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ABSTRACT 

Microbial taxa range from being ubiquitous and abundant across space to extremely rare and 

endemic, depending on their ecophysiology and on different processes acting locally or regionally. 

However, little is known about how cosmopolitan or rare taxa combine to constitute communities and 

whether environmental variations promote changes in their relative abundances. Here we identified 

the Spatial Abundance Distribution (SpAD) of individual prokaryotic taxa (16S rDNA-defined 

Operational Taxonomic Units, OTUs) across 108 globally-distributed surface ocean stations. We 

grouped taxa based on their SpAD shape (‘normal-like’- abundant and ubiquitous; ‘logistic’- globally 

rare, present in few sites; and ‘bimodal’- abundant only in certain oceanic regions), and investigated 

how the abundance of these three categories relates to environmental gradients. Most surface 

assemblages were numerically dominated by a few cosmopolitan ‘normal-like’ OTUs, yet there was a 

gradual shift towards assemblages dominated by ‘logistic’ taxa in specific areas with productivity and 

temperature differing most from the average conditions in the sampled stations. When we performed 

the SpAD categorization including additional habitats (deeper layers and suspended particles), the 

SpAD of many OTUs changed towards fewer ‘normal-like’ shapes, and OTUs categorized as globally 

rare in the surface ocean became abundant. This suggests that understanding the mechanisms behind 

microbial rarity and dominance requires expanding the context of study beyond local communities 

and single habitats. We show that marine bacterial communities comprise taxa displaying a 

continuum of SpADs, and that variations in their abundances can be linked to habitat transitions or 

barriers that delimit the distribution of community members. 
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INTRODUCTION  

Microorganisms, comprising much of the living diversity across terrestrial and aquatic ecosystems, 

are the engines driving global biogeochemical cycles (Falkowski et al. 2008). A decade of 

biogeographic studies has established that the composition of microbial assemblages is determined by 

the influence of local (environmental conditions, ecological interactions) or regional factors 

(dispersal, Hanson et al. 2012, Martiny 2015), as well as by the different ecological strategies of taxa 

(Livermore et al. 2014; Salcher et al. 2014; Kirchman 2016). In the case of prokaryotes, this 

frequently results in a pattern wherein a few taxa are remarkably abundant and ubiquitous across 

space, while the majority remains rare and restricted to few sites (Nemergut et al. 2011; Salazar et al. 

2016), even across highly heterogeneous habitats (Zinger et al. 2011; Ruiz-González et al. 2017). The 

reasons behind these patterns are not fully understood. Some studies have linked the ubiquity of taxa 

to their genomic content and metabolic versatility, showing that whereas the most ubiquitous bacteria 

in the surface oligotrophic ocean have simplified and streamlined genomes (Lauro et al. 2009, Swan 

et al. 2013), those from soils show large genomes and high metabolic versatility (Barberán et al. 

2014). Also, the widespread distribution of certain prokaryotes has been associated with their capacity 

to persist in unfavorable conditions upon dispersal (i.e., as dormant or spores, as suggested by Hubert 

et al. 2009; Ruiz-González et al. 2015, 2017, Mestre et al. 2018). Still, however, little is known about 

how cosmopolitan or rare taxa assemble to constitute communities, and whether environmental 

transitions or dispersal barriers promote shifts in their abundances. 

Given that closely related microbial taxa may respond differently to the same environmental 

drivers (Teeling et al. 2012; Jezberová et al. 2017), grouping them based on their spatio-temporal 

patterns may allow partitioning communities into groups of species that share ecological strategies or 

similar biogeography. For example, the exploration of the temporal dynamics of individual taxa 

allowed identifying specific strategies shared among taxonomically different bacteria, such as 

opportunists that bloom under favorable conditions (i.e., Shade et al. 2014; Alonso-Sáez et al. 2015; 

Lindh et al. 2015) or sequential responses to perturbations like soil rewetting or starvation (Aanderud 

et al. 2015; Sebastián et al. 2018). Conversely, knowledge of the spatial distribution of individual taxa 
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may provide insight into their persistence capacities and niche breadth, as well as into different 

dispersal-related processes governing their presence. This is particularly relevant in the case of 

prokaryotes, which are less affected by geographical barriers (e.g., Mayol et al. 2017; Reche et al. 

2018; Mestre et al. 2018; Logares et al. 2018) than other organisms, and are able to persist out of their 

suitable niches for longer times until favorable conditions are encountered (Lennon and Jones 2011; 

Hervàs et al. 2009, Langenheder et al. 2016, Sebastián et al. 2018). 

Delineating spatial patterns of individual prokaryotes thus requires considering the potential 

dispersal-driven connectivity between local communities, and a larger degree of environmental 

heterogeneity than for other organisms. For example, classifying individual bacterial taxa based on the 

shape of their spatial abundance distribution (SpADs) across ca. 200 lake communities, an approach 

that had been only applied to macroorganisms (Conlinsk et al. 2012), Niño-García et al. (2016a) were 

able to identify groups of bacteria displaying contrasting spatial patterns underlain by different 

assembly processes: A pool of ‘core’ abundant lake taxa structured by in-lake conditions, and a vast 

number of rare taxa passively dispersed by rivers into the lakes. This study exemplifies that the 

mechanism explaining rarity in lake bacteria (i.e. hydrologic dispersal of allochthonous taxa) can only 

be understood when considering the spatial distribution of bacteria beyond the lake habitat itself, i.e., 

in the associated river network. Moreover, it suggests that given the high dispersal and persistence of 

microbes, or understanding of microbial dominance and rarity might be largely influenced by the 

spatial context wherein we study them, an issue rarely contemplated in microbial biogeographic 

investigations. 

Compared to freshwater and terrestrial ecosystems, defining dispersal routes, habitat transitions 

and geographic barriers of individual microbial taxa in the global ocean is less obvious, particularly in 

the relatively homogenous surface subtropical and tropical ocean. Despite the effort to identify 

oceanic provinces (Longhurst, 1998), surface planktonic bacterial communities do not clearly reflect 

these environmental divisions (Gibbons et al. 2013, Ladau et al. 2013, Sunagawa et al. 2015). In 

addition, compared to macroorganisms, our understanding of the environmental and spatial 

heterogeneity that individual microbes sense is much more limited (e.g. Stocker 2012). Exploring 
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local variations in the abundances of groups of taxa displaying different spatial distributions across 

the ocean (i.e. differing in their SpADs), may thus provide extra layers of information regarding taxa 

occurrence that cannot be derived from biogeographic patterns in taxonomic composition. For 

example, identifying whether taxonomic changes are caused by local increases in the contribution of 

cosmopolitan or endemic microbial taxa might allow delineating relevant ecotones or dispersal 

barriers in the ocean, as well as gaining insight into the mechanisms behind taxa persistence, ubiquity 

and rarity.  

