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Precise Performance Analysis of the Box-Elastic
Net under Matrix Uncertainties
Ayed M. Alrashdi, Ismail Ben Atitallah, and Tareq Y. Al-Naffouri

Abstract—In this letter, we consider the problem of recovering
an unknown sparse signal from noisy linear measurements, using
an enhanced version of the popular Elastic-Net (EN) method. We
modify the EN by adding a box-constraint, and we call it the
Box-Elastic Net (Box-EN). We assume independent identically
distributed (iid) real Gaussian measurement matrix with additive
Gaussian noise. In many practical situations, the measurement
matrix is not perfectly known, and so we only have a noisy
estimate of it. In this work, we precisely characterize the mean
squared error and the probability of support recovery of the Box-
Elastic Net in the high-dimensional asymptotic regime. Numerical
simulations validate the theoretical predictions derived in the
paper and also show that the boxed variant outperforms the
standard EN.

Index Terms—Elastic Net, squared error, measurement matrix
uncertainties, probability of support recovery, box-constraint.

I. INTRODUCTION

The Elastic-Net (EN) [1] is a powerful method to recover
an unknown signal x0 from noisy linear measurements y =
Hx0 + z by solving the following optimization problem:

x̂ = arg min
x∈Rn

‖y −Hx‖22 + λ1‖x‖1 + λ2‖x‖22, (1)

where H is the measurement matrix, z is the noise vector,
and λ1, λ2 > 0 are the regularization parameters. The EN
reduces to the ridge regression for λ1 → 0, and to the
LASSO [2] as λ2 → 0. It combines the good features of
both of these approaches and overcomes many limitations of
the LASSO [1]. This combination allows for learning a sparse
model where few of the entries are non-zero like the LASSO,
while still maintaining the regularization properties of the
ridge regression. The EN has been used in many applications
[3], [4], [5], [6], [7], [8]. In this paper, we refer to (1) as the
standard EN, but we focus on a modified version that we call
the Box-EN which solves the following optimization instead

x̂ = arg min
x∈B
‖y −Hx‖22 + λ1‖x‖1 + λ2‖x‖22, (2)

where,B = [l, u]n, and l ≤ 0, u ≥ 0 ∈ R.
The box constraint, which can be seen as an `∞-norm

constraint, is used to promote a boundedness constraint. For
instance, if the EN aims to recover a digital bounded signal
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through relaxation1, then it is potentially useful to add the box
constraint, thereby yielding the Box-EN. When l = −u, the
Box-EN is equivalent to Regularized Least Squares, where we
use three regularization norms: `1, `2 and `∞. This is used
to solve simultaneously structured signals [9], for instance
signals that are known to be both sparse and bounded, in
a high-dimensional setting. Comparing (2) to (1), the only
small variation is the ”box-constraint” that has been added to
(2). However, as we will see later, this small variation assures
significant improvement in the performance in scenarios where
the entries of x0 are bounded or approximately so. Examples
of such signals are found in many applications such as wireless
communication systems [10], image processing [11], etc. The
Box-EN is not as popular as the standard EN, but we can
find some references where different types of constraints were
imposed on the algorithm [12], [13], [14].

In the last few years, various forms of precise analysis
of the asymptotic estimation error of non-smooth regularized
convex optimization problems (such as LASSO and related
inverse problems) have been proved under the assumption of
noisy iid Gaussian measurements. They mainly follow one
of two parallel approaches. The first one is the Approximate
Message Passing (AMP) framework that has been used in
[15], [16], [17] to derive precise asymptotic analysis of the
LASSO performance under the assumptions of iid Gaussian
sensing matrix. The second approach is based on a recently
developed framework that uses the Convex Gaussian Min-max
Theorem (CGMT) [18]. It has been used in a series of works
to also precisely evaluate the estimation performance of these
problems under the same Gaussianity assumptions [19], [20],
[21].

However, these results assume that the measurement matrix
H is perfectly known. In many practical applications it is
reasonable to expect uncertainty in the measurement matrix
due to, e.g., imperfections in the signal acquisition hardware,
model mismatch, or estimation errors [22]. In this paper, we
consider the additive uncertainty model: A =

√
1− ε2H+εΩ,

where H is known, Ω is an unknown error matrix, and
ε2 ∈ [0, 1] is the variance of the error. Such model is com-
monly used in communication theory and known as imperfect
Channel State Information (CSI) [23], [24],[25].

