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1. INTRODUCTION
 
Organometallic catalysis takes advantage of the ability to 
introduce highly distinctive reactivity of the corresponding 
metal complexes by modifying the ligand steric and 
electronic properties. The tridentate pincer ligands, that 
enforce the meridional coordination around the metal 
center upon complexation, have become a powerful 
platform in catalyst design because of the enhanced 
stability and flexibility for synthetic modifications.1 
Considerable progress has been made in the pincer 
chemistry after the pioneering reports in the 1970s by 
Nelson and the Shaw groups (Scheme 1).1,2 Among them, 
the pyridine-based pincer complexes are particularly 
attractive. The studies on the synthesis and application of 
numerous categories of so-called PNP (or PNN) pincer 
complexes started from the first examples in 1971.2a While 
the deprotonation of one of the CH2 arms was observed in 
the synthesis of PNP palladium and platinum complexes 
by Sacco et. al,3 it was not until 2005 when a remarkable 
discovery of a new mode of metal-ligand cooperation 
(MLC) involving dearomatization/rearomatization 
processes of pyridine-based pincer complexes was made by 
Milstein and co-workers (Scheme 2).4 This represents an 
important milestone in the historical development of 
catalytic applications of pyridine-based pincer complexes5 
and such a unique MLC involving ligand aromatization-
dearomatization processes enables facile activation of 
various chemical bonds and environmentally benign 
catalysis.5 Soon enough, this concept was further applied 
in several extraordinary reactions by the Milstein group: 
the dehydrogenative acylation of amines with alcohols,6 
water splitting,7 hydrogenation of carbonates,8 etc. 
(Scheme 3).    
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Scheme 1. PNP and PCP pincer complexes. 
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Scheme 2. The discovery of a dearomatized pincer Ru 
complex as an effective catalyst.
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Scheme 3. Selected examples of MLC catalysis developed 
by the Milstein group.
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Table 1. Differences in bond-dissociation energies (BDEs) 
between C–H and N–H bonds. 

BDE (kcal/mol):

BDE (kcal/mol):

H2N-H PhNH-H Ph2N-H

H3C-H PhCH2-H Ph2CH-H

107 92 87.5

105 88 82
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Scheme 4. The PN3(P)-pincer ligand platform designed by 
the Huang group.
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Scheme 5. Earlier studies on the coordination chemistry of 
PN3P-pincer complexes.

Inspired by the Milstein mode of substrate activation and 
also recognizing the distinct properties of N-H bonds as 
they are more acidic and yet stronger than C-H ones (Table 
1), we started the investigation on the potential MLC 
reactivities by replacing the CH2 arms with one or two NH 
groups, with the idea that the more acidic N-H bond can 
facilitate the deprotonation (and thus dearomatization) 
process while the reprotonation/rearomatization process 
may allow different bond activation and formation events 
due to the stronger N-H bonds. Accordingly, we have 
designed and synthesized a series of symmetrical and 
unsymmetrical pincer ligands and the corresponding 
metal complexes (Scheme 4).9  The term “PN3(P)” was 
proposed by us in an invited review to denote this class of 
ligands since “N” can be either a spacer or a coordinating 
atom.9,10  In fact, the synthesis of symmetric PN3P pincer 
complexes based on 2,6-diaminopyridine were first 
reported by Haupt and co-workers in 1987,11 and a simple 
and modular synthetic strategy for various PN3P pincer 
ligands was also developed by Kirchner and co-workers in 
2006 (Scheme 5).12 While the coordination chemistry and 
catalytic applications of these symmetric PN3P pincer 

complexes have been intensively studied for 24 years,13 the 
catalytic applications involving 
deprotonation/reprotonation of the NH arm and 
dearomatization/rearomatization of the central pyridine 
ring were unknown until our discovery in 2011 (Scheme 6). 
9,14 
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Scheme 6. Catalytic studies on the PN3(P)-pincer 
complexes involving MLC.