We thus hypothesize that bacterial communities are composed of taxa displaying a continuum of 

spatial distribution patterns, ranging from highly ubiquitous to rare and endemic, and that variations in 

their contribution to communities will reflect shifts in fundamental structuring processes linked to 

habitat transitions or dispersal barriers in the ocean (e.g. Baltar et al. 2016). To test this hypothesis, 

we characterized the SpAD-based structure of the prokaryotic communities across the global 

subtropical and tropical surface ocean. We  i) identified the large-scale SpADs of 9,210 individual 

taxa across 108 surface free-living prokaryotic communities sampled from the Atlantic, Indian and 

Pacific oceans during the Malaspina 2010 Circumnavigation Expedition (Duarte 2015), ii) grouped 

these taxa based on their SpADs, and iii) explored whether the SpAD-based community structure 

varied along environmental gradients. We further assessed how the individual spatial patterns of taxa 

(i.e., their SpAD categorization) changed when including additional oceanic habitats (deeper ocean 

layers and particles of different sizes). Since these pattern-based categorizations should be 

conditioned by the nature of the spatial context considered, we expected that this information would 

allow delineating environmental breadths and persistence capacities of individual taxa, as well as 

inferring the spatial limits to their cosmopolitanism or rarity. 
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MATERIALS AND METHODS 

Study area, sampling design and basic parameters 

The Malaspina 2010 circumnavigation expedition (Duarte 2015) was conducted between 

December 2010 and July 2011 on board R/V Hespérides through the tropical and subtropical global 

ocean. A total of 108 stations located along the tropical and subtropical Atlantic, Indian, and Pacific 

oceans (Fig. 1) were sampled. At each station, surface water (3 m) was sampled with a 20 L Niskin 

bottle. Additionally, in eight of these stations (see asterisks in Fig. 1) water from three other layers 

(Deep Chlorophyll Maximum (DCM, 48-150 m), the mesopelagic (250-670 m) and the bathypelagic 

(3105-4000 m)) was sampled with a rosette of Niskin bottles mounted on a conductivity–temperature–

depth (CTD) profiler (Seabird SBE 911). Water was pre-filtered through a 200 μm to remove large 

plankton. Salinity, temperature and dissolved oxygen were recorded at each station with the CTD 

sensors installed in the rosette sampler. Concentration of nutrients (nitrate, phosphate, and silicate), as 

well as estimations of the mixed layer depth (MLD) and daily and monthly solar radiation (SWR), 

were determined as explained in Catalá et al. (2016). 

 

Biological parameters 

Prokaryotic abundances, cell sizes, and the number of cells with high nucleic acid content (HNA) 

were determined by flow cytometry as described in Gasol and del Giorgio (2000). Viral abundances 

were estimated by flow cytometry as explained in Lara et al. (2017). Prokaryotic heterotrophic 

production was estimated using the 3H-leucine incorporation method (Kirchman et al. 1985) as 

described in Morán et al. (2017). Chlorophyll a (Chl) concentration was determined as detailed in 

Estrada et al. (2016).  
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Satellite-derived chlorophyll concentration and sea surface temperature 

Satellite-retrieved chlorophyll concentration (Chl) and sea surface temperature (SST) were 

obtained from the Moderate resolution Imaging Spectrometer (MODIS) onboard the Aqua satellite. 

Eight-day global-ocean composites at 9.28 km resolution (level 3-mapped data, 2014.0 reprocessing) 

were downloaded from the NASA Ocean Color Web (https://oceancolor.gsfc.nasa.gov/). For each 

station and variable, an annual time series (46 eight-day periods) ending on the sampling date was 

extracted. To ensure good coverage and avoid data gaps due to clouds, each temporal point was 

represented by the average of a square of 10x10 pixels (93x93 km2) centered on the station 

coordinates. We then extracted the mean over different periods at each station: the time of sampling 

(8-day period), and the month and the year prior sampling. Finally, the departure of a given station 

from prevailing conditions in the global dataset was calculated as the ratio between the local mean 

Chl (or SST) and the global median Chl (or SST) in the entire dataset. 

 

Prokaryotic community composition 

At each of the 108 surface stations, 6-15 L of seawater were sequentially filtered through a 20 μm 

mesh, a 47-mm polycarbonate membrane filter of 3 μm (Merck Millipore, Darmstadt, Germany, 

Isopore polycarbonate) and 0.2 μm (Merck Millipore, Express Plus) pore size with a peristaltic pump. 

We focused on the 0.2–3 μm fraction, which represents mostly free-living bacteria. In addition, at 8 of 

these stations (asterisks in Fig. 1), the prokaryotic communities inhabiting deeper layers and larger 

size-fractions were also characterized by sequentially filtering 10 L of water from the rosette through 

20, 5.0, 3.0, 0.8 and 0.2 µm 47-mm pore-size filters (20 μm pore-size filter from GE Water and 

Process Technologies (Trevose, PA, USA) and the rest from Millipore (Billerica, MA, USA)), 

resulting in size fractions that represent free-living prokaryotes (0.2-0.8 µm), as well as various 

particle-attached fractions (0.8-3; 3-5; 5-20 and 20-200 µm, see Mestre et al. (2018) for details on this 

particular dataset). These different fractions were collected from the surface but also from the DCM, 

mesopelagic, and bathypelagic waters (see above). 
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Genomic DNA was extracted using the standard phenol-chloroform protocol with slight 

modifications (Salazar et al. 2016). The V4-V5 region of the 16S rRNA gene was amplified with the 

primers 515F and 926R (Parada et al. 2016) and sequenced in an Illumina MiSeq platform using 

2x250bp paired-end approach at the Research and Testing Laboratory facility (Lubbock, Texas, USA; 

http://www.researchandtesting.com). Amplicons were processed through a custom-made pipeline 

