊂ Ω. Then, there exists a

constant c, depending only on λ and d, such that, for every v ≥ 0 that solves L∗v = 0

weakly, in Ω,

[
1

|Qs|

∫
Qs

v(y)d/(d−1) dy

](d−1)/d

≤ c
1

|Qs|

∫
Qs

v(y) dy.

Proof. Suppose Qs satisfies the hypothesis. Let k be a positive integer such that

b ≤ 2k−1. Then, Bbs/2k ⊆ Bs/2 ⊂ Qs. By Lemma 3.2.1 and Theorem 3.2.4, there are

constants c1 and c2, depending only on λ and d, such that

∫
Bbs

v(y) dy ≤ ck1

∫
B
bs/2k

v(y) dy ≤ ck1

∫
Qs

v(y) dy,

and

[
1

|Bbs|

∫
Bbs

v(y)d/(d−1) dy

](d−1)/d

≤ c2

|Bbs|

∫
Bbs

v(y) dy ≤ c2

|Bbs|
ck1

∫
Qs

v(y) dy.

Additionally, Qs ⊂ Bbs and v ≥ 0; hence,

[
|Qs|
|Bbs|

1

|Qs|

∫
Qs

v(y)d/(d−1) dy

](d−1)/d

≤ |Qs|
|Bbs|

c2 c
k
1

|Qs|

∫
Qs

v(y) dy.
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Let αd be the volume of the unit ball, and notice that

|Qs|
|Bbs|

=
sd

(bs)dαd
= b−dα−1

d = 2dαd/d.

Therefore, we conclude that

[
1

|Qs|

∫
Qs

v(y)d/(d−1) dy

](d−1)/d

≤ c
1

|Qs|

∫
Qs

v(y) dy,

where c := c2 c
k
1b
−1α

−1/d
d .

3.3 A Reverse Hölder Inequality for Green’s Function

In the previous section, we proved that weak adjoint solutions satisfy reverse Hölder

inequality. The proof, however, does not encompass the case of Green’s function,

which solves L∗yG(x, y) = −δx(y) for y ∈ Ω, in the sense of distributions (see Definition

2.3.1). Consequently, we need a different approach to extend the result to Green’s

function.

Theorem 3.3.1. Let G(x, y) be the Green’s function of L corresponding to Ω (see

Definition 2.3.1). There exists a constant c := cλ,d, depending only on λ and d such

that, for every ball Br with B 10
3
r ⊂ Ω, we have

[
1

|Br|

∫
Br

G(x, y)d/(d−1) dy

](d−1)/d

≤ c

|Br|

∫
Br

G(x, y) dy.

Proof. If x /∈ B2r, the proof of Theorem 3.2.4 applies for v = G(x, ·). So, we assume

that x ∈ B2r. For simplicity, we further assume that Br is centered at the origin. Let

G̃(x, y) be the Green’s function corresponding to B3r. Due to Lemma 2.3.3, we know
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that G(x, y) ≥ G̃(x, y) for all y ∈ B3r. Since zd/(d−1) is convex, we also have

1

|Br|

∫
Br

(
1

2
G(x, y)

)d/(d−1)

dy ≤ 1

|Br|

[∫
Br

1

2

(
G− G̃

)d/(d−1)
dy +

∫
Br

1

2
G̃ d/(d−1) dy

]
.

Observe that, for a fixed x, v(y) := G(x, y)− G̃(x, y) is a nonnegative solution of


L∗v = 0 in B3r

v(y) = G(x, y) on ∂B3r.

Thus, we can apply Theorem 3.2.4 to v and obtain that

[
1

|Br|

∫
Br

(
G(x, y)− G̃(x, y)

)d/(d−1)

dy

](d−1)/d

≤ c1

|Br|

∫
Br

(
G(x, y)− G̃(x, y)

)
dy,

(3.21)

where c1, as before, depends only on λ and d.

Next, for x, y ∈ B3, we define the functions

ar(x
′ ) := a(rx′ ) and Gr(x

′ , y′ ) := G̃(rx′ , ry′ )rd−2.