During the course of the exploring the effect of NH spacers 
in the backbone of PN3(P)-pincer complexes, we have 
immediately recognized that this seemingly small change 
from CH2 to NH in the spacer of the ligand resulted in 
remarkably different kinetic and thermodynamic 
properties that in some cases enhanced or in more cases 
completely altered the catalytic activities due to the 
inherent features of this unique ligand platform.9b, 14b, 15, 16 
Based on the findings from us and others, the steady 
growth of PN3(P)-pincer chemistry have been seen.9b, 15d, 17 
Unfortunately, the deprotonation/reprotonation and 
dearomatization/rearomatization processes involving the 
NH arm in PN3(P)-pincer complexes as crucial steps have 
been largely neglected and overlooked in the mechanistic 
discussion and catalyst design in recent research articles17a, 

17b, 17d-g, 17j-l and reviews.2d, 13b, 18   

The aim of this Viewpoint is thus to familiarize the readers 
with the historical development, progress, and more 
importantly the distinct potential of the PN3(P)-pincer 
chemistry in the following three aspects: (i) reactivities of 
the PN3(P)-pincer complexes with special attention to the 
MLC via dearomatization/rearomatization; (ii) rationale 
for the kinetic and thermodynamic differences caused by 
the replacement of the CH2 spacers with NH groups in the 
PN3(P)-pincer platform; and (iii) concluding remarks for 
the future potential of the PN3(P)-pincer chemistry.

2. THE DISCOVERY OF THE PN3(P)-PINCER 
CHEMISTRY

Owing to the great success of the Milstein system,5a, 5c, 5d, 19 
we designed and prepared a series of PN3(P)-Ru complexes 
for comparison and demonstrated that the 
“dearomatization” could be achieved through the 
deprotonation of the N-H group.14 Very interestingly, while 
Milstein’s PNN complex showed unprecedented activity 
towards water splitting,7 ours were stable in the presence 
of water even under heating at above 80 °C overnight.14 
Significant thermodynamic differences between the two 
systems were evidenced. In fact, our early preliminary 
calculations also
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Figure 1. Quantitative conversion of ethanol to ethyl 
acetate and hydrogen.

revealed that the addition of water or H2 molecules to our 
dearomatized species were thermodynamically uphill. 
However, the energy differences between those of the 
computed complexes after the addition reaction and those 
of dearomatized species were small (2-5 kcal/mol),9b 
suggesting that these potentially catalytically active 
intermediates were still thermodynamically accessible. 
Indeed, at slightly more elevated temperatures (160 °C), 
our dearomatized PN3(P)*-Ru complexes were active in 
hydrogen transfer reactions, dehydrogenation and 
hydrogenation reactions.14b, 15a, 15b, 15d, 15f, 15g, 15j, 15p, 15r, 15s, 15u, 16 

More importantly, such an enhanced thermostability (thus 
a higher reaction temperature is needed) became 
advantageous for us to integrate with the design of a 
palladium-based membrane reactor that can only work 
efficiently and effectively at high temperatures. 
Accordingly, in collaboration with the Lai group, the first 
demonstration of quantitative conversion of bio-
renewable ethanol to the industrially important solvent 
and starting material, ethyl acetate, was achieved with H2 
as a valuable byproduct (Figure 1).15b
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H
O

N
NEt2

N
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CO

H N
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93% 90%

71% 49%

Ru catalyst

Figure 2. Coupling of amines to imines under oxidant-free 
conditions.

The dehydrogenative coupling of alcohols and amines to 
amides is one of the most impressive reactions invented 
with the MLC concept by Milstein.6 Extremely 
interestingly, the dearomatized PN3(P)*-Ru complexes 
gave very poor reactivities towards the amide formation 
although Hong and co-workers have shown that the same 
reactions could be achieved by simply mixing RuCl3 salt 
and a carbene ligand precursor.20 After careful analysis of 
the resulting products, it was found that the PN3(P)*-Ru 

complexes were more selective for the dehydrogenation of 
amines. In contrast, Milstein’s catalyst exhibited a lower 
reactivity in the same reaction (Figure 2). A protocol for 
the coupling of amines to imines was thus developed.15a 
This was the time we realized that this seemingly small 
change from CH2 to NH in the spacer of the ligand could 
lead to dramatic influences on the reactivities of the 
resulting transition metal complexes. We had then 
dedicated ourselves to the mechanistic understanding to 
enable the future development of new reactions with this 
distinct ligand platform.         