(Logares, 2017) based on UPARSE (Edgar 2013). Briefly, reads were merged with PEAR (Zhang et 

al. 2014), and sequences >200 bp were used for further processing. Quality check, dereplication, OTU 

clustering (99%), and reference-based chimera filtering (using SILVA v.119) were processed with 

USEARCH (Edgar 2010). Taxonomic assignment of OTU representative sequences was based on 

BLASTing against SILVA v123. Chloroplast and mitochondrial sequences were removed.  To allow 

for comparisons between samples, the OTU table of the 108 free-living surface communities was 

randomly subsampled to the minimum number of reads/sample (n=10,904). An additional OTU table 

(rarefied at 5,390 reads/sample) was constructed with the eight stations where four depths and five 

size-fractions had been characterized. Finally, these two datasets were combined in order to generate 

three additional OTU tables that were used to assess the effect of increasing environmental 

heterogeneity (see below), which were rarefied at 7,061 reads/sample. Raw sequence data have been 

deposited in the European Nucleotide Archive (acc. num. PRJEB25224; ERP109198, ERS2539749–

ERS2539903). Computing analyses were run at the MARBITS bioinformatics platform at the Institut 

de Ciències del Mar (http://marbits.icm.csic.es; ICM, Barcelona, Spain). 

 

Identifying individual prokaryotic spatial abundance distributions  

The analysis of the individual spatial abundance distributions (SpADs) was done as described in 

Niño-García et al. (2016a) using the rarefied OTU table from the 108 surface stations. Briefly, the 

procedure chooses the statistical distribution that best fits the SpADs of each OTU across the 108 

marine stations: First, all OTU abundance distributions (log
10

(x + 1) transformed) that deviate from 

unimodality are identified by computing the Hartigans’ dip test statistic (dip test R package, Maechler 
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2015): Any OTU with a P-value < 0.01 is categorized as having a bimodal distribution. Then, several 

potential model distributions are fit for unimodal OTUs (normal, Weibull, gamma, Cauchy, 

lognormal, logistic, and exponential) using maximum likelihood estimation with the function distfit 

(fitdistrplus R package, Delignette-Muller and Dutang 2014), which also provides the Akaike 

Information Criterion (AIC) used to select the best model for each OTU (i.e. the model showing the 

lowest AIC, see Niño-García et al. (2016a) for details). In total, 7 different types of model 

distributions fitted the different individual SpAD of marine OTUs. Among OTUs having unimodal 

distributions, we could distinguish between those with more symmetrical distributions with various 

degrees of dispersion (normal, Weibull, Cauchy), which were generally abundant and ubiquitous, and 

those with positively skewed distributions with various degrees of asymmetry with the mode 

corresponding to zero abundance (absences). We thus grouped OTUs into 3 SpAD categories: 1) 

OTUs with ‘normal-like’ spatial abundance distributions, which comprised those OTUs presenting 

normal, Weibull, gamma or Cauchy statistical distributions; 2) bimodal OTUs, i.e., those whose 

distribution had two clear density peaks and 3) logistic OTUs, which comprised both logistic and 

lognormal statistical distributions, characterized by a zero abundance mode generated by many 

absences. Even though these two categories of rare taxa (logistic and lognormal) had previously been 

shown to display somewhat different dynamics across boreal lakes (Niño-García et al. 2016a), here 

we observed that their abundances largely covaried throughout the surface ocean (Suppl. Fig. 1) and 

may thus represent a similar distribution. Therefore, for all subsequent analyses, logistic and 

lognormal OTUs were considered together and will be hereafter referred to as ‘logistic’ OTUs.  

We decided to run the SpAD analysis on the rarefied OTU table to avoid sampling biases 

associated to very different sequencing depths across our samples (range 8000 to 147,700 reads), yet 

we acknowledge that by rarefying we may be loosing many rare taxa, probably underestimating the 

total number of ‘logistic’ OTUs.  Since most of the logistic OTUs (95%) remained permanently rare 

(see Results), we believe that losing some rare taxa does not invalidate our results, because it is highly 

likely that in terms of sequences they do not represent a high fraction of the community.  

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Effect of habitat heterogeneity on the SpAD categorization of taxa 

To test how the SpAD categorization of an OTU changes depending on the environmental context 

where it is studied, we repeated the SpAD analysis using three datasets of increasing habitat (and 

spatial) heterogeneity, which were constructed by combining the 108 surface free-living communities 

with different subsets of communities sampled at the eight selected stations (see above, Fig. 1). The 

first dataset included 24 additional surface particle-attached communities associated with the three 

largest size-fractions (3-200 µm), whereas the second dataset incorporated 29 free-living communities 

(0.2-0.8 µm) sampled from the surface, DCM, mesopelagic and bathypelagic waters. The third and 

most heterogeneous dataset included, besides all these, all other particle-attached fractions collected 

from the four depths, resulting in 258 samples in total. 

 

Statistical analyses 

Communities were clustered using non-metric multidimensional scaling (NMDS) analysis based 

on Bray-Curtis distances. The k-means classification algorithm using the best ‘simple structure index 

(‘ssi’) value (i.e., a diagnostic measure to determine the best partition) was run as implemented in the 

vegan R package. The Vegan envfit function (Oksanen et al., 2015) was used to fit environmental 

vectors onto the ordination space. All analyses were performed with R 3.0.0 software (R Development 

Core Team, 2013).  

 

RESULTS 

Sequencing of the 16S rRNA gene from the 108 surface stations resulted in 1,177,632 quality-

checked sequences after rarefaction, which clustered into 9,210 OTUs (at 99% identity). The OTU 

number per sample ranged between 578 and 1,383 (mean ± SD = 1,113 ± 145), and the Shannon 

Index of OTU diversity varied between 2.5 and 5.2 (mean ± SD = 4.2 ± 0.6). Altogether, 23 bacterial 

phyla were detected, yet the total sequences were mainly dominated by Cyanobacteria (49% of the 
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total number of sequences), followed by Proteobacteria (35%), Bacteroidetes (8%), and 

Actinobacteria (5%). The global OTU accumulation curve approached a plateau, suggesting that we 

obtained good but not complete coverage of the surface ocean prokaryotic richness (Suppl. Fig. 2). 

Overall, free-living prokaryotic communities did not show any clear segregation depending on the 

oceanic region, province, or sampling transect (Suppl. Fig. 3a,b), and surface water temperature, 

dissolved oxygen (Suppl. Fig. 3c,d, envfit analysis p<0.001) and salinity (not shown) were the only 

factors showing a significant association to the observed distribution of assemblages.  