Simple computations reveal that Gr is Green’s function of the operator

Lr :=
d∑

i,j=1

aijr (x)∂2
xixj

corresponding to B3. Let ϕ ∈ C∞c (B3) such that ‖ϕ‖Ld = 1, and let u solve


Lru = ϕ in B3

u = 0 on ∂B3.
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We know that u(x) =
∫
B3
Gr(x, y)ϕ(y) dy, and, by the ABP estimate, we also have

∫
B3

Gr(x, y)ϕ(y) dy = u(x) ≤ c2 ‖ϕ‖Ld = c2,

where the constant c2 depends only on λ and d. By Lemma C.1 in the appendix,

[∫
B3

Gr(x, y)
d
d−1 dy

] d−1
d

≤ sup

{∫
B3

Gr(x, y)ϕdy : ϕ ∈ C∞c (B3), ϕ ≥ 0, ‖ϕ‖Ld = 1

}
.

Therefore,

[∫
B3

Gr(x, y)
d
d−1 dy

] d−1
d

≤ c2.

Moreover, by Lemma 2.3.4,

inf
x∈B2

∫
B5/2

Gr(x, y) dy ≥ c3

for some c3 > 0 depending only on λ and d. Combining these inequalities, we have

c
−(d−1)/d
2

[∫
B3

Gr(x, y)
d
d−1 dy

]
≤ c

−d/(d−1)
3

[∫
B5/2

Gr(x, y) dy

]d/(d−1)

.

Since Gr(x′ , y′ ) := G̃(rx′ , ry′ )rd−2, this implies

(
1

rd

∫
B5r/2

Gr(x, y)
d
d−1 dy

)
≤ c4

[
1

rd

∫
B5r/2

Gr(x, y) dy

]d/(d−1)

,

where c4 = c
−d/(d−1)
3 c

(d−1)/d
2 . By Lemma 3.2.1, we have that

∫
B5r/2

Gr(x, y) dy ≤ c5

∫
Br

Gr(x, y) dy
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for some c5, depending only on λ and d. This concludes the proof.

3.4 A Comparability Property for Green’s Function

The following theorem, which is a product of all the previous results, is the most

important theorem in this thesis. It asserts that the measure induced by Green’s

function is a doubling measure, and gives a bound more explicit than the one in

Lemma 3.2.1.

Theorem 3.4.1. Let G(x, y) be Green’s function of the operator L corresponding to

Ω. Then, there are positive real numbers τ and c, depending only on λ and d, such

that for every Br, with B4r ⊂ Ω, and every measurable E ⊂ Br, we have

∫
E
G(x, y) dy∫

Br
G(x, y) dy

≥ c

(
|E|
|Br|

)τ
.

Proof. Due to Theorem 3.3.1, G(x, ·) posses some form of a reverse Hölder inequality.

So, let c > 1 be a constant, depending only on λ and d, such that

[
1

|Br|

∫
Br

G(x, y)d/(d−1) dy

](d−1)/d

≤ c

|Br|

∫
Br

G(x, y) dy, (3.22)

for every ball Br with B10r/3 ⊂ Ω. Then, by Theorem 2.2.20, we know that G(x, ·) ∈

Aτ (Ω) for some τ > 1 that depends only on c and d. Therefore, we can apply Theorem

2.2.17, to deduce directly that

∫
E
G(x, y) dy∫

Br
G(x, y) dy

≥ c

(
|E|
|Br|

)τ
.

This concludes the proof.

With this we conclude this chapter.
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APPENDICES

A On the ABP Estimate

In this appendix, we prove some of the lemmas we need in Chapter 1 but are unfit

to the flow of the presentation of the chapter.

We begin by the following proof of Lemma 2.1.12 from Section 2.1.

Proof of Lemma 2.1.12. Let p ∈ χK(Ω) be arbitrary. Since Ω is bounded and

u ∈ C0(Ω), there exists a non-negative real number a such that

u(x) ≤ a+ p · x, for all x ∈ Ω.

In particular, we can take a = supΩ{−p ·x+u(x)}. Because Ω is closed and bounded,

there is some z ∈ Ω for which a = −p · z + u(z). Hence,

u(x) ≤ −p · z + u(z) + p · x = u(z) + p · (x− z).