N
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iPr2

Ph
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R2

OH

HO

H2N R3
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H
NR1

R2

R3

+

Scheme 7. Dehydrogenation reactions catalyzed by PN3P-
Ir complexes. 

During the course of our mechanistic investigations, 
Kempe and co-workers have reported the dehydrogenative 
coupling of secondary alcohols and β-amino alcohols to 
synthesize pyrroles catalyzed by PN3P-Ir complexes.17a In 
collaboration with the Wang group, our DFT calculations 
supported that the dearomatized Ir complex was most 
likely to be the active catalytic species in this reaction  and 
the proton shuttle process played an important role 
(Scheme 7).15d Along this line, when compared to the 
Milstein’s PNN-Ru system, we further demonstrated that 
two protonic molecules, e.g. water or alcohol, were needed 
for H2 activation in our PN3*-Ru system in order to connect 
the reactive sites of the N atom of the imine arm with the 
Ru metal center (Figure 3).16a Remarkably, the PN3*-Ru 
complex can effectively catalyze the ester hydrogenation 
even in the presence of water. These observations not only 
indicate that the dearomatization/rearomatization process 
via deprotonation/reprotonation of the CH2 or N-H spacer 
is an essential step in both PNP/PNN and PN3(P) catalytic 
systems, but also illustrate their distinct kinetic properties.
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H
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O H
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CO

N

H

N

(tBu)2P Ru
CO
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Figure 3. Comparison between the systems with CH2 and 
HN arms.    
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The enhanced stability in the presence of water is 
particularly important for the selective decomposition of 
formic acid to H2 and CO2 as a strategy to utilize formic 
acid as a hydrogen energy carrier.21 In this regard, the 
PN3P*-Ru complex showed excellent activity with an 
unprecedented long life.15g, 15u Notably, no decarbonylation 
reaction was detected, suggesting that a practical 
application is now possible. The conformation in solution 
of the transient formate intermediate in this process was 
recently elucidated by 2D-IR spectroscopy reiterating the 
important role of the N-H arm(s).15u Moreover, by 
replacing the t-butyl with phenyl groups, directly knitting 
the PN3P-Ru complex into a porous polymer network 
(featured with rigid methylene bridges using 
dimethoxymethane as an external crosslinker to combine 
the phenyl groups in the PN3P-Ru complex and benzene) 
resulted in a new porous heterogeneous ruthenium 
catalyst with single-atomic sites that offered a reusable 
catalyst with increased activity for the selective 
decomposition of formic acid (Scheme 8).15p Further 
studies on the reverse reaction revealed a good activity in 
the hydrogenation of CO2 to formate. Remarkably, 
effective transformation of atmospheric CO2 into formate 
was achieved in the presence of amines (Scheme 8).15r    
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the direct knitting in a porous organic polymer

Scheme 8. Formic acid decomposition and formation 
processes catalyzed by PN3P-Ru complexes via MLC.

The crucial role of the dearomatization/rearomatization 
via deprotonation/reprotonation of the NH arm in the 
PN3(P) pincer catalysis appears to be general. For example, 
Kirchner and co-workers described the heterolytic H2 
cleavage via the dearomatized PN3P-iron intermediate via 
MLC (Scheme 9).17b,17d Catalytic alkylation of amines with 
alcohols was achieved but when NH groups were 
methylated to N-Me, the reactivity was shut down,17e 
suggesting the importance of  the NH 

deprotonation/reprotonation process. Similar 
observations were also reported by the Sortais, Kirchner, 
and Kempe groups respectively in their Mn or Co analogs 
in various hydrogenative and dehydrogenative reactions 
(Scheme 9).17f-l, 22
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Scheme 9. MLC-triggered hydrogenation and 
dehydrogenation reactions catalyzed by PN3P-pincer 
complexes. 