In this work, we derive novel precise asymptotic (in the
problem dimensions m and n) characterizations of the mean
squared error and the support recovery probability of the
Box-EN under the presence of uncertainties in the measure-
ment matrix that has iid Gaussian entries using the CGMT

1without the relaxation, having a discrete feasible set lead to a computa-
tionally prohibitive algorithm.
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framework. Although our analysis is asymptotic in nature,
numerical simulations show that our predictions are valid
even for a few dozens of the problem dimensions. They also
demonstrate that the Box-EN outperforms the standard one.
These predictions can be used to optimally tune the involved
parameters of the algorithm. To the best of our knowledge,
the precise error analysis of the Box-EN under uncertainties
has not been explicitly derived before. Finally, we note that
following the same steps as in this paper, our results can be
used to characterize the performance of the standard EN as
well.

II. PROBLEM SETUP

A. System Model

We consider the problem of recovering an unknown signal
x0 ∈ Rn from a noisy linear measurement vector y = Hx0 +
z. The unknown signal vector x0 is assumed to be k-sparse,
i.e., only k of its entries are sampled iid from a distribution pX0

which has zero mean and unit variance (E[X2
0 ] = 1), and the

remaining entries are zeros. For the measurement matrix, we
consider the following additive uncertainty model: A = γH+
εΩ, where H, and Ω ∈ Rm×n have iid entries N (0, 1/n),
and ε2 ∈ [0, 1] is the variance of the error such that γ2 +
ε2 = 1. The noise vector z ∈ Rm has entries iid N (0, σ2

z).
The analysis is performed when the system dimensions (m,
n and k) grow simultaneously large at fixed ratios: m

n −→
δ ∈ (0,∞), and k

n −→ κ ∈ (0, 1). Under these settings, the
signal-to-noise ratio (SNR) becomes SNR := κ

σ2
z

.

B. Performance Metrics

We consider the following two performance metrics of the
Box-Elastic Net:
Mean squared error (MSE): A natural and heavily used
measure of performance is the reconstruction mean squared
error, which measures the deviation of x̂ from the true signal
x0. Formally, the MSE is defined as MSE := 1

n‖x̂− x0‖22.
Support Recovery: In the problem of sparse recovery, a nat-
ural measure of performance that is used in many applications
is support recovery, which is defined as identifying whether
an entry of x0 is on the support (i.e., non-zero), or it is off
the support (i.e., zero). The decision is based on the Box-EN
solution x̂: we say the ith entry of x̂ is on the support if
|x̂i| ≥ ξ, where ξ > 0 is a user-defined hard threshold on the
entries of x̂. Formally, let

Φξ,on(x̂) =
1

k

∑
i∈S(x0)

1{|x̂i|≥ξ}, (3a)

Φξ,off(x̂) =
1

n− k
∑

i/∈S(x0)

1{|x̂i|≤ξ}, (3b)

where 1{A} is the indicator function of a set A, and S(x0)
is the support of x0, i.e., the set of the non-zero entries of
x0. In Theorem 2, we precisely predict the per-entry rate of
successful on-support and off-support recovery.

III. APPROACH AND SKETCH OF THE PROOF

In this section, we provide the asymptotic analysis of the
MSE of the proposed Box-EN optimization. Our approach is
based on the recently developed Convex Gaussian Min-max
Theorem (CGMT) which is summarized in the next subsection.

A. Convex Gaussian Min-max Theorem (CGMT)

We first need to state the key ingredient of the analysis
which is the Convex Gaussian Min-max Theorem CGMT.
Here, we recall the statement of the theorem, and we refer
the reader to [18] for the complete technical requirements.
Consider the following two min-max problems, which we
refer to as the Primary Optimization (PO) and Auxiliary
Optimization (AO):

Φ(G) := min
w∈Sw

max
u∈Su

uTGw + ψ(w,u), (4a)

φ(g,h) := min
w∈Sw

max
u∈Su

‖w‖2gTu− ‖u‖2hTw + ψ(w,u),

(4b)

where G ∈ Rm×n,g ∈ Rm,h ∈ Rn,Sw ⊂ Rn,Su ⊂ Rm
and ψ : Rn × Rm 7→ R. Denote by wΦ := wΦ(G) and
wφ := wφ(g,h) any optimal minimizers of (4a) and (4b)
respectively. Let Sw,Su be convex, and assume that ψ(w,u)
is convex-concave continuous on Sw×Su and G,g and h all
have iid standard normal entries. Let S be any arbitrary open
subset of Sw. Then, if limn→∞ P[wφ ∈ S] = 1, it also holds
that limn→∞ P[wΦ ∈ S] = 1.