 

Distribution of SpAD categories throughout the surface ocean 

All analysed OTU spatial-distributions could be assigned to one of three basic model distributions: 

(1) ‘normal-like’; (2) ‘bimodal’ and (3) ‘logistic’ (see examples of distribution shapes in Fig. 1b–d). 

Briefly, the normal-like category harbored OTUs showing a unimodal symmetrical or slightly 

positively skewed shape, varying around a central value that was always > 0.1% of the local 

abundance, and thus represented regionally abundant and ubiquitous OTUs (Fig. 1b, Fig. 2a,b). These 

OTUs might comprise habitat generalists, as they showed the broadest environmental tolerances 

(Suppl. Fig. 4). The bimodal category included OTUs showing two density peaks, one of which 

corresponded to zero in most cases (Fig. 1c), resulting in OTUs with lower average abundances and 

occurrences (Fig. 2a,b), and which could represent habitat specialists (i.e., taxa with more restricted 

environmental tolerances, Suppl. Fig. 4). Finally, the SpAD of the rarest OTUs followed either a 

logistic or a lognormal distribution, showing a characteristic zero abundance mode due to many 

absences (Fig. 1d), and included OTUs that are globally rare and restricted to few sites (Fig. 2a,b).  

Only 68 OTUs (0.7% of total OTUs) displayed a ‘normal-like’ pattern, yet in terms of their 

abundances they represented the dominant SpAD category, accounting for 55% of the total sequences 

(Fig. 2c). 1,788 OTUs (19%) were categorized as bimodal and made up 34% of total sequences. 

Finally, the logistic category comprised most of the OTUs identified (80%) but represented only 12% 

of the sequences (Fig. 2c). There were no obvious changes in terms of taxonomic composition 
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between the three SpAD categories, but in general most normal-like OTUs were associated to 

Prochlorococcus and SAR11, whereas other groups such as Synechococcus, Flavobacteriia, 

Oceanospirillales, Rhodospirillales or Alteromonadales showed higher contributions among bimodal 

or logistic OTUs (Suppl. Fig. 5).  

The analysis of the distribution of the SPADs across the 108 surface stations unveiled that most 

communities were numerically dominated by normal-like OTUs (Fig. 2d), followed by bimodal OTUs 

and finally by the logistic category of globally rare taxa. However, there were deviations from this 

overall structure in several stations where either bimodal or logistic OTUs showed marked increases 

in their relative abundance with respect to other communities. In most cases these deviations were 

concentrated in particular regions. For example, several contiguous stations in the Equatorial Pacific 

(leg 5), South Atlantic (leg 2) or Indian Ocean (leg 4) showed high proportions of logistic or bimodal 

OTUs, and changes in these proportions varied gradually along the ocean transects (Fig. 2d).  

 

Links between the SpAD-based community structure and in situ environmental gradients 

To explore whether the observed deviations in SpAD-based community structure (Fig. 2d) could 

be associated to variations in environmental or biological factors, we classified prokaryotic 

communities based on the contribution of the SpAD categories. Using a standard k-means 

classification algorithm and the ‘ssi’ criterion to determine the best partition, we grouped 

communities into four clusters. These differed in the relative abundances of the different SpAD 

categories, which were named after their dominant SpAD category (NL: normal-like, BM: bimodal, 

LG: logistic). Most communities (77%) fell into clusters NL1 (n=54) and NL2 (n=29), and 

represented assemblages numerically dominated by normal-like OTUs (avg. 67% and 52% of 

community sequences, respectively, Figs 3a-c), although NL2 had higher contributions of bimodal 

and logistic categories than NL1. Cluster BM comprised 11 communities showing the highest 

proportions of bimodal OTUs, and Cluster LG represented 14 communities characterized by the 

highest contribution of logistic OTUs to total community sequences (Figs. 3a-c). 
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We observed that, except for a few cases, communities from clusters BM and LG appeared 

located together in certain areas (Fig. 3d), such as the Equatorial Pacific, the South Australian Bight 

and the Benguela Coastal province in the South Atlantic. In each of these three areas, we observed 

gradual increases in the proportion of logistic OTUs towards colder temperatures, whereas that of 

normal-like OTUs decreased (Fig. 4 a,c). Bimodal OTUs often showed the maximum contribution 

somewhere in between the temperature gradient (Fig. 4b). This resulted in a gradual change in the 

SpAD-based community structure along the different temperature gradients of each of these three 

regions, which shifted from normal-like (NL) dominated communities towards those with the highest 

proportions of logistic OTUs (LG stations). When all stations were pooled together, however, this 

temperature-driven pattern was no longer apparent, as LG communities occupied both the warmest (7 

Equatorial Pacific sites, ‘LGpac’ stations in Table1) and coldest waters (rest of LG stations). In fact, 

no in situ variable appeared to explain the gradual changes in the relative abundance of SpAD 

categories from NL1 to LG (Table 1). Remarkably, though, all LG communities consistently appeared 

in the most productive sites, showing significantly higher chlorophyll concentrations, % of high 

nucleic acid content (HNA) bacteria, and abundances of viruses (Table 1). Interestingly, the increase 

in relative abundance of logistic taxa was due to just a few OTUs (7 to 19) that became abundant (i.e., 

surpassed at least once the 1% of local relative abundance, Suppl. Fig. 6), rather than an overall 

increase in the number of logistic OTUs. Among these specialized ‘bloomers’, some were associated 

to Flavobacteriia, Rhodobacterales, Oceanospirillales and presumably different ecotypes of 

picocyanobacteria, but their composition differed between the three geographic areas (Suppl. Fig. 6). 

Conversely, most logistic OTUs remained permanently rare across all surface stations.   

 

Changes in SpAD-based community structure due to past environmental conditions  

Given that the different SpAD categories may reflect to some extent differences in the growth rate 

of taxa (e.g., normal-like could be related to oligotrophic taxa, logistic to copiotrophic bloomers), it is 

possible that the contemporary community composition results from a mixture of fast and slow 
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responses of taxa to environmental conditions, remnants of past proliferations, and even 

allochthonous inactive taxa. Hence, the in situ environmental conditions at the time of sampling may 

not reflect the conditions affecting all the different community members. We thus explored whether 

changes in SpAD-based structure would be more clearly explained if the past environmental history 

of communities were considered, for which we used satellite derived surface seawater temperature 

(SST) and chlorophyll concentration data. For each station, we calculated the average SST and 

chlorophyll during i) eight days, ii) one month prior to the sampling date, and iii) during the whole 

year prior to sampling (see Methods) and compared these between the four clusters (Fig. 5). 

