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Abstract—Cyber-attacks can seriously affect the security of
computers and network systems. Thus, developing an efficient
anomaly detection mechanism is crucial for information protec-
tion and cyber security. To accurately detect TCP SYN flood
attacks, two statistical schemes based on the continuous ranked
probability score (CRPS) metric have been designed in this paper.
Specifically, by integrating the CRPS measure with two conven-
tional charts, Shewhart and the exponentially weighted moving
average (EWMA) charts, novel anomaly detection strategies were
developed: CRPS-Shewhart and CRPS-EWMA. The efficiency of
the proposed methods has been verified using the 1999 DARPA
intrusion detection evaluation datasets.
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I. INTRODUCTION

Computer networks and internet are continuously exposed to
many viruses and cyber-attacks [1], [2]. Denial of service and
distributed denial of service (i.e., DOS and DDOS) attacks at-
temp to disrupt networks’ availability and suspend the usability
of their hosted services [3]. In last few years, several cyber-
attacks were performed against different targets, such as the
American presidential election, the Rio De Janero Olympics
games, the US Domain Name System (DYN), the Russian
Banking System, Qatar News Agency, the US department of
defense, the Android users, the NSA and the German armed
forces [4].

Practically, flooding cyber-attacks, such as DOS and DDOS
attacks (e.g., TCP SYN flooding, UDP flooding and ICMP-
amplification) overwhelm the network’s infrastructures with
an important volume of traffic [5]. Other types of DOS and
DDOS attacks, such as IP fragmentation, Land and Ping of
death, utilize a deformed message (e.g., size exceeds 64 Ko,
wrong fragments and wrong IP address) [6]. TCP SYN flood
are usually exploited by attackers. It was used in more than
75% of attacks launched between september and december
2016. Hence, To reinforce the security of networks systems,
SYN flooding attack must be reliably and correctely identi-
fied before they slowdown the performance of the inspected
system.

Due to the increasing need for improved cybersecurity,
several techniques aimed at detecting SYN flood attacks have
been proposed. In [7], a non-parametric CUSUM algorithm
was used in detecting SYN flooding attacks at leaf router.
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The method in [8] the linear prediction analysis and the
difference between outgoing SYN and incoming SYN/ACK
segments to detect SYN flood. In [9], the detection of TCP
SYN flooding attack has been achieved based on SYN and
SYN/ACK segments with the consideration of packets header
information. In [10], an adaptive threshold-based approach
and CUSUM algorithm were used to detect SYN Flooding
Attacks based on SYN segments. In [11], TCP connection
requests are controlled by the firewall which forwards them to
a server only if it receives the client ACK. However, with this
solution, the firewall risks to be overloaded and the related
network becomes more vulnerable. In [12], SYN flood attacks
are identified according to the periodicity of a signal created
from the incoming TCP traffic. Unfortunately, a high rate of
false alarms can be introduced and get an appropriate modeling
of the normal TCP flow. Schuba et al. [13] analyzed the
network traffic to build an IP-based trust mechanism. Basicevis
et .al [14] proposed an approach based on the Tsallis entropy.
In the literature, there has been much discussion on machine
learning algotithms to mitigate DOS attacks including support
vector machines [15], neural network [16] and K-Nearest
Neighbors [17].

Detection of SYN flood attacks is significant for guarantee-
ing cyber security and information protection. The main focus
in this paper is to design an anomaly detection mechanism that
can detect SYN flood attacks. Towards this end, we exploit
advantages of statistical monitoring charts, such as Shewhart
and the exponentially weighted moving average (EWMA)
charts [18]-[20], and the benefit of the continuous ranked
probability score (CRPS) metric [21], [22]. Specifically, we
propose two statistical monitoring charts to detect SYN flood
attacks: CRPS-Shewhart and CRPS-EWMA. To assess the
performance of these two charts, we used the 1999 DARPA
intrusion detection evaluation dataset.

In Section II we present the basic idea of SYN flooding
attack. In Section III, we briefly review the introduced CRPS-
based monitoring charts. Section IV reports the experimental
results using DARPA99 dataset. Finally, Section V concludes
this paper.