In a nutshell, we study the performance of the (PO) by
analyzing its corresponding (AO) which is much easier to
study, since it depends on the random vectors g and h instead
of the large random matrix G, simplifying the latter to a
Scalar Optimization (SO), and finally studying the asymptotic
performance of the (SO). To make use of the CGMT, the set
S should be properly chosen as the set in which the MSE
concentrates. In the following subsection, we start the MSE
analysis by specializing the CGMT to the Box-EN problem at
hand and identifying its corresponding (PO) and (AO).

B. Identifying the (PO) and the (AO)

Under the imperfect measurements assumption, the Box-EN
optimization in (2) becomes

x̂ = arg min
x∈B
‖y −Ax‖22 + λ1‖x‖1 + λ2‖x‖22. (5)

For convenience, we consider the vector w := γx − x0, and
also the modified Box set:

B′ = {w ∈ Rn : l−x0,i ≤ wi ≤ u−x0,i, i ∈ {1, 2, · · · , n}},
(6)

then the problem in (5) can be reformulated as

ŵ = arg min
w∈B′

‖Hw+
ε

γ
Ω(w+x0)−z‖22+

λ1

γ
‖w+x0‖1+

λ2

γ2
‖w+x0‖22.

This minimization is not in the (PO) form as it is missing
the max part. So to go around this, let us express the loss
function in its dual form through the Fenchel conjugate,
‖Hw + ε

γΩ(w + x0)− z‖22 = maxu
√
nuT (Hw + ε

γΩ(w +
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x0)− z)− n
4 ‖u‖

2
2. Hence, the problem above is equivalent to

the following

min
w∈B′

max
u

√
nuTHw +

√
nε

γ
uTΩ(w + x0)−

√
nuT z

− n

4
‖u‖22 +

λ1

γ
‖w + x0‖1 +

λ2

γ2
‖w + x0‖22. (7)

To reach the desired (PO) form, we introduce the variables

v =

[
w

ε
γ (w + x0)

]
∈ R2n, G =

[
H Ω

]
∈ Rm×2n and

C =
[
On

γ
ε In

]
∈ Rn×2n, where On and In are n × n

matrices that represent the all-zeros matrix and the identity
matrix, respectively and use them to rewrite (7) in the desired
(PO) form as

min
v∈D

max
u

√
nuTGv −

√
nuT z− n

4
‖u‖22

+
λ1

γ
‖Cv‖1 +

λ2

γ2
‖Cv‖22,

where D = {vT = [wT ε
γ

(w + x0)T ] : w ∈ B′}. The
corresponding (AO) problem is thus given by

min
v∈D

max
u
‖v‖2gTu− ‖u‖2µTv −

n

4
‖u‖22

−
√
nuT z +

λ1

γ
‖Cv‖1 +

λ2

γ2
‖Cv‖22, (8)

where µ ∈ R2n and g ∈ Rm are independent standard normal
vectors.

C. Simplifying the (AO)
The next step is to simplify the (AO) to a scalar optimization (SO)

problem. Since the vectors g and z are independent, ‖v‖2gTu −√
nuT z is equivalent in distribution to

√
‖v‖22 + nσ2

zg
Tu. There-

fore, the (AO) can be rewritten as

min
v∈D

max
u

√
‖v‖22 + nσ2

zg
Tu− ‖u‖2µTv −

n

4
‖u‖22

+
λ1

γ
‖Cv‖1 +

λ2

γ2
‖Cv‖22. (9)

Let us write (9) now in terms of the original w variable

min
w∈B′

max
u

√
‖w‖22 +

ε2

γ2
‖w + x0‖22 + nσ2

zg
Tu− n

4
‖u‖22

− ‖u‖2(hT1 w +
ε

γ
hT2 (w + x0))