Interestingly, only chlorophyll concentrations averaged during the whole year prior to sampling (Fig. 

5c) showed a gradual increase from NL1 to LG stations, whereas this was not apparent with the in situ 

chlorophyll values (Table 1) nor the values averaged over shorter periods (8 days or 1 month, Fig. 

5a,b).  Changes in SST across clusters over these different time spans were similar with changes in in 

situ water temperature (Fig. 5a-c, Table 1), but did not reveal a progressive change from NL1 to LG 

assemblages because communities within the LG cluster where exposed to largely contrasting 

temperatures.  

Interestingly, however, we observed that stations classified as BM and LG consistently comprised 

environments less represented in our dataset; when we compared the local mean of satellite-derived 

chlorophyll and SST with the median of those same values across the whole dataset (horizontal lines 

in Fig. 5), we found that in both cases BM and LG communities differed more from the global median 

than those from clusters NL1 and NL2. These deviations involved highly productive sites and 

temperature extremes relative to the global median (Fig. 5), implying that the inclusion of such 

stations in the dataset resulted in the addition of habitats that were distinct enough to cause drastic 

shifts in the SpAD-based community structure, increasing the proportion of less cosmopolitan 

(bimodal and logistic) OTUs. 
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Increasing habitat heterogeneity leads to changes in SpAD-based community structure 

The above observations suggest that covering higher habitat diversity may influence the 

categorization of an OTU as normal-like, bimodal or logistic (and thus our perception of their 

distribution). To explore so, we repeated the SpAD analysis increasing the microbial niches covered. 

We constructed three additional datasets that included, besides the 108 free-living surface 

communities: i) communities attached to three different size particles (3-5; 5-20 and 20-200 µm, see 

Methods) from surface waters (n=24), to test the effect of increasing habitat heterogeneity without 

expanding the spatial scale, given that these other size fractions were sampled from the same stations, 

ii) free-living communities from three other layers (DCM, meso- and bathypelagic, n=29) which 

increased both habitat and spatial coverage (i.e., vertical distance) and finally iii) communities 

associated with five particle size-fractions collected at the four layers (n=150, see Methods), which 

included a large diversity of microbial niches.  

Interestingly, including just 24 additional surface communities associated with larger size-fractions 

(3-200 µm) already resulted in a fundamental change in the outcome of the SpAD analysis, with the 

number of OTUs categorized as normal-like decreasing from 68 to 19 and the number of logistic 

OTUs increasing (Fig. 6a,b). Including a comparable number (29) of free-living communities from 

deeper layers (Fig. 6c) resulted in a similar decrease in the number of normal-like OTUs (68 to 19) 

but in a more dramatic change in the average contribution of the different categories, with bimodal 

and logistic OTUs increasing up to 57% and 24% of the sequences, respectively (Fig. 6c). Finally, 

when all particle-attached communities from all depth layers were added (150 additional samples), 

only 2 OTUs remained categorized as normal-like and most sequences belonged to bimodal OTUs 

(69%, Fig. 6d). The taxonomic identity of the OTUs that remained categorized as ‘normal-like’ after 

each step is shown in Suppl. Table S1. 

We observed that 90% of the sequences detected across deeper layers and larger size-fractions 

belonged to OTUs also found in the 108 surface free-living communities (pie chart in Suppl. Fig. 7), 

suggesting that the above-mentioned changes in OTU categorization were mostly due to shifts in the 
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SpAD of taxa shared between the two datasets, not to the appearance of new taxa. In order to check 

this, we explored how the contribution of the SpAD categories defined based on the surface free-

living dataset changed across deeper oceanic layers and particles of varying size classes, using the 

samples from the 8 stations where all size classes were available. This analysis differs from the 

previous one (Fig. 6) in which we did not re-run the SpAD analysis, but rather traced the abundances 

of the original surface-derived SpAD categories (Fig. 2) across these other habitats. We observed that 

the dominance of surface normal-like OTUs was mostly restricted to the free-living fraction and 

surface waters, whereas the relative abundance of surface bimodal and logistic OTUs largely 

increased in communities attached to larger particles and in deeper oceanic layers (Suppl. Fig. 7). 

However, most rare OTUs remained permanently rare, so that this increase in their abundances was 

again due to just a few OTUs (87 out of 1,736 in the case of bimodal, and 186 out of 4,963 in the case 

of logistic OTUs) that became abundant (i.e. >1% of the local sequences) at least once in deeper 

waters or in larger size fractions. 

 

DISCUSSION 

Our analysis of the spatial abundance distributions of 9,210 surface ocean prokaryotic OTUs 

allowed partitioning microbial communities into three groups of taxa showing different global 

distributions independently of their taxonomy. More importantly, this approach unveiled variations in 

the proportions of the different groups across local communities. Although many studies have focused 

on the biogeography of rare and abundant prokaryotes (Galand et al. 2009; Logares et al. 2013; 

Vergin et al. 2013; Liu et al. 2015; Ruiz-González et al. 2017), to our knowledge this is the first study 

exploring how taxa with different spatial distributions assemble to constitute marine prokaryotic 

assemblages, as well as the potential causes promoting variations in the resulting pattern-based 

community structure. 
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Compared to macroorganisms, delineating spatial distribution areas in microorganisms is much 

more challenging, as well as inferring life strategies (e.g., habitat generalist/specialist, 

copiotrophs/oligotrophs, Newton and Shade 2016) from those spatial patterns. First, how microbes 

perceive their environment at the microscale remains poorly understood (Stocker 2012), and we do 

not even have an accurate estimate of the total microbial diversity present in a sample (Locey and 

Lennon, 2016). Second, prokaryotes can be dispersed much longer distances and can persist out of 

their suitable niches (dormant or inactive but capable of resuming growth, Lennon and Jones 2011) 

for longer times than larger organisms (Langenheder et al. 2016, Sebastián et al. 2018). This, coupled 

to the fact that our perception of taxa occurrence is largely dependent on the sequencing resolution 

(Gibbons et al. 2013; Ruiz-González et al. 2017), explains why our understanding of the ecology and 

mechanisms associated with microbial cosmopolitanism, dominance or rarity is far behind that of 

macroorganisms. In this context, the identification of bacterial spatial ‘behaviors’ across large spatial 

scales is emerging as a promising way to gain insight into microbial biogeography drivers (Mestre et 

al. 2018, Ruiz-González et al. 2015, 2017, Niño-García et al. 2016a). For example, the SpAD 

approach allowed discovering that hydrologic transport from rivers explained the presence of most 

rare bacteria in boreal lakes, but at the same time inoculated taxa able to thrive in lake conditions 

(Niño-García et al., 2016a). Still, however, the origin and the causes underlying the huge reservoir of 

rare diversity and its role in the ocean are poorly understood (Logares et al. 2015, Ser-Giacomi et al. 