3. UNIQUE REACTIVITY MODES OF PN3(P)-PINCER 
COMPLEXES       

Since the discovery of the catalytic applications of the 
dearomatized PNx(P)* metal complexes, many groups join 
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Figure 5. Pictorial view of the key catalytic activation modes of the PNx(P)* dearomatized pincer complexes.
 

their efforts to understand and rationalize the reactivities 
of such systems for the small molecule activation,23 
dehydrogenative coupling,15d, 24 and hydrogenation 
reactions;25 under active debate. Li and Hall recently 
reviewed the reactions involving the pincer complexes and 
noted that aromatization/dearomatization step is not 
always the lowest energy path.26 The Li and co-workers in 

2009 suggested the importance of the hydrogen tunneling 
for the activation of the (PNP)IrPh complex,23b while Iron 
and co-workers proposed that the hydrogen transfer from 
ligand to metal was driven by aromatization in a 
heterolytic manner.23a Very recently, the study by Lei, Liu, 
Schaefer and co-workers introduced the metal-substrate 
mechanism rather than metal-ligand cooperation as a low 
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energy alternative pathway.27 It was suggested that the 
proton shuttle mechanism is not involved in the lower 
energy pathway, which strongly contradicts with studies 
on other systems.23a, 23b, 28 For some activation modes, the 
metal-ligand cooperation may occur without undergoing 
the aromatization/dearomatization step.29 Collectively, 
the activation modes may be system sensitive, and 
molecular design can lead to unique chemical applications. 
The core of such diversity of reactivity modes lies on the 
cooperative properties and non-innocent character of the 
pyridine-based ligands.5, 9b, 30

As mentioned above, from the distinct frontier molecular 
orbitals of the imine and olefin arms in the dearomatized 
PNx(P)* structures, we were able to rationalize the kinetic 
differences.15d, 16a In addition to the reactivity views 
suggested on the PCP ligands by van Koten, Milstein and 
Morales-Morales (Figures 4A and 4B)2d, 31 and based on the 
our interest in the aromaticity,32 we proposed the system 
based on the (pseudo)dearomatized platform (Figure 4C) 
and consequently elucidated the thermodynamic 
discrepancies between the Milstein and the Huang systems 
through different electron delocalization and aromatic 
stabilization energy (ASE) (Figure 4D).15k The 
“dearomatized” PN3(P)* complexes indeed carry certain 
aromatic properties as the enhancement of ligand 
aromaticity through complexation becomes more 
pronounced compared to those of analogous dearomatized 
PNP* or PNN* based complexes, suggested by our nucleus-
independent chemical shift (NICSzz), anisotropy of the 
current (induced) density (ACID), isochemical shielding 
surfaces (ICSSzz), and natural bond order (NBO) 
calculations.15k This work also represents the first example 
of theoretic studies on aromaticity in catalytic systems 
involving ligand dearomatization/rearomatization 
processes. More importantly, the view of the 
(pseudo)aromaticity has led to a novel paradigm of 
strategy for the catalyst design. The dearomatized 
pyridine-based PN3(P)* pincer complexes must be 
understood by two leading resonance forms: neutral and 
zwitterionic structures (Figure 5).3, 15k The contribution of 
the aromatic form is much higher in the PN3(P)* system 
than those in the PNP and PNN counterparts, partially 
from the difference of the atom electronegativity. In such 
flexible frame of pseudo-dearomatized frame, the metal 
center can act as an acid side and unsaturated arm can act 
as a basic side. As a result, the system expresses a few 
activation modes leading to unique reactivities 
incorporated in one system (Figure 5). The metal-centered 
reactivity (MCR) is conventional for the majority of metal 
complexes via ligand exchange, oxidative addition, 
reductive elimination, insertion, bond metathesis, etc.33 
The metal-substrate cooperation (MSC) was also suggested 
as the key step for some pincer complexes with labile 
arms.27 In those two modes, the ligands do not participate 
in the catalytic reactions. The metal-ligand cooperation via 
aromatization/dearomatization (MLC-ADA) process 
requires unique rearrangement of the bonding patterns. In 
this transformation, two new sigma bonds are formed and 
the existing ones are rearranged to deliver the aromatic 
ring.15d, 15k Although MLC-ADA generally involves the metal 

center and an unsaturated arm, it can also be promoted by 
metal and a reactive donor group.34 The forth mode of the 
reactivity, ligand-centered reactivity (LCR), is highly 
intriguing and can be triggered by the non-innocent 
character of the ligand and/or enabled by the zwitterionic 
resonance characters.15t, 35 

CO2 Ph2SiH2+
[Ni-H] catalyst

CH3OH
NaOH/H2O

N NH
PtBu2

N
P Ni

H

tBu2

R H
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Scheme 10. A pseudo-dearomatized PN3P*Ni-H complex 
as a ligand and σ-nucleophilic catalyst.

