Ultrafast Phosphazene-Promoted Controlled Anionic Polymerization of Styrenic Monomers

Konstantinos Ntetsikas,1 George Polymeropoulos,1 George Zapsas,1 Panayiotis Bilalis,1 Yves Gnanou,2 Nikos Hadjichristidis1

1Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
2Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia

Correspondence to: N. Hadjichristidis (E-mail: nikolaos.hadjichristidis@kaust.edu.sa)

Received 30 August 2018; accepted 27 September 2018
DOI: 10.1002/pola.29258

ABSTRACT: The anionic polymerization of styrenic monomers with phosphazene bases as promoters, utilizing “seeding” technique in a nonpolar solvent and at room temperature was studied. In all experiments, the phosphazene base (t-BuP4, t-BuP2, and t-BuP1) was added in an equimolar amount to the organolithium initiator after the formation of oligomers (2 min) by conventional anionic polymerization. When t-BuP4 was used, the polymerization of styrene and 4-methylstyrene was extremely fast (100 % conversion within 5 min) and the final homopolymers exhibited narrow molecular weight distribution and controlled molecular characteristics. Likewise, when weaker bases were employed, the polymerization was also controlled but showing slower reaction rate. To examine the “livingness” of this system, block copolymers were synthesized by sequential monomer addition. Further studies were conducted in order to extend this novel method to the anionic polymerization of dienes. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018

KEYWORDS: anionic polymerization; block copolymers; phosphazene superbases; seeding; styrenic monomers

INTRODUCTION Living anionic polymerization was discovered and reported in two seminal papers1,2 by Szwarc et al., working on the polymerization of styrene with sodium naphthalenide as initiator, in tetrahydrofuran (THF). Since its discovery, it has emerged as the most powerful tool for the synthesis of well-defined polymers with narrow molecular weight distribution and controlled molecular characteristics (molecular weight, composition, microstructure, and architecture).3,4,5 The ability of anionic polymerization to produce well-defined polymers is mainly due to the absence of termination and chain-transfer reactions.6,7 In addition, it inspired many researchers to develop controlled/living strategies for monomers which are not compatible with anionic polymerization.8

The unique aspect of control in living anionic polymerization motivated tremendous academic and industrial research activity which led to the development of numerous technologies reflected in important commodity and specialized materials.9 Although anionic polymerization is a demanding methodology and cannot tolerate many functional groups, it works exceptionally well with important monomers such as styrene, 1,3-butadiene, and isoprene, that are found in many commercial applications.10 It holds a leader position in the industrial production of polydiene rubbers, styrene/butadiene rubbers, and thermoplastic elastomers of styrene type that are used in numerous industries such as automotive, building and construction, footwear, medical, wires, and cables.4,11,12

Anionic polymerization proceeds via organometallic sites, carbanions (or oxanions) with metallic counterions. Among others, organolithiums are the most widely used initiators.13 The main requirement for the employment of an organometallic compound as the initiator is its rapid reaction with the monomer at the initiation step of the polymerization, and specifically with a higher reaction rate than the propagation step. Slow initiation followed by rapid propagation broadens the molecular weight distribution of the resulting polymers. This undesired broadening can be eliminated by the use of the “seeding” technique.14-16 In this method, the initiator is reacted with a small amount of monomer, the mixture is left for a while to form oligomers and subsequently, the rest of the monomer is added. These oligomers will grow uniformly upon addition of the remaining monomer and produce polymers with narrow molecular weight distribution.

It is widely known that the rate of polymerization of styrene initiated by carbanionic initiators is accelerated in the presence of additives such as Lewis bases (ethers or amines).18,19

© 2018 Wiley Periodicals, Inc.
In general, additives exhibit high solvating power and can induce the solvation of ion pairs. Moreover, they cause the disaggregation of aggregated ion pairs and are used either for fast initiation or to accelerate the rate of polymerization of several monomers. Especially, in the case of polydienes (polybutadiene and polyisoprene), additives can alter the microstructure of the final polymers, enhancing their vinyl content.\(^{21,22}\)