2018) and we are only starting to comprehend how processes such as dispersal may shape the 

biogeography of marine microorganisms (Wilkins et al. 2013; Mestre et al. 2018). 

 

Here we show that most (77%) of the studied free-living bacterial assemblages in the subtropical 

and tropical surface ocean are numerically dominated by a few abundant and cosmopolitan OTUs (68 

normal-like OTUs), followed by bimodal OTUs of intermediate abundance and occurrences, and 

finally by a large number of rare (logistic) OTUs present at a few stations (Fig. 1, 2). This partition 

agrees with previous observations based on physiological and genomic approaches showing that free-

living marine bacterial communities are dominated by a few cosmopolitan oligotrophs, different 
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copiotrophs able to persist and bloom upon specific conditions (Lauro et al. 2009; Yooseph et al. 

2010, Swan et al. 2013, Kirchman 2016), and a large pool of highly diverse rare taxa (Pedrós-Alió et 

al. 2012). Accordingly, most normal-like sequences belonged to Prochlorococcus and SAR11 (Suppl. 

Fig. 5), oligotrophs with simplified and streamlined genomes that dominate communities in the 

relatively homogeneous tropical and subtropical oligotrophic ocean (Morris et al. 2002; Partensky and 

Garczarek, 2010; Giovannoni 2017). Typical copiotrophic groups such as Flavobacteriia, 

Oceanospirillales, Rhodospirillales or Alteromonadales (e.g. Teeling et al., 2012, Landa et al. 2016) 

showed higher presence among bimodal or logistic OTUs (Suppl. Fig. 5). The observation that only 

~1 % of the OTUs fitted the normal-like distribution also agrees with the fact that most abundant 

microbial taxa are usually a small fraction of the total diversity being also the most widely distributed 

(Nemergut et al., 2011; Martiny, 2015; Salazar et al., 2016, Niño-García et al. 2016a). 

The distribution of SpAD categories was quite uniform across communities from the global 

tropical and subtropical surface ocean (Fig. 2), yet there were some clear deviations in which either 

bimodal or logistic OTUs increased their abundances. Most of these BM (dominated by bimodal) or 

LG (dominated by logistic) communities were localized in three areas potentially subjected to coastal 

(South Australian Bight, Benguela region in the South Atlantic) or Equatorial upwelling (Equatorial 

Pacific), which generally showed higher chlorophyll concentrations and enhanced fluxes of nitrate 

towards the euphotic layer (Estrada et al. 2016). Remarkably, regardless of the temperature range 

within each of these regions, in all three cases communities shifted gradually from a dominance of 

normal-like OTUs (NL1 stations) to a dominance of logistic OTUs (LG stations) along a gradient of 

decreasing temperature (Fig. 4). Such regional shifts in SPAD-based community structure may reflect 

fundamental niche transitions for microbes along these temperature gradients, likely linked to the 

influence of colder nutrient-rich upwelled waters. Moreover, abrupt transitions in community 

structure were also detected, like one LG community in the Costa Rica dome (Fig. 3), an upwelling 

zone caused by a persistent cyclonic eddy (Fiedler 2002), or that in front of Rio de Janeiro (Brazil), 

which coincided with a change in water masses due to salt finger intrusions (Fernández-Castro et al. 

2015). This agrees with previous smaller-scale studies showing that oceanic fronts and mesoscale 
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features delimit the distribution of bacterioplankton in the ocean (Baltar et al. 2010, 2016, Flaviani et 

al. 2018). Our results further suggest that the surface tropical and subtropical global ocean represents 

a relatively homogeneous habitat that results in similar SpAD-based community structures featuring 

small pools of dominant taxa with cosmopolitan distributions. 

The correlation between temperature and the abundances of the different SpAD categories 

disappeared when all communities were pooled together, and the only variable explaining a sequential 

change in SpAD-based community structure (from NL1 to LG) was the satellite-derived chlorophyll 

concentration averaged during the year prior to sampling, which gradually increased from NL1 

(dominated by normal-like) to LG (dominated by logistic) stations (Fig. 5c). This suggests that the 

SpAD-based structure reflects to some extent the environmental history, or average conditions, 

experienced by communities. Experimental and field studies have shown that environmental 

conditions occurring several days before sampling can be better predictors of spatial variation 

between communities than the present environment, suggesting that current taxonomic composition 

reflects selection by both present and past conditions because not all community components react 

equally to environmental changes (Berga et al. 2012, Andersson et al. 2014). However, the fact that 

only the satellite-derived chlorophyll values averaged over a year (in contrast to shorter time periods) 

explained the gradual shift in SpAD structure (Fig. 5), might indicate that the variations in annual 

chlorophyll between clusters (Fig. 5c) represent the average niche availability that those communities 

experience. Hence, higher annual chlorophyll values might reflect a greater diversity of microbial 

niches (e.g., different phytoplankton blooms along the year) that allow the coexistence and/or the 

sequential establishment of specialist taxa unable to thrive in more oligotrophic conditions, some of 

which may be currently present as remnants of past proliferations (Comte et al. 2017). Interestingly, 

only a few logistic OTUs (7 to 19 OTUs per area, Supp. Fig.6) became abundant in these more 

productive sites, reflecting local selection of taxa rather than massive immigration events (i.e., mass 

effects, Niño-García et al. 2016b), even though upward transport of deeper ocean communities can 

happen in some of these areas (Estrada et al. 2016). Along these lines, the differences between the two 

LG sub-clusters are also illustrative. The Equatorial Pacific sub-cluster (LGpac) featured lower Chl 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

concentration, over the year, than the remaining LG stations (Fig. 5c) . However, LGpac had the 

deepest mixed layer (Table 1), meaning easier entrainment of deep-water bacteria to the surface. 