Now, we claim that we can select z to be an interior point. Indeed, we notice that

K consists of lines from (y, u(y)) to ∂Ω. Also, every hyper-plane in χK is tangent

to K at a point on one of these lines and lies above it; hence, it is tangent to K at

(y, u(k)), as well. That implies χK(Ω) = χK(y). Therefore, if z ∈ ∂Ω, we have that
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u(x) ≤ u(z) + p · (x− z)

≤ 0 + p · (x− z) “since u ≤ 0 on Ω”

= K(z) +
(
p · (x− y) + p · (y − z)

)
“K = 0 on ∂Ω”

≤ (K(y) + p · (z − y)) + p · (x− y) + p · (y − z) “since p ∈ χK(Ω) = χK(y)”

= u(y) + p · (x− y).

Therefore, we can replace z by the interior point y. Thus, χK(Ω) ⊂ χu(Ω).

The following two lemmas were used in the proofs of Lemma 2.1.14 and Theorem

2.1.15, related to the ABP estimate. Here, we present the proof.

Lemma A.1. Let Ω be an open subset of Rd, and let u : Ω −→ R be a C1 function.

Also, let Γ+ be the contact set of u (see Definition 2.1.7). Then, for every y ∈ Γ+,

we have that

u(x) ≤ u(y) +Du(y) · (x− y)

for all x ∈ Ω. Moreover, Du(y) is the only vector that satisfies this property.

Proof. Let y ∈ Γ+. By the definition of a contact set, there is a p ∈ Rd such that

u(x) ≤ u(y) + p · (x− y)

for all x ∈ Ω. Thus, for every v, with |v| = 1, and for every small δ > 0 we have that

u(y + δv)− u(y) ≤ δp · v and δp · v ≤ u(y)− u(y − δv).
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Now, we subtract δDu(y) · v and divide by δ to obtain

u(y + δv)− u(y)− δDu(y) · v
δ

≤ (p−Du(y)) · v ≤ u(y)− u(y − δv)− δDu(y) · v
δ

.

By taking the limits, as δ → 0, we have

0 ≤ (p−Du(y)) · v ≤ 0

for every v with |v| = 1. Thus, p = Du(y).

Lemma A.2. Let Ω be an open subset of Rd, and let u : Ω −→ R be a C2 function.

Also, let Γ+ be the contact set of u. Then, for every y ∈ Γ+, the matrix D2u(y) is

negative semi-definite.

Proof. First, we show this is true when d = 1. Let y ∈ Γ+ and let ε > 0 be small so

that y ± ε ∈ Ω. Then, by Taylor’s Theorem and Cauchy’s Remainder form, we have

u(y + ε) = u(y) + u′(y)ε+
1

2
u′′(y + θ)ε2

for some θ ∈ (0, ε). Moreover, since y ∈ Γ+, Lemma A.1 implies that

u(y + ε) ≤ u(y) + u′(y)ε.

Therefore,

1

2
u′′(y + θ)ε2 = u(y + ε)− (u(y) + u′(y)ε) ≤ 0.

As ε→ 0, we have that θ → 0. Thus, u′′(y) ≤ 0, which is what we needed to show.

Now, we resolve the case d ≥ 1. We want to reduce this to the case d = 1. So,

let y ∈ Γ+, and let v ∈ B1(0) be arbitrary. Define f(ε) = u(y + εv) for ε ∈ (−1, 1),
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small enough so that y + εv ∈ Ω. Then, by Lemma A.1, we have

f(ε) = u(y + εv) ≤ u(y) +Du(y) · εv = f(0) + f ′(0)ε.

Thus, 0 ∈ Γ+
f and f ′′(0) = vtD2u(y)v ≤ 0. Since v ∈ B1(0) was arbitrary, D2u(y) is

negative semi-definite.

The classical change of variable formula is applicable when we have injective and

bijective mappings. However, when we have a non-injective mapping, we might not

have an equality. The following lemma addresses this issue, as needed in the proof of

Lemma 2.1.14.

Lemma A.3. (Change of Variables for Non-Injective Functions)

Let A ⊂ Rd be a compact set. Let F : A −→ Rd be a continuously differentiable, and

let g : F (A) −→ [0,∞) be an integrable function. Suppose that DF (x) is positive

semi-definite for every x ∈ A. Then,

∫
F (A)

g(p) dp ≤
∫
A

g(F (x)) |det DF (x)| dx.