+
λ1

γ
‖w + x0‖1 +

λ2

γ2
‖w + x0‖22,

where h1,h2 ∈ Rn are independent standard normal vectors. Alter-
natively, since w = γx−x0, we can express the above optimization
over x instead as

min
x∈B

max
u

√
‖x‖22 + ‖x0‖22 − 2γxT0 x + nσ2

zg
Tu− n

4
‖u‖22

− ‖u‖2(γh1 + εh2)Tx + ‖u‖2hT1 x0 + λ1‖x‖1 + λ2‖x‖22.
Fixing the norm of u to β := ‖u‖2, we can easily optimize over

its direction by aligning it with g further simplifying the (AO) to

max
β≥0

min
x∈B

√
nβ

√
1

n
(‖x‖22 + ‖x0‖22 − 2γxT0 x) + σ2

z‖g‖2

− β(γh1 + εh2)Tx + βhT1 x0 −
nβ2

4
+ λ1‖x‖1 + λ2‖x‖22. (10)

To have a separable optimization problem, we use the following
variational form:

√
χ = min

α>0

α
2

+ χ
2α
, where

χ =
1

n
(‖x‖22 + ‖x0‖22 − 2γxT0 x) + σ2

z . (11)

which reduces (10) to

min
τ>0

max
β≥0

βτ‖g‖22
2

+
nβσ2

z

2τ
− nβ2

4
+
β‖x0‖22

2τ

+ βhT1 x0 +

n∑
i=1

(
min

l≤xi≤u
(
β

2τ
+ λ2)x2

i

− β
(
hi +

γx0,i

τ

)
xi + λ1|xi|

)
, (12)

where τ :=
√
nα
‖g‖2

, and θ = β
2τ

+ λ2. We need to prove that the
optimal β∗, denoted by βn, is positive alomst surely. To do so,
suppose by contradiction that βn = 0. First, it is possible to show
using problem (10) that βn = 2max{0,√χ ||g||√

n
− 1
n
h̃Tx+ 1

n
hT1 x0},

where h̃ = γh1 + εh2. If βn = 0, then this is equivalent to say that

√
χ
||g||√
n
− 1

n
h̃Tx +

1

n
hT1 x0 ≤ 0. (13)

If βn = 0, the problem in (12) simplifies to the following:∑n
i=1 min

l≤xi≤u
λ2x

2
i + λ1|xi|, which implies that the optimal x is

the zero vector. Consequently,
√
χ ||g||√

n
− 1

n
h̃Tx + 1

n
hT1 x0 =√

1
n
||x0||2 + σ2

z
||g||√
n

+ 1
n
hT1 x0. Recall that h1 is a standard Gaussian

vector and then 1
n
hT1 x0 converges almost surely to zero. Hence, the

latter quantity is almost surely strictly positive, which contradicts
(13), i.e. the assumption βn = 0. Thus, βn > 0 almost surely. After
some algebraic manipulations, we can write

min
τ>0

max
β>0

βτ‖g‖22
2

+
nβσ2

z

2τ
− nβ2

4
+ βhT1 x0

+

n∑
i=1

(
β

2τ
− β2γ2

4θτ2
)x2

0,i −
β2γ

2θτ
hix0,i −

β2

4θ
h2
i

+ 2θ

( n∑
i=1

min
l≤xi≤u

1

2
(xi −

β

2θ
(
γ

τ
x0,i + hi))

2 +
λ1

2θ
|xi|
)
.

The optimization over xi can be solved in closed-form using the
saturated soft-thresholding operator η(a;λ, l, u) = argminl≤x≤u
1
2
(x− a)2 + λ|x| defined as:

η(a;λ, l, u) =



u , if a > u+ λ

a− λ , if λ < a < u+ λ

0 , if |a| ≤ λ
a+ λ , if l − λ < a < −λ
l , if a ≤ l − λ.

(14)

Also, let e(a;λ, l, u) = minl≤x≤u 1
2
(x−a)2 +λ|x| which is defined

as:

e(a;λ, l, u) =



1
2
(u− a)2 + λu , if a > u+ λ

λa− 1
2
λ2 , if λ < a < u+ λ

1
2
a2 , if |a| ≤ λ
−λa− 1

2
λ2 , if l − λ < a < −λ

1
2
(l − a)2 − λl , if a ≤ l − λ.