These differences suggest that different processes may simultaneously contribute to higher 

proportions of globally rare OTUs. 

These observations might indicate that among logistic OTUs there are a few that are globally 

rare, specialist opportunistic taxa. However, the spatial categorization of OTUs as habitat generalists 

and specialists, or ubiquitous and rare, is not necessarily intrinsic to the OTU, but to its prevalence 

within the environmental context considered. In fact, higher proportions of bimodal and logistic OTUs 

(BM and LG stations) coincided with stations that presented temperature and chlorophyll regimes 

deviating furthest from the global median value (i.e., less represented) in the dataset (Fig. 5). This 

agrees with previous findings showing higher numbers of specialist taxa at environmental extremes 

(Logares et al. 2013), yet raises the question of whether these habitat specialists would be regarded as 

cosmopolitan (normal-like) if e.g. only upwelling regions had been sampled. The fact that the identity 

of these bloomers differed between the three productive regions (Suppl. Fig. 6), though, suggests that 

these areas represent contrasting and spatially fragmented habitats that select for different globally 

rare taxa (e.g., Landa et al. 2016), and thus that they comprise hotspots of specialization or endemism 

in the global surface ocean. 

The proportion of normal-like OTUs dramatically decreased when the SpAD analysis was 

conducted on datasets covering higher habitat and spatial heterogeneity (Fig. 6). This suggests that 

regardless the spatial coverage, homogeneous environments will be dominated by normal-like OTUs. 

To further confirm the homogeneous nature of the surface dataset we rerun the SpAD analysis on 10 

random subsamples of 50 surface stations each, and consistently found that surface communities were 

dominated by normal-like OTUs regardless of the subset of stations considered (see Suppl. Fig. 8). 

Our observation of higher proportion of bimodal and logistic OTUs with increasing habitat (i.e., 

niche) heterogeneity is in agreement with the dominance of bimodal OTUs found by Niño-García et 

al. (2016a) across the much more heterogeneous boreal lakes. Interestingly, the inclusion of larger 

size fractions from the surface resulted in a less dramatic change in the distribution of the different 
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SpAD groups (Fig. 6b) than the inclusion of free-living communities from deeper waters (Fig. 6c). 

This might imply that, despite the well-known differences in taxonomic composition between free-

living and particle-attached communities (Acinas et al 1999; Crump et al, 1999; Salazar et al. 2015, 

Mestre et al. 2017, 2018) and across depths (Zinger et al, 2011, Sunagawa et al. 2015, Walsh et al. 

2015), the transition from suspended to attached is a weaker barrier than moving along the water 

column as a free-living cell, where besides a much stronger environmental filtering, dispersal 

limitation likely plays a role (Mestre et al. 2018). The environmental context of individual studies thus 

constrains the apparent spatial patterns, environmental ranges, and even the inferred life strategies of 

the studied taxa (e.g., Newton and Shade 2016). Indeed, we observed that OTUs originally 

categorized as bimodal or logistic based on their presence in surface free-living communities, largely 

increased their relative abundances at other depth layers and size-fractions (Suppl. Fig. 7). This 

indicates that globally rare surface taxa may become abundant in these other habitats, in agreement 

with the recently reported strong connectivity between surface and deep microbial communities via 

sinking particles or water masses movement (Mestre et al. 2018, Wilkins et al. 2013, Luna et al. 

2016). Exploring taxa distributions across different environments may thus help determine how 

differently environmental transitions or boundaries affect the distribution of each taxon. 

It is notable that two OTUs were still categorized as normal-like even when all depths and size 

fractions were included (Fig. 6d), suggesting a remarkable versatility of a few taxa within 

communities (Suppl. Table 1). Alternatively, the cosmopolitanism shown by some community 

members might be the result of hidden diversity that cannot be resolved with the 16S rRNA marker, 

since identical 16S rRNA sequences can represent different ecotypes (e.g., Hahn et al. 2016; Farrant 

et al. 2016). Indeed, 22 out of our 68 surface normal-like OTUs matched more than one publicly 

available genome at ≥ 99% similarity level (Suppl. Fig. 9), although it remains unknown whether 

these cosmopolitan OTUs represented one or several genomes. Using single-cell genomics, Kashtan 

et al. (2014) showed that the globally abundant Prochlorococcus comprises hundreds of coexisting 

subpopulations adapted to different micro-habitats, and proposed that this may be a general feature of 

abundant taxa. Whereas resolving these adaptations to micro-habitats would require using full 
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genomes, which are currently unavailable for most prokaryotes, amplicon-based studies provide 

useful information about biogeographic patterns at the species or genus levels. In our study, for 

example, the predominance of normal-like OTUs indicates that single entities or evolutionarily 

closely related species dominate the tropical and subtropical surface ocean. 

In summary, we show that marine bacterial communities are composed of taxa displaying a 

continuum of spatial distribution patterns, and that variations in their contribution to communities can 

be linked to transitions between microbial habitats, hotspots of specialization or endemism or spatial 

or environmental barriers that differentially delimit the distribution of community members. This may 

have implications for our understanding of microbial community functioning and resilience, since the 

proportion of generalist versus specialist species seems to influence the productivity and stability of 

communities (Gravel et al. 2011; Matías et al. 2013) and their susceptibility to environmental 

alterations (e.g. Clavel et al. 2011). Finally, our results show that our estimates of taxa distributions 

can be largely influenced by the degree of environmental or habitat heterogeneity covered by the 

studied spatial context.  
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FIGURE LEGENDS 

Figure 1. (a) World map showing the location of the surface stations sampled during the Malaspina 

2010 expedition. The seven different transects performed are indicated with numbers. Asterisks (*) 

indicate 8 stations where prokaryotic communities from 3 additional depth layers (DCM, meso- and 

bathypelagic) associated to 5 different size-fractions were also analyzed (see Methods for further 

details). (b-d) Example histograms of abundance distributions of representative OTUs belonging to 

the 3 different spatial distribution categories across the 108 surface stations. The orange line 

represents the shape of the distribution as a density line. The height of the bars represents the number 

of stations for a given class of abundance (Log10(number of sequences+1)) for each individual OTU. 