In addition to ethers and amines, phosphazene superbases, a category of neutral Brönsted bases\(^{23,24}\) have been used as additives in anionic polymerization\(^{25,26}\) and more extensively as effective organic catalysts for the polymerization of several types of heterocyclic monomers (epoxides, cyclosiloxanes, cyclic esters, etc.).\(^{27-33}\) The main feature of these non-nucleophilic bases is their high basicity (26 < \(pK_a\) < 43 in acetonitrile). The increase in basicity is proportionally to the number of P atoms, due to a rise in the delocalization of the charge on the conjugated phosphazene cation.\(^{34}\) In general, phosphazene bases enhance the nucleophilicity of the initiator/chain-end significantly by complexation with the counterion (e.g., proton or lithium cation), resulting in a rapid anionic polymerization.\(^{35}\)

Experimental

Materials

1-tert-Butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris(dimethylamino)phosphoranylidene]-5,4-catenadiphosphazene \((t\text{-BuP}_4)\) (Sigma-Aldrich, Al-Khobar, Saudi Arabia) and tert-butylimino-tris(dimethylamino)phosphorane \((t\text{-BuP}_2)\) (Sigma-Aldrich, 99%) were used as received. sec-Butyllithium \((1.4 \text{ M in cyclohexane, Sigma-Aldrich})\) and dibutyl-magnesium \((1 \text{ M in heptane, Sigma-Aldrich})\) were purified via consecutive distillations over CaH\(_2\) (Sigma-Aldrich, 95%) and dibutyl-magnesium \((1 \text{ M in heptane, Sigma-Aldrich})\) and stored in precalibrated ampoules. 1,3-Butadiene \((1.4 \text{ M in cyclohexane, Sigma-Aldrich})\) was diluted to an appropriate concentration in purified benzene, in a specific glass apparatus. Styrene \((\text{Sigma-Aldrich, 99\%})\) and 4MS \((\text{Sigma-Aldrich, 96\%})\) were purified via consecutive distillations over CaH\(_2\) (Sigma-Aldrich, 95%) and dibutyl-magnesium \((1 \text{ M in heptane, Sigma-Aldrich})\) and stored in precalibrated ampoules. 1,3-Butadiene \((\text{Sigma-Aldrich, 99\%})\) was purified via consecutive distillations over n-BuLi, at -10 °C using ice/salt bath, prior addition to the polymerization reactor. Benzene \((\text{Sigma-Aldrich, 99.8\%})\) was purified via distillation from CaH\(_2\) and stored in round-bottom flasks.

TABLE 1 Molecular Characteristics of PS Synthesized by Anionic Polymerization and Use of \(t\text{-BuP}_4\) via “Seeding”

<table>
<thead>
<tr>
<th>Entry</th>
<th>Sample</th>
<th>(t\text{-BuP}_4/\text{sec-BuLi}^a)</th>
<th>(M_n^\text{target} (\text{g mol}^{-1}))</th>
<th>(M_n^b (\text{g mol}^{-1}))</th>
<th>(\mathcal{D}^b)</th>
<th>Time (After Addition of (t\text{-BuP}_4) (min))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PS-1</td>
<td>1:1</td>
<td>7000</td>
<td>7200</td>
<td>1.11</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>PS-2</td>
<td>1:1</td>
<td>20,000</td>
<td>21,400</td>
<td>1.10</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>PS-3</td>
<td>1:1</td>
<td>45,000</td>
<td>45,500</td>
<td>1.08</td>
<td>5</td>
</tr>
</tbody>
</table>

\(^a\) Molar ratio of sec-BuLi and \(t\text{-BuP}_4\).

\(^b\) Number-average molecular weight and polydispersity index determined by SEC, using THF as a solvent and calibrated with PS standards.
flask, under high vacuum. Methanol (Sigma-Aldrich, 99.8%) (terminating agent) was stored under high vacuum and used as received. \(N,N',N',N'\)-Tetramethyl-1,2-ethylenediamine (TMEDA, Sigma-Aldrich, \(\geq 99.5\%\)) was distilled over sodium mirror, diluted to an appropriate concentration in purified benzene and stored in precalibrated ampoules.