Proof. Define the mapping Fε(x) := F (x) + εx for every ε > 0. Since DF (x) is

positive semi-definite, the Jacobian of Fε(x), namely DF (x) + εI, is positive definite.

Thus, Fε is locally one-to-one in A. Consequently, by the classical change of variables

formula, every x ∈ A has a (relative) neighborhood, Bδ(x) ∩ A, such that

∫
Fε(Bδ(x)∩A)

g(p) dp =

∫
Bδ(x)∩A

g(Fε(y)) |det DFε(y)| dy.

By our assumptions, A is compact; hence, the cover {Bδ(x)} has a finite subcover;
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say Bδ1(x1), ..., Bδm(xm), which covers A. Now, set Vm := A ∩Bδm(xm) , and

Vi := A ∩Bδi(xi) \
m⋃

j=i+1

Bδj(xj)

for j = 1, ...,m − 1. Then, those sets are disjoint, and the function Fε is one-to-one

on each of them. Thus, we have

∫
Fε(A)

g(p) dp ≤
m∑
j=1

∫
Fε(Vj)

g(p) dp

=
m∑
j=1

∫
Vj

g(Fε(y)) | det DFε(y)| dy

=

∫
A

g(Fε(y)) | det DFε(y)| dy.

We conclude the proofs by taking the limit ε→ 0.
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B On Dyadic Cubes and Ap Classes

B.1 A Lemma on Dyadic Cubes

Lemma B.1.1. Let O be an open subset of Rd. Then, for every x ∈ O, there exists

a dyadic cube Q ∈ Q∆ such that x ∈ Q and Q ⊂ O.

Proof. Notice that, because O is open, there is an r > 0 such that Br(x) ⊂ O. Let n

be an integer such that
√
d2−n < r. We know that

⋃
Q∈Q∆

n
Q = Rd; hence, there is a

dyadic cube Q ∈ Q∆
n such that x ∈ Q. Since the longest distance between two points

in Q is the diagonal whose length is
√

2−2n + ...+ 2−2n =
√
d2−n < r, we establish

that Q ⊂ Br(x) ⊂ O.

Remark B.1.2. Since every x ∈ O is contained in a dyadic cube Qx ∈ Q∆, we have

that O =
⋃
x∈OQx— a union of dyadic cubes.

B.2 On Maximal Functions and Ap Properties

In this appendix, we discuss some details that are not essential for the presentation

of the results in Section 2.2.

Lemma B.1. Let Ω be open, and let µ be a positive measure. Suppose that f : Ω −→

R is locally integrable. Then, the maximal function f ∗µ(x) is lower semi-continuous

(l.s.c.); that is, for every a ∈ R, the set Sa := {x ∈ Ω : f ∗µ(x) > a} is open.

Additionally, f∆
µ is l.s.c..

Proof. Notice that the function f ∗µ is positive. Hence, for all a < 0, Sa = Ω. So,

assume that a ≥ 0 and let x ∈ Sa be arbitrary. We want to prove that there is a ball
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inside Sa that contains x. Thus, note that f ∗µ(x) is a limit point of the set

{
µ(B)−1

∫
B

|f | dµ : B ⊂ Ω is a ball that contains x
}
.

Therefore, if f ∗µ(x) is finite, there exists a ball B0 that contains x and satisfies

µ(B0)−1

∫
B0

|f | dµ > a.

Consequently, for every point z ∈ B0,

f ∗µ(z) ≥ µ(B0)−1

∫
B0

|f | dµ > a,

and z is also in Sa. In case f ∗µ(x) is infinite, the definition of f ∗µ gives us that there

exists a ball B1 that contains x and satisfies

µ(B1)−1

∫
B1

|f | dµ > a.

Thus, every point z ∈ B1 is also in Sa. Therefore, Sa is open. The conclusion for f∆
µ

uses the same argument.

Remark B.2. The Lebesgue Differentiation Theorem (LDT), which we applied in

Remark 2.2.6, is based on taking the limit over arbitrary cubes (or balls) that contain

the point x and converges to {x}. However, we restricted the limit to dyadic cubes.

In that case, a question might arise about points lying on boundaries of dyadic cubes.

This application is valid because the set of such points is of measure zero.