(15)

Then, the above optimization problem finally simplifies to the
following Scalar Optimization (SO) problem:

min
τ>0

max
β>0

D̃(τ, β,g,h) :=
βτ‖g‖22

2
+
nβσ2

z

2τ
− nβ2

4

+

n∑
i=1

(
β

2τ
− β2γ2

4θτ2
)x2

0,i + (β − β2γ

2θτ
)hix0,i −

β2

4θ
h2
i

+ 2θ

n∑
i=1

e

(
γβ

2θτ
x0,i +

β

2θ
hi;

λ1

2θ
, l, u

)
. (16)
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D. Probabilistic asymptotic analysis of the (SO) problem
After simplifying the (AO) to its form in (16), we are now

in a position to analyze its limiting behavior. First, we need to
properly normalize the objective function in (16) by dividing it by
n. Then, using the weak law of large numbers (WLLN), we have2:
1
n
‖g‖22

P−→ δ, 1
n
‖h‖22

P−→ 1, 1
n
‖x0‖22

P−→ κ and 1
n
hTx0

P−→ 0.
Also, using the WLLN, it can be shown that for all τ > 0 and
β > 0, 1

n

∑n
i=1 e(

γβ
2θτ

x0,i + β
2θ
hi;

λ1
2θ
, l, u)

P−→ E[e( γβ
2θτ

X0 +
β
2θ
H; λ1

2θ
, l, u)], and 1

n

∑n
i=1 x̃i

P−→ E[η( γβ
2θτ

X0 + β
2θ
H; λ1

2θ
, l, u)],

where x̃ is the solution of (AO) defined in (10) and H is a scalar stan-
dard normal random variable. Therefore, the point-wise convergence
in τ and β of the objective function in (16) is D(τ, β) := βτδ

2
+
βσ2

z
2τ
−

β2

4θ
(θ+ 1) + ( β

2τ
− β2γ2

4θτ2
)κ+ 2θEX0,H [e( γβ

2θτ
X0 + β

2θ
H; λ1

2θ
, l, u)].

Furthermore, it is possible to show that with probability one, the
functions τ 7→ maxβ>0D̃(τ, β,g,h) and τ 7→ maxβ>0D(τ, β) are
convex in τ . Hence, it is possible to show using Theorem 2.7 in
[26] that τn(g,h)

P−→ τ∗. Likewise, it can be similarly proved that
βn(g,h)

P−→ β∗.

E. Applying the CGMT
Now, we are in a position to study the convergence limit of the

MSE of the Box-EN. First, recall from (11) that 1
n
‖x̃ − x0‖22 =

‖g‖22
n
τ2n(g,h) + 2

n
(γ − 1)x̃Tx0 − σ2

z . Moreover, it can be shown
that 1

n
x̃Tx0

P−→ E[η( γβ∗
2θ∗τ∗

X0 + β∗
2θ∗

H; λ1
2θ∗

, l, u)X0] := Υ(τ∗, β∗).

Using τn(g,h)
P−→ τ∗, and βn(g,h)

P−→ β∗, we can show that:
1

n
‖x̃− x0‖22

P−→ δτ2∗ − σ2
z + 2(γ − 1)Υ(τ∗, β∗)

:= M(τ∗, β∗). (17)

The last step is to use the CGMT to prove that the quantities x̂−x0

and x̃−x0 are concentrated in the same set. Formally, for any fixed
ζ > 0, we define the set S =

{
r :
∣∣ 1
n
‖r‖22 −M(τ∗, β∗)

∣∣ < ζ
}

.
Equation (17) proves that for any ζ > 0, x̃−x0 ∈ S with probability
one. Then, we conclude using the CGMT that x̂ − x0 ∈ S with
probability one. The asymptotic prediction of the MSE is summarized
in Theorem 1 given in the next section.