Instruments
The number-average molecular weight \(\left(M_n\right)\) and the polydispersity index \(\left(D\right)\) were determined via size exclusion chromatography (SEC) equipped with an isocratic pump, Styragel HR2 and HR4 columns in series \((300 \times 8 \text{ mm}^2)\), a refractive index detector and THF as the eluent, at a flow rate of 1 mL min\(^{-1}\), at 30°C. The calibration was performed using polystyrene \((\text{PS})\) standards \((M_p: 370-422,000 \text{ g mol}^{-1})\). Proton nuclear magnetic resonance \((^1\text{H-NMR})\) spectroscopy measurements were carried out in CDCl\(_3\) (Sigma-Aldrich, 99.6%) with a Bruker AV-500 spectrometer. The obtained spectra were used to calculate the monomer conversion as well as the microstructure of the synthesized polydienes after integration of the corresponding chemical shifts. Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-ToF MS) experiments were carried out using \(1,8\)-dihydroxy-9\((10\text{H})\)-anthracenone; dithranol\) as the matrix and silver trifluoroacetate (cationizing agent) on a Bruker Ultraflex III MALDI-ToF MS (Bruker Daltonik, Bremen, Germany). In general, mass spectra from 256 laser shots were accumulated and summed to produce a final spectrum.

Polymerization in the Presence of Phosphazene Bases after “Seeding”
All polymerizations were carried out via high vacuum techniques, using custom-made glass reactors, equipped with break seals for the addition of the reagents and constrictions for the removal of aliquots.\(^{13}\) A typical procedure is as follows. In an evacuated and \(n\)-BuLi washed glass reactor, containing 70 mL of benzene, 2.2 mL of styrene \((2 \text{ g})\), and 0.25 mmol of sec-BuLi were added at room temperature \((23 \text{ °C})\) (Table 1, Entry 1). After 2 min, an aliquot was taken and 0.25 mmol of \(t\)-BuP\(_4\) \((pK_a \text{ in acetonitrile: 42.6})\) was added and the reaction left to proceed. Small aliquots were withdrawn from the solution frequently in order to determine the conversion, the molecular weight, and the polydispersity. Finally, the reaction was quenched by adding methanol \((\sim 1 \text{ mL})\) and the solution...
precipitated in a large excess of methanol. The white powder was collected and dried in a vacuum oven for 2 days \((M_n = 7200 \text{ g mol}^{-1}, D = 1.11) \). The same synthetic procedure was followed using \(t\text{-BuP}_2 \) \((pK_a \text{ in acetonitrile: } 33.5) \), \(t\text{-BuP}_1 \) \((pK_a \text{ in acetonitrile: } 26.9) \), and TMEDA as additives for the polymerization of styrene as well as in the case of the polymerization of 4MS and 1,3-butadiene via “seeding” with \(t\text{-BuP}_4 \).

Sequential Addition of Styrene or 1,3-Butadiene to the “Living” PS Synthesized via “Seeding”

A typical procedure is as follows. To a “living” PS \((M_n = 4500 \text{ g mol}^{-1}) \) (Table 3, Entry 2) synthesized by the previously described method, 1.4 mL of 1,3-butadiene was added and the polymerization left to proceed at room temperature \((23 ^\circ \text{C}) \). The next day the polymerization quenched by adding methanol, the mixture precipitated in excess of methanol and finally collected and dried in a vacuum oven for 2 days \((M_n,\text{NMR} = 1300 \text{ g mol}^{-1}, D = 1.32) \). The same synthetic protocol was followed for the sequential copolymerization of 1,3-butadiene, using \(t\text{-BuP}_2 \) and \(t\text{-BuP}_1 \) phosphazene bases and also for the polymerization of styrene using \(t\text{-BuP}_4 \).