II. SYN FLOOD ATTACKS

SYN flood attack stills the most popular to perform a
DOS/DDoS attack against any TCP-based services such as
Web servers, FTP servers or Mail servers. To request a
new connection, user sends, to the server, a synchronization
segment (SYN) (Figure 1). Then, to acknowledge (ACK)
this synchronization demande, the server responds with the
SYNchronization’s ACKnwoledgement segemnt (i.e., SYN-
ACK) and put this session in the backlog queue rezerved to the
half-open sessions. Finally, the user confirms his request by
the ACK segment and the session is established. It is notable
that any connection request will remain in the backlog queue
until the server receives the user’s acknowledgment. otherwise,
the session will remain half-open until his lifetime expires [7].
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Figure 1. Schematic illustration of TCP connection steps.

To create a TCP SYN flood attack, attackers create im-
portant stream of half-open sesssions, enough to saturate the
victim’s ressources. Accordingly, the victim cannot handle
more sessions, even from legitimate users, and the hosted
services become pratically inaccessible. There are two differ-
ent strategies to carry out such attack [23], [24]: (1) hacker
sends many SYN and ignores the SYN-ACK from the server
(Figure 2). (2) hacker spoofs an IP address to establish a
connecion with the victim which should acknwoledge this
request and sends the SYN-ACK to the fake address. Since
this fake IP address is unreachable or did not initiated such
connection request, the victim will never receive the user’s
Acknowledgement. To achieve SYN flood DDOS attack, the
attacker compromises numerous zombie machines and then
exploits them to attack simultaneously the target server. Each
zombie launch, obviously, a SYN flood DOS attack [24].
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Figure 2. A procedure of SYN flooding attacks.

III. CRPS-BASED MONITORING CHARTS

To develop an effective anomaly detection mechanism, we
have merged the CRPS measure with two commonly statistical

schemes, Shewhart and EWMA. The CRPS quantify the
deviation between the actual observation and the cumulative
distribution of the training data [25]. CRPS has a good
sensitivity to changes and it is relevant for online monitoring.

The main reason of using CRPS metric in anomaly detection
is its capability to measure the distance between a full distri-
bution and an observation [21] (Figure 3). The CRPS between
the observation, z, and the CDF, F', is computed as [21], where
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distribution, the CRPS metric is given by where ¢ and ® are
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respectively the standard Gaussian PDF and CDF.
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Figure 3. An illustration of CRPS: PDF (a) and (b) CDF.

A. CRPS-Shewhart detection mechanism

Shewhart monitoring procedure was first introduced by
Walter Shewhart for quality control [26], [27]. It is appropriate
to reveal anomalies with large mean shifts. Unfortunately, it is
not sensitive to uncover small changes [28]. In the proposed
CRPS-Shewhart mechanism, Shewhart scheme is employed to
monitor CRPS measurements for anomaly detection. Generally
speaking, when the i-th CRPS value is beyond the control
limits, then the inspected network is normal. Otherwise, we
signal the presence of an abnormal event (attack) in the
network. The CRPS-Shewhart thresholds are defined as,

LCL,,UCLg = pu§ PS5 £ 305RFS, (3)
where p§BFPS and o represent the mean and standard
deviation of CRPS measurements in the absence of anomalies.
B. CRPS-EWMA detection mechanism

In CRPS-EWMA chart, EWMA scheme is used to moni-
tor CRPS measurements for anomaly detection. The CRPS-
EWMA detection rule is calculated as follows [26],

2P = AORPS; + (1 - 224", @)

CRPS
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where C'RPS; is the present CRPS measurement, zgj RPS

represents the anomaly-free mean of CRPS measurements,
u§FPS. X (0 < A < 1) is a smoothing parameter. Generally, it
is selected between 0.1 and 0.3 to detect small changes [26].
The CRPS-EWMA thresholds are given by,

LOL,UCL = u§TPS + Lo§RPS \/ (=%

IV. EXPERIMENTAL RESULTS

This section reports on the efficiency of the proposed CRPS-
based EWMA and Shewhart mechanisms to uncover SYN
flooding attacks. Our proposed mechanisms are compared with
the conventional Shewhart and EWMA charts. To this end, we
performed experiments on the DARPA 99 dataset [29].