IV. MAIN RESULTS

This section summarizes our main results on the precise analysis
of the mean squared error and the probability of support recovery of
the Box-EN. We use standard notation plim Xn = X to denote that
a sequence of random variables Xn converges in probability towards
a constant X .
Theorem 1 (Box-EN MSE). Fix λ1, λ2 > 0, and let x̂ be a
minimizer of the Box-EN problem in (5), where A, z and x0 satisfy
the working assumptions of Section II-A. Then, in the limit of
m,n→ +∞,m/n = δ, it holds:

plim
1

n
‖x̂− x0‖22 = δτ2∗ − σ2

z

+ 2(γ − 1)EX0∼pX0
H∼N(0,1)

[
η

(
γβ∗

2θ∗τ∗
X0 +

β∗
2θ∗

H;
λ1

2θ∗
, l, u

)
X0

]
,

(18)

where θ∗ = β∗
2τ∗

+ λ2, and (τ∗, β∗) is the unique solution to the
following:

min
τ>0

max
β>0

D(τ, β) :=
βτδ

2
+
βσ2

z

2τ
− β2

4θ
(θ + 1)

+ (
β

2τ
− β2γ2

4θτ2
)κ+ 2θEX0,H

[
e

(
γβ

2θτ
X0 +

β

2θ
H;

λ1

2θ
, l, u

)]
.

(19)

2We write “ P−→” to designate convergence in probability.

Remark 1 (Optimal Solutions). Note that τ∗ and β∗ can be efficiently
computed by writing the first order stationary point conditions, i.e.,
∇(τ,β)D(τ, β) = 0.
Remark 2 (Optimal Regularizers). Theorem 1 can be used to find
the optimal pair of regularizers (λ1, λ2) that minimizes the MSE.
Remark 3. For a sparse Bernoulli vector x0, the expectation in (18)
is given by:

E
[
η

(
γβ∗

2θ∗τ∗
X0 +

β∗
2θ∗

H;
λ1

2θ∗
, l, u

)
X0

]
= κuQ(

2θ∗(u− ξ) + λ1

β∗
)

+ κlQ(
2θ∗(ξ − l) + λ1

β∗
) + κ

∫ 2θ∗(u−ξ)+λ1
β∗

λ1−2θ∗ξ
β∗

(ξ +
β∗h− λ1

2θ∗
)p(h)dh

+ κ

∫ −2θ∗ξ−λ1
β∗

2θ∗(l−ξ)−λ1
β∗

(ξ +
β∗h+ λ1

2θ∗
)p(h)dh, (20)

where p(x) = 1√
2π
e−x

2/2 is the pdf of a standard Gaussain random
variable and Q(x) is its associated Q-function. The expectation in
(19) can be found in a similar way.

The following Theorem precisely characterizes the support recov-
ery metrics introduced in (3).

Theorem 2 (Probability of support recovery). Under the same
settings of Theorem 1 and for any fixed ξ > 0, and in the limit
of m,n→ +∞,m/n = δ, it holds that:

plim Φξ,on(x̂) = P
[∣∣∣∣η( γβ∗

2θ∗τ∗
X0 +

β∗
2θ∗

H;
λ1

2θ∗
, l, u

)∣∣∣∣ ≥ ξ],
(21)

and
plim Φξ,off(x̂) = P

[∣∣∣∣η( β∗
2θ∗

H;
λ1

2θ∗
, l, u

)∣∣∣∣ ≤ ξ]. (22)

The proof of Theorem 2 is also based on the CGMT and largely
follows the proof of Theorem 1 but is omitted for space limitations
(see [19] for a similarly detailed treatment).
Remark 1 (Small/Large Regularizers). From Theorem 2, it can be seen
that as λ1 becomes large Φξ,off(x̂) converges to one while Φξ,on(x̂)
converges to zero. Opposite behavior is observed when λ1 takes
values close to zero. This behavior is expected since large values of
λ1 parameter put more emphasis on the `1-norm term, thus promoting
sparser solution. This is clearly depicted in Figure 3.
Remark 2 (Optimal Regularizers). In order to trade-off between on-
and off- support recovery probabilities a reasonable performance
metric will be Φξ = ωΦξ,on +(1−ω)Φξ,off for ω ∈ [0, 1]. Theorem 2
precisely characterizes the behavior of this as a function of (λ1, λ2);
thus, it determines the optimal value of (λ1, λ2) that minimizes Φξ
[27].
Remark 3. The parameters l and u generally do not need to be tuned
because the support of the signal is known (take the example of
digital communication systems where the constellation is known by
both the transmitter and the receiver). Hence, the choice of l and u
is straightforward, i.e. l = min x0 and u = max x0.
Remark 4. For a sparse Bernoulli vector x0, the expressions in (21),
and (22) simplify to

plim Φξ,on(x̂) =Q(
2θ∗ξ + λ1

β∗
+
γ

τ∗
) +Q(

2θ∗l − λ1

β∗
− γ

τ∗
)