RESULTS AND DISCUSSION

It has been shown that the rate of polymerization of styrene, initiated by carbanions, is accelerated in the presence of Lewis bases, such as ethers and amines.\(^{18}\) In our previous report, the anionic polymerization of styrene, in benzene at room
temperature (23 °C), with sec-BuLi in the presence of superbases (t-BuP₄, t-BuP₂, and t-BuP₁) with phosphazene/sec-BuLi: 0.5 (t-BuP₂ and t-BuP₁) and 1 (t-BuP₄, t-BuP₂, and t-BuP₁) ratios, was studied. In the case of t-BuP₂ and t-BuP₁, the results were comparable to the ones already published for Lewis bases. However, in the case of t-BuP₄ (1:1) although the polymerization was fast, it was uncontrolled leading to PS with broad polydispersity index (Ð > 1.9) and 10 times higher molecular weight than the theoretical one. Indeed, sec-BuLi exists in the form of an equilibrium between unreactive aggregated species and ion pairs. Upon adding t-BuP₄, the ion pairs and the superbase generate free carbanions [sec-Bu⁻[([t-BuP₄]Li⁺)] of extremely high reactivity that initiate polymerization and propagate chains. However, unreactive aggregated species are probably involved progressively in the process and hence a loss of control in the molecular weight and polydispersity occurs. The same trend, $R_p \gg g R_i$, was observed, in new experiments, when different t-BuP₄/sec-BuLi: 2.5, 5, 10, and 20 molar ratios were used (Table S1, Fig. S1, Supporting Information).

Next, we thought to use a well-known “trick” in anionic polymerization called “seeding,” in order to balance R_i with R_p. First, styrene was left to polymerize in benzene, with sec-BuLi, only for 1–2 min to afford oligomers (“seeds”) and not the final polymer. Subsequently, an equimolar amount of t-BuP₄ to sec-BuLi was added and the polymerization was left to proceed until full consumption of the monomer. Finally, methanol was added to terminate the reaction (Scheme 1). We used only t-BuP₄/sec-BuLi = 1, since, similar results were obtained with other ratios (Table S1, Fig. S1, Supporting Information).

To explore the utility of this system we investigated the ability to target higher degree of polymerization (Table 1). In all cases, the final polymers were characterized by narrow molecular weight distribution (Ð ≤ 1.11) and the molecular weights were similar to the targeted ones [Fig. 1(A)]. Interestingly, the polymerization reaction was completed 5 min after the addition of the t-BuP₄ as revealed by ¹H NMR spectroscopy [Fig. 1(B)].

The acceleration of the polymerization is attributed to the high reactivity of the sec-Bu⁻ free anions, while the “seeding”

![FIGURE 4](https://example.com/figure4.png)

FIGURE 4 (A) Monitoring the polymerization of 4MS via “seeding” and t-BuP₄ by SEC of withdrawn aliquots obtained at different time intervals. (B) ¹H NMR spectra taken 2 min after the initiation of the polymerization of 4MS (“seeding” period) and 5 min (100% conversion) after the addition of t-BuP₄. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Molecular Characteristics of PS-b-PS’ and PS-b-PB (Co)polymers (PS Synthesized via “Seeding” and Use of Phosphazene Bases [1:1 Molar Ratio to sec-BuLi]) by Sequential Monomer Addition

<table>
<thead>
<tr>
<th>Entry</th>
<th>Sample</th>
<th>PB</th>
<th>M_n PS a (g mol⁻¹)</th>
<th>D_{PS} a</th>
<th>M_n 2nd block (g mol⁻¹)</th>
<th>M_n 2nd block (theor.) (g mol⁻¹)</th>
<th>D_{pol} a</th>
<th>Time (100% conversion) (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PS-b-PS’</td>
<td>t-BuP₄</td>
<td>4700</td>
<td>1.13</td>
<td>6000 a</td>
<td>5000</td>
<td>1.09</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>PS-b-PB</td>
<td>t-BuP₄</td>
<td>4500</td>
<td>1.11</td>
<td>1300 b</td>
<td>5000</td>
<td>1.32</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>PS-b-PB</td>
<td>t-BuP₂</td>
<td>22,000</td>
<td>1.04</td>
<td>25,300 b</td>
<td>13,800</td>
<td>1.12</td>
<td>240</td>
</tr>
<tr>
<td>4</td>
<td>PS-b-PB</td>
<td>t-BuP₁</td>
<td>8600</td>
<td>1.05</td>
<td>19,000 b</td>
<td>10,000</td>
<td>1.09</td>
<td>480</td>
</tr>
</tbody>
</table>

a Number-average molecular weight of PS and polydispersity index calculated by SEC, using THF as a solvent and calibrated with PS standards.