Figure 2. Contribution of the SpAD categories to the surface microbial communities (n=108). a) 

Mean abundance (number of sequences), b) occurrence (number of stations where an OTU was 

present, c) contribution of each SpAD category to the total number of free-living OTUs and their 

associated sequences. d) contribution, at each station, of each SpAD category to the total community 

sequences. Stations are ordered following the cruise path as in Figure 1a for comparison.  
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Figure 3. (a-c) Relative contribution of the three types of SpAD categories to the communities 

contained within each of the four clusters (NL1,NL2, BM, LG) of stations (i.e. k-means classification 

at 4 groups partition). d) World map showing the distribution of the stations coloured by cluster. The 

clusters are coloured depending on the SpAD category that shows the highest contribution within 

them (for example, the green cluster (LG) comprises those stations with the highest percentages of 

‘logistic’ OTU sequences, coloured in green in panel c). 

Figure 4. Changes in the relative abundances of normal-like, bimodal and logistic taxa along 

temperature gradients in the three areas potentially influenced by upwelled waters, which were 

located in Leg 2 (South Atlantic), Leg 4 (South Australian Bight) and Leg 5 (Equatorial Pacific). The 

line in the case of bimodal OTUs is a best-fit smooth curve through the centre of the data calculated 

using weighted least squares, in order to show that their maximum abundances appeared somewhere 

in between the temperature gradient. 

Figure 5. Inter-cluster variation of satellite-derived or chlorophyll concentration (Chl, μg L-1, a-c) or 

sea surface temperature (SST, d-f) taken over different time periods (8 days, 1 month or the whole 

year prior to sampling, see Methods for details). LG stations were split into two groups (7 Equatorial 

Pacific stations –‘LGpac’-, and the rest) for visualizing their very different conditions. Note that a 

gradient of increasing chlorophyll a concentrations from cluster NL1 to LG is only apparent when the 

annual variability is taken into account (c), but not when the in situ measurements (Table 1) or shorter 

periods are considered (a,b). The dotted lines indicate the global median of the values considered in 

each case, to visualize deviations from the prevailing subtropical and tropical environmental 

conditions in among the sampled stations. 

Figure 6. Change in the average contribution of SpAD categories (% of community sequences) when 

conducting the SpAD analysis using datasets of increasing spatial or environmental heterogeneity (see 

Methods). a) Original SpADs defined based on the surface free-living dataset (108 stations), or b) 

including communities attached to the three largest size fractions (3-5, 5-20, and 20-200 µm) from 

surface waters of 8 selected stations, c) including free-living communities from surface, DCM, meso- 

and bathypelagic layers in 8 selected stations, and d) including communities associated with particles 

of the different sizes along the same 4 layers. Below is indicated the number of OTUs within each 

dataset that were categorized as normal-like, bimodal or logistic. 
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Table 1. Comparison of the environmental and biological properties characterizing the stations within each of the four clusters (NL1, NL2, BM, LG). 

Different letters in the same row represent values that are significantly different from each other (Tukey’s post hoc test; P < 0.001). Values are means of 54 

(NL1), 29 (NL2), 11 (BM) and 14 (LG) stations, respectively. Cluster LG included stations with contrasting environmental conditions, so we divided it into 

two groups of sites (seven Equatorial Pacific stations and the rest of LG stations) to show that in many cases the differences observed between the four 

clusters were due to higher values in the Equatorial Pacific LG stations but not in the rest. Areas shaded in grey show the only cases where all LG 

communities showed consistently higher values than the other clusters. MLD, Mixed layer depth; dSWR, mSWR, daily and monthly short wave solar radiation, 

respectively. 

  
Cluster 

NL1 

Cluster 

NL2 

Cluster 

BM 

Cluster 

LG 

 

Within Cluster LG 

  
Prokaryotic community features         

 

7 Eq. Pacific 

stations (LGpac) 

Rest of LG 

stations 

 
 

Number of OTUs 1131 1122 1067 1063 

 
1223 943 

 
 

Taxonomic diversity (Shannon) 3.8a 4.6b 4.1a 4.8b 

 
5.0 4.6 

 
 

Measured site characteristics         

 

    

 
 

Temperature (ºC) 25.9a 23.8b 20.5c 23.3bc 

 
27.4 20.1 

 
 

Dissolved oxygen (ml L-1) 4.4 a 4.5b 4.8c 4.6bc 

 
4.2 4.9 

 
 

Turbidity (FTU) 0.07 0.07 0.05 0.12 

 
0.04 0.19 

 
 

Salinity (PSU) 35.5ab 36.0a 36.0ab 35.2b 

 
35.1 35.3 

 
 

MLD (m) 49.1 42.3 46.5 56.3 

 
84.5 42.3 

 
 

dSWR (MJ m-2 d-1) 251.2 252.2 254.1 237.3 

 
274.5 218.8 

 
 

mSWR (MJ m-2 d-1) 308.6 315.7 303.4 300.7 

 
345.3 278.4 

 
 

SiO4 (µmol L-1) 1.26 1.16 0.92 1.44 

 
1.3 1.5 

 
 

NO2 (µmol L-1) 0.01a 0.01a 0.01a 0.05b 

 
0.11 0.02 

 
 

PO4 (µmol L-1) 0.08a 0.07a 0.10ab 0.16b 

 
0.20 0.15 

 
 

NO3(µmol L-1) 0.29a 0.34a 0.26ab 1.04b 

 
1.6 0.7 

 
 

Biological properties  
 

 
 

 
 

 
 

 

    

 
 

Prokaryotic abundances (105 cell 

mL-1) 7.6 8.3 6.4 9.1 

 
3.3 13.5 

 
 

HNA prokaryotes (%) 32.6a 32.2a 28.5a 44.2b 

 
49.9 39.9 

 
 

Prokaryotic size (µm3) 0.037a 0.041a 0.036a 0.064b 

 
0.10 0.04 

 
 

Prok. heterotrophic activity (pmol 43.3a 51.7a 12.a 156.3b 

 
323.5 30.9 
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Leu L-1 h-1) 

Virus abundance (106 mL-1) 7.1ab 5.0a 8.9ab 13.9b 

 
12.8 15.0 

 
 

Chlorophyll concentration (µg L-1) 0.15a 0.14a 0.10a 0.26b 

 
0.28 0.25 
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