+Q(
2θ∗ξ + λ1

β∗
− γ

τ∗
)− 1, (23)

and
plim Φξ,off(x̂) = 1−Q(

2θ∗ξ + λ1

β∗
). (24)

Remark 5. Theorems 1 and 2 can also be used to characterize the
performance of the standard EN by letting l → −∞, and u →
∞, in which the saturated soft-thresholding operator reduces to the
conventional soft-thresholding operator. To the best of our knowledge,
the precise analysis of the standard EN under matrix uncertainties has
not been studied before as well. However, we focus in this paper on
the Box-EN since it generalizes the standard EN and gives better
performance as compare to the standard one.
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Fig. 1. MSE of the Box-EN and the EN. This figure shows that the former outperforms
the latter. Theoretical prediction is based on Theorem 1 with λ1 = 0.1. For the
simulations, we used κ = 0.1, ε2 = 0.1, δ = 0.7, n = 500, SNR = 0.5.
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Fig. 2. MSE of the Box-EN as a function of λ1, λ2 for a sparse Bernoulli signal. We
used δ = 0.7, κ = 0.1, ε2 = 0.1, n = 500, and SNR = 0.5.

V. NUMERICAL RESULTS

For illustration, we focus only on the case where x0 has entries
that are sampled iid from a sparse-Bernoulli distribution with P[X0 =
0] = 0.9 and P[X0 = 1] = 0.1 (i.e. κ = 0.1). A natural choice for
the box-constraint values in this situation is to set l = 0, and u = 1.
Figure 3 shows the close agreement between the asymptotic mean
squared error (MSE) of the Box-EN as predicted by Theorem 1 and
numerical simulations. The simulation results are averages over 100
realizations of A and z with n = 500 and δ = 0.7. This figure also
demonstrates that the Box-EN outperforms the standard EN.
From Figure 3, we can see that as the regularizer λ2 is varied, we
notice a pronounced minimum for some λ2 > 0. We also we plotted
the MSE as a function of both λ1, and λ2 in Figure 2. The marked
point is the point corresponding to the minimum value of MSE. As
we can see from this figure, the optimal pair (λ1, λ2) that minimizes
the MSE is non-zero for both λ1, and λ2.
• For ε2, which is the variance of the estimation error, as ε2

increases we get worse and worse MSE values as shown in
Figure 4 below. This is clear, since poor estimation of the
measurement matrix would result in a poor signal recovery.

• For δ, which is defined as δ = m
n

, we plotted (in Figure 5) the
MSE for a different values of δ while fixing all other parameters.
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Fig. 3. MSE of the Box-EN for different values of ε2. We used λ1 = 0.1, κ =
0.1, δ = 0.8, n = 500, SNR = 0.5.
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Fig. 4. MSE of the Box-EN for different values of δ. We used λ1 = 0.1, κ =
0.1, ε2 = 0.1, n = 500, and SNR = 0.5.

The MSE is better as δ increases. For δ < 1, we have an
underdetermined system which makes the signal recovery more
challanging than the case of an overdetermined system which
corresponds to δ > 1.

The prediction of Theorem 2 for the probability of support recovery
is compared with the corresponding values obtained via numerical
simulations and is plotted in Figure 5. This figure again shows the
high accuracy of the proposed theoretical predictions.

VI. CONCLUSIONS

In this paper, we have used the recently developed Convex
Gaussian Min-max Theorem (CGMT) framework to derive precise
asymptotic characterizations of the mean squared error (MSE) and
probability of support recovery of the Box-Elastic Net (Box-EN)
under the presence of uncertainties in the measurement matrix.
Numerical simulations show the close agreement to the proposed the-
oretical predictions. Also, we showed that the Box-EN outperforms
standard Elastic-Net. These predictions can be used to optimally
tune the involved parameters of the algorithm. Finally, we note that
following the same steps as in this paper, our results can be used to
characterize the performance of the standard EN.
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