A. Description of DARPA99 dataset

Now, the detection capacity of the introduced mechanisms is
evaluated using the DARPA 99 dataset, which is one of well-
known datasets used for assessing intrusion detection mecha-
nisms [29]. The topology of the network used to generate this
data is illustrated in Figure 4. It comprises five weeks of data
(3 weeks of attack-free data and 2 weeks of testing data) [30].

B. Detection of SYN flood attacks:

The following steps have been conducted to detect possible
attacks in the DARPA99 dataset.

(1) We compute the control limits of each chart using training
data of DARPA99/SYN.

(2) We selected L = 2.7 and A = 0.1 in EWMA-based
detection mechanisms, which provide sensitive detection
capacity to small changes.

(3) We calculate the decision rules of CRPS-Shewhart,
CRPS-EWMA, EWMA and Shewhart chart for testing
data.

(4) We signal SYN flood attacks when the decision rules
overpass the decision thresholds.

1) Scenario with intermittent SYN flood attacks with dif-
ferent intensities: In this scenario, we investigate the ability
of the CRPS-Shewhart and CRPS-EWMA mechanisms to
detect intermittent SYN flood attacks with different intensities.
Intermittent SYN flood attacks occur and disappear repeatedly.
Ten minutes of SYN flooding is incorporated in the testing
data every three hours. Figure 5(a-d) illustrates the results of
the studied mechanisms. Figure 5(a) and Figure 5(c) show that
Shewhart and CRPS-based charts detect these attacks but with
several false alarms. On another hand, CRPS-EWMA chart
detects these attacks without false alarms (Figure 5(d)). It can
be see that the CRPS-based mechanisms are more efficient
than the conventional charts (Figure 5). Due to their high
sensitivity, they can detect even attacks with lower intensities.
This behavior confirms the ability of CRPS to reveal small
anomalous traffic.

2) DARPA 99 SYN flood attacks: Here, we investigate
the ability of CRPS-based Shewhart and EWMA mecha-
nisms to detect SYN flood attacks occurred on the traffic
of week 5, day 2 of DARPA 99 data [29]. This traffic data
includes two attacks. The first starts at 11h38mn0O4s against
Marx (@IP:172.16.114.50) with a duration of 13mn41s. The
second attack was at 18h16mn05s against the router (@IP:
192.168.1.1) for 3mn26s. Figure 6(a-d) illustrates the detection
results of the four procedures. Results show that the proposed
method CRPS-EWMA outperformed Shewhart, EWMA and
CRPS-Shewhart, and exhibited the highest accuracy. The
CRPS-EWMA scheme correctly detect these attacks without
false alarms.

V. CONCLUSION

We design efficient anomaly detection mechanisms to de-
tect SYN flood DOS and DDOS attacks. These mechanisms
merges the benfits of CRPS metric and univariate monitoring
schemes, Shewhart and EWMA. CRPS is applied to mea-
sure the deviation between the actual observation and the
distribution of the anomaly-free data. EWMA and Shewhart
schemes are applied to CRPS measurements to uncover denial
of service SYN flood attacks. We assessed the detection
capability of these charts via the publicly available DARPA
99 dataset. Results indicate that CRPS-Shewhart and CRPS-
EWMA present higher sensibility than Shewhart and EWMA
chart in detecting SYN flood attacks.
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Figure 5. Results of Shewhart (a), EWMA (b), CRPS-Shewhart (c) and
CRPS-EWMA mechanisms (d) in the presence of intermittent SYN flood
attacks.

Figure 6. Results of Shewhart (a), EWMA (b), CRPS-Shewhart (c) and
CRPS-EWMA mechanisms (d) for DARPA 99 SYN flood attack in the second
day of week 5.
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