For the PNP system, the basicity of the arm was studied 
experimentally by Milstein in 2010.36 It was demonstrated 
that at ambient temperature the neutral form is 
entropically favored while the cationic form is favored in 
low temperature due to the effect of charge separation. In 
the PN3P* platform, the LCR offers unprecedented 
reactivities.15q The σ-nucleophilicity of the N atom of the 
iminic arm can be significantly enhanced such that it 
becomes catalytically active to reach N-heterocyclic 
carbene-like nucleophilicity in the hydrosilylation of CO2 
to methanol, selective reductive methylation and 
formylation of amines with CO2, hydrosilylation of 
aldehydes to alcohols, and cycloaddition of CO2 to 
epoxides, and serves as a ligand in the Ru-catalyzed 
dehydrogenative acylation of amines with alcohols 
(Scheme 10).15q, 15t   

4. COORDINATION CHEMISTRY BEYOND THE 
COOPERATIVE CATALYSIS 

The structural modification in the pincer system can offer 
significantly different reactivities. Within the LCR concept, 
our initial progress in creating new ligand structures is 
encouraging.15l-o We have developed a post-modification 
strategy taking advantage of the enhanced ligand reactivity 
to prepare a new class of diimine-amido anionic PN3P-
pincer complexes, 2nd generation PN3P, that could not be 
easily synthesize by conventional synthetic organic 
methods (Scheme 11). Upon treatment of dearomatized 
PN3P-pincer complexes with excess amounts of a base (e.g. 
KOtBu) and an alkyl halide (e.g. EtI), the backbone of the 
ligands can be alkylated. Unique activities were discovered. 
For example, the 2nd generation PN3P-Ni azide complex can 
be photo-activated to react with isocyanides to afford 
monosubstituted carbodiimides, presumably via a 
transient nitrido intermediate.15m The 2nd generation PN3P-
Ni moiety allowed the isolation of a terminal hydroxide 
complex and enabled the investigation of the diverse 
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reactivities of the hydroxide group with respect to its 
nucleophilic 
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Scheme 11. Formation of a new PN3P-pincer platform 
through ligand post-modification.  
and basic characters (Scheme 11).15n This monomeric Ni-
OH complex was also identified to catalyze the nitrile 
hydration to various amides efficiently.

5. CONCLUDING REMARKS

PN3(P)-pincer complexes are not only incredibly effective 
catalysts for the hydrogenative and dehydrogenative 
reactions, but they also possess distinct kinetic and 
thermodynamic properties compared to their CH2 analogs 
(ie. the Milstein mode). We have elucidated the role of 
MLC and rationalized the influences of the aromaticity as 
crucial factors in the catalytic processes. We have further 
demonstrated the LCR concept and utilized the unique 
pseudo-aromaticity of our PN3(P) platform to enhance the 
ligand reactivity. A pseudo-dearomatized PN3P*Ni-H 
complex was synthesized as a new NHC-like ligand and σ-
nucleophilic catalyst. Last but not least, a new class of 2nd 
generation of PN3P-pincer complexes was established 
(Figure 6). We anticipate that our discussion herein can 
provide better understanding of the PN3(P)-pincer ligand 
platform we established. Other unique reactivities of 
various transition metal complexes are expected to be 
discovered in the near future. The novel LCR that the imine 
arm reaches unprecedented carbene-like reactivity may 
open a new direction for the catalyst design. The properties 
and potentials of 2nd generation of PN3P complexes are 
awaiting further exploration.

Figure 6. Historical Development of the PN3(P)-pincer chemistry. 
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