Indeed, let Q ∈ Q∆
k be a dyadic cube. If x ∈ ∂Q, then, there is Q′ ∈ Q∆

k′

such that x ∈ ∂Q′ for every integer k′ ≥ k. This can be shown easily by in-

duction. Now, let N∆ be the set of all such points; that is, N∆ := {x ∈ Rd :
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x has a coordinate of the form 2km with k,m ∈ Z}. It is clear that N∆ is a count-

able union of measure-zero sets (they are (d−1)−dimensional). Thus,
∣∣N∆

∣∣ = 0. We

can directly apply the LDT to Ω\N∆, over dyadic cubes, and still have the “almost-

everywhere” property. So, it is valid for Ω as well.
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C On Reverse Hölder Inequality

Lemma C.1. For p ≥ 1, let v ∈ Lp(Ω) be a nonnegative function. Let q > 1 be the

dual of p; that is 1/p+ 1/q = 1. Then, we have that

‖v‖Lq(Ω) ≤ sup

{∫
Ω

v(y)f(y) dy : f ∈ C∞c (Ω), f ≥ 0, ‖f‖p ≤ 1

}
.

Remark. The concern here is to prove the bound without the use of Riesz representa-

tion theorem or any complicated approximation theorems. Indeed, equality actually

holds for every v ∈ L1
loc. (For the case v ∈ Lq, see Lieb and Loss [8]).

Proof. 1. Due to Hölder inequality, v is locally integrable; more precisely,

‖v‖L1(K) ≤ ‖v‖Lp(K) ‖1‖Lq(K) = ‖v‖Lp(K) |K|
1/q <∞

for every compact K ⊂ Ω.

2. Let Sa = {x ∈ Ω : v(x) ≤ a}. For every a > 0, set va(x) = χSa(x)v(x). Now,

consider the following two cases.

� Case 1, q ≥ p: In this case, we have that

∫
Ω

va(x)q dx =

∫
Ω

χSav(x)pv(x)q−p dx

≤
∫

Ω

1 v(x)paq−p dx = aq−p
∫

Ω

v(x)p dx < +∞.

Hence, va ∈ Lq(Ω). Note also that va ≤ v. Therefore, by consulting the lemma
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on dual spaces in Lieb and Loss [8], we have

‖va‖Lq(Ω) = sup

{∫
Ω

va(y)f(y) dy : f ∈ C∞c (Ω), ‖f‖p ≤ 1

}
≤ sup

{∫
Ω

v(y)f(y) dy

}
.

Since it is in Lp(Ω), v is finite almost everywhere in Ω. Thus, lima→∞ va = v

a.e. By the Monotone Convergence Theorem,

‖v‖Lq(Ω) = lim
a→∞
‖va‖Lq(Ω) ≤

{∫
Ω

v(y)f(y) dy : f ∈ C∞c (Ω), ‖f‖p ≤ 1

}
.

� Case 1, q < p: Let r = p/q ≥ 1. Then, by Hölder inequality,

∫
K

vq dx ≤
(∫

K

(vq)r dx

)1/r (∫
K

1 dx

)1/r ′

= ‖v‖qLp(K) |K|
1/r ′ < +∞,

for every compact K ⊂ Ω. Therefore, v ∈ Lq(K) and

‖v‖Lq(K) = sup

{∫
K

v(y)f(y) dy : f ∈ C∞c (K), ‖f‖p ≤ 1

}
≤
{∫

Ω

v(y)f(y) dy

}
.

Finally, we complete the proof by observing that

‖v‖Lq(Ω) = sup
compact
K⊂Ω

‖v‖Lq(K) ≤
{∫

Ω

v(y)f(y) dy : f ∈ C∞c (Ω), ‖f‖p ≤ 1

}
.

The Arithmetic Mean-Geometric Mean inequality is a useful tool to bound Lξ by

the determinant of the Hessian matrix, D2ξ. The following two lemmas utilize the

AM-GM inequality.
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Lemma C.2. Let L and L∗ be defined as in (1.1) and (1.2), respectively. Let v be a

weak solution of L∗v ≤ 0 in Ω; that is, v ∈ L1
loc(Ω) and satisfies

∫
Ω

v Lϕdx ≤ 0

for every ϕ ∈ C∞c (Ω). Let h ∈ W 2,∞
c , then

∫
Ω

v Lh dx ≤ 0. (C.1)

Remark C.3. 1. The second derivative of h is taken in the weak sense.