b Number-average molecular weight of polybutadiene determined by ¹H NMR (500 MHz) in CDCl₃ at room temperature.
is essential for balancing the propagation and initiation rates and avoid products with high-molecular-weight distribution. It should be noted that conventional anionic polymerization of styrene initiated by organolithium compounds, in hydrocarbon solvents, and at room temperature reaches 99% conversion after 3 h. The final product (Table 1, Entry 1) was further characterized by MALDI-ToF. As shown in Figure 2, only one narrow and symmetrical population was detected and the peak-to-peak mass difference of 104 corresponding exactly to the molar mass of the monomeric unit.

To examine how the basicity of the superbase affects the polymerization rate of styrene via "seeding", t-BuP₂, t-BuP₄ along with TMEDA were applied under same conditions (additive/sec-BuLi molar ratio and solution concentration) (Table 2). As expected, the final products were characterized by narrow molecular weight distributions (D ≤ 1.05) and the theoretical molecular weights were in good agreement with the experimental ones. Nevertheless, when t-BuP₂ and t-BuP₄ were used (Table 2, Entries 1 and 2), the polymerization completed after 30 and 110 min, respectively (Fig. 3, Fig. S2), due to the lower basicity, compared to t-BuP₄, leading to a significant decrease of the propagating site reactivity. When TMEDA was used, the monomer was consumed after 130 min, faster than the conventional anionic polymerization of styrene, due to the decrease or even elimination of the association of polymeric organolithium chain ends (Fig. S3).

Based on these findings, we were interested to utilize our approach with other styrenic monomers bearing alkyl side groups, such as 4MS. The conventional polymerization of the aforementioned monomers is generally conducted at low temperatures (0 to -70 °C) and terminated at low conversion, in order to avoid chain-transfer reactions, involving initiator or growing chain ends and the p-alkyl groups of the monomer and polymer. Interestingly, when "seeding" technique was employed for 4MS at room temperature (23 °C), in the presence of equimolar amount of sec-BuLi and t-BuP₄, the polymerization completed after 5 min, following the same trend as in the case of styrene (Fig. 4). The final poly(4MS) was characterized by narrow distribution (D = 1.12) and nearly predictable molecular weight (Mₙ, theor. = 25,000 g mol⁻¹, Mₙ, exper. = 20,000 g mol⁻¹). Obviously, the activation energies of propagation and transfer to monomer/polymer are dramatically modified in the presence of t-BuP₄, favoring propagation over transfer to the point that the latter would not even detected.

The same protocol was also used for the homopolymerization of the 1,3-butadiene but the polymerization was uncontrolled (D = 1.72, Mₙ, theor. = 20,000 g mol⁻¹, Mₙ, exper. = 3200 g mol⁻¹) and the conversion was low (<40%) even after 14 h (Fig. S4). This is probably due to spontaneous and isomerization destruction reactions which are common in "living" polydiene solutions in the presence of even mild polar additive as THF.

Sequential Addition of Styrene or 1,3-Butadiene to the "Living" PS Synthesized via Seeding

The "livingness" of the PS synthesized via "seeding" with t-BuP₄ was verified by the sequential polymerization of a second monomer (Table 3). First, a new amount of styrene was added when the initial styrene was fully consumed (5 min after the addition of t-BuP₄). The SEC trace of the final product was shifted to lower elution volume with narrow distribution (D = 1.09) (Fig. 5), while the second amount of styrene was also consumed in 5 min. Importantly, the total number average molecular weight of the extended PS (Mₙ, exper. = 10,700 g mol⁻¹) was practically the theoretical value (Mₙ, theor. = 10,000 g mol⁻¹) (Table 3, Entry 1). Even though it is impossible to implement kinetic studies due to the short period of time, all of the above features indicate the "living" character of the polymerization.
In addition, 1,3-butadiene was utilized as the second monomer with PS as macroinitiator synthesized via "seeding" with t-BuP₄ (Table 3, Entry 2). The final block copolymer showed relatively broad polydispersity (D = 1.32), low monomer conversion (<40%) and molecular weight $M_{n,\text{exper.}}^{\text{NMR}} = 1300 \text{ g mol}^{-1}$, while the targeted molecular weight for the second block was 5000 g mol$^{-1}$ (Fig. 6). This uncontrolled polymerization is attributed to isomerization reactions as described above.