2. We are especially interested in applying the lemma for a function h ∈ C1
c (Ω),

which is a piece-wise C2.

Proof. To prove this we use the well-known smooth approximation theorems. (See

Lieb and Loss [8], Theorem 2.16 and the remarks following it). Let {hn} be a sequence

of functions in C∞c (Ω) such that hn → h in W 2,∞. Notice that supphn =: Kn →

K := supph. Due to the convergence in W 2,∞, we have that detD2(hn − h) → 0

in W 2,∞ as well. Then, using the triangle inequality and the AM-GM inequality, we

obtain ∫
Ω

v Lh dx =

∫
K∪Kn

v Lhn dx+

∫
K∪Kn

v L(h− hn) dx

≤ 0 +

∫
K∪Kn

|v| dλ−1
∣∣det

(
D2(hn − h)

)∣∣1/d dx.
However, det (D2(hn − h)) −→ 0 in W 2,∞. This establishes the claim.

Remark C.4. More details on why L(h − hn) ≤ dλ−1 |det (D2(hn − h))|1/d can be

found in the proof of the next lemma.
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Lemma C.5. Let ξ ∈ C∞c (B2r), and let Lξ :=
∑d

i,j=1 a
ij∂ijξ = Tr (a(x)D2ξ(x)).

Suppose that |∂ijξ| ≤ θr−2 for some θ ∈ R>0. Then,

|Lξ| ≤ dθλ−1r−2 (d!)1/d .

Proof. Let A := a(x)D2ξ(x), and let µ1, ..., µd ∈ C be the eigenvalues of A. We

know that Tr (A) = µ1 + ... + µd and that det (A) = µ1 · · ·µd. Therefore, by the

triangle inequality and AM-GM inequality, we have

|Tr (A)| ≤ |µ1|+ ...+ |µd|

≤ d (|µ1| · · · |µd|)1/d = d |det (A)|1/d .

Thus,

|Lξ| ≤ d |det (A)|1/d = a |det (a(x))|1/d
∣∣det

(
D2ξ

)∣∣1/d
≤ dλ−1

∣∣det
(
D2ξ

)∣∣1/d . (C.2)

To bound |det (D2ξ)|1/d, notice first that

det
(
D2ξ

)
=
∑
σ∈Sd

(−1)σ∂1σ(1)ξ · · · ∂dσ(d)ξ,

where Sd is the symmetry group of order d and (−1)σ denotes the parity of σ. There-

fore, by the triangle inequality and our assumptions,

∣∣det
(
D2ξ

)∣∣ ≤∑
σ∈Sd

∣∣∂1σ(1)ξ
∣∣ · · · ∣∣∂dσ(d)ξ

∣∣
≤
∑
σ∈Sd

(
θr−2

)
· · ·
(
θr−2

)
= d! θdr−2d.
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Combining this inequality and (C.2), we obtain

|Lξ| ≤ dλ−1 (d!)1/d θr−2.

This concludes the proof.

The following lemma is purely arithmetic, but we include it for completeness.

Lemma C.6. Let w, z, q, p be positive real numbers that satisfy

z ≤ p(w + qw1/2z1/2). (C.3)

Then, the also satisfy

z ≤
[
(p−1 + q2/4)1/2 − q/2

]−2
w. (C.4)

Proof. Let x =
√
z and y =

√
w. Then, (C.3) becomes

x2 ≤ p(y2 + qxy)

= p

(
y2 + 2y

(q
2
x
)

+
(q

2
x
)2
)
− p

(q
2
x
)2

.

Therefore,

[
p−1 +

(q
2

)2
]
x2 ≤

[
y +

(q
2
x
)]2

.

Taking the square-root of both sides, and subtracting qx/2, we have

[(
p−1 +

(q
2

)2
)1/2

− q

2

]
x ≤ y.
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By squaring again and substituting, we have

[(
p−1 +

(q
2

)2
)1/2

− q

2

]2

z ≤ w.

Inequality (C.4) follows immediately from here.
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