In the case of 1,3-butadiene, these undesirable reactions were reduced, but not eliminated, when "seeding" took place and t-BuP₂ was used as additive (Table 3, Entry 3). Styrene was first polymerized ("seeding" and t-BuP₂), after the complete consumption of the monomer (30 min) 1,3-butadiene was added. The polymerization completed after 4 h and the SEC trace of the final diblock copolymer showed a bimodal molecular weight distribution (Fig. 7). We assume that isomerization reactions are taking place upon addition of a few monomeric units of 1,3-butadiene and deactivate a minor percentage of the "living" PS, while the rest is capable to promote the formation of the block copolymer. The same trend was observed when t-BuP₁ was used except that the polymerization completed after 8 h.
Polymerization of Styrene via “Seeding” Using “Living” PB as a Macroinitiator
To examine if the "seeding" technique in the presence of t-BuP₄ can be employed when a "living" macroanion is used instead of sec-BuLi, styrene was added in a solution of PB’Li’. After 10 min, an equimolar amount of t-BuP₄ to PB’Li’ was added and the polymerization left to proceed. NMR spectra showed that after 30 min, 95% of the styrene was consumed [Fig. 8(B)]. The final diblock copolymer had a narrow polydispersity (D = 1.06) and molecular weight equal to 16,300 g mol⁻¹, close to the theoretical one (M_r, diblock, theo = 17,300 g mol⁻¹). The slower polymerization rate compared to the one obtained by seeded sec-BuLi as initiator, can be attributed to association phenomena of PB’Li’ in benzene. Nevertheless, the polymerization of the second block is still faster than the conventional anionic polymerization of styrene.

CONCLUSIONS
In summary, when a strong phosphazene base (t-BuP₄) is used as a promoter in anionic polymerization initiated by an organolithium compound, the polymerization is extremely fast but uncontrolled due to the high reactivity of the formed carbanions. In order to overcome this drawback, we report a facile method by combining phosphazene bases, organolithium initiator, and the “seeding” technique. Specifically, the addition of t-BuP₄ after the formation of oligomers (seeds) led to the ultrafast anionic polymerization of styrene. All the monomers were consumed after only 5 min and the obtained homopolymers exhibit the desired molecular weights and narrow polydispersity. This method was successfully employed for the polymerization of 4MS in a hydrocarbon solvent at room temperature, where the polymerization rate was extremely fast thus suppressing potential chain-transfer reactions to the p-methyl group. The further addition of styrene to the PS’[(t-BuP₄)Li]” confirmed the “livingness” of our system, since PS-b-PS’ was obtained with controlled molecular characteristics after 5 min. Preliminary experiments on the polymerization of 1,3-butadiene showed that this strategy is not suitable for the controlled synthesis of polydienes due to isomerization reactions. To conclude, this novel method might have an impact not only on academia but also in the industry since well-defined polymers are produced within minutes rendering the manufacturing process more cost-effective.

ACKNOWLEDGMENT
Research reported in this publication was supported by King Abdullah University of Science and Technology (KAUST).

REFERENCES AND NOTES
38 R. Milner, R. N. Young, A. R. Luxton, Polymer 1983, 24, 543.
The anionic polymerization of styrene by organolithium compounds in the presence of t-BuP₄ is uncontrolled. By using the "seeding technique," meaning that t-BuP₄ is added 2 min after the initiation, the polymerization of styrene and 4-methylstyrene was extremely fast (5 min) and the final homopolymers exhibited narrow molecular weight distribution and controlled molecular characteristics. When t-BuP₂ and t-BuP₁ were used, the polymerization was also controlled but exhibited slower rates, due to the lower basicity.