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Abstract—Despite recent efforts in counting 3-node and 4-node
graphlets, little attention has been paid to characterizing 5-node
graphlets. In this paper, we develop a computationally efficient
sampling method to estimate 5-node graphlet counts. We not
only provide a fast sampling method and unbiased estimators of
graphlet counts, but also derive simple yet exact formulas for the
variances of the estimators which are of great value in practice—
the variances can be used to bound the estimates’ errors and
determine the smallest necessary sampling budget for a desired
accuracy. We conduct experiments on a variety of real-world
datasets, and the results show that our method is several orders
of magnitude faster than the state-of-the-art methods with the
same accuracy.

I. INTRODUCTION

For complex networks such as online social networks,
computer networks, and biological networks, designing tools
for estimating the counts (or frequencies) of 3-, 4-, and 5-node
connected subgraph patterns (i.e., graphlets) is fundamental for
detecting evolution and anomaly patterns in a large graph and
computing graph similarities for graph classification, which
have been widely used for a variety of graph mining and
learning tasks. Despite recent progress in counting triangles
and 4-node graphlets, little attention has been given to de-
veloping fast tools for characterizing and counting 5-node
graphlets. Formally, let G = (V,E) be an undirected graph,
where V and E are the node set and edge set respectively.
All undirected graphs’ 5-node graphlets G(5)

1 , . . . , G
(5)
21 studied

in this paper are shown in Fig. 1. Denote by C(5) the set
of 5-node CISes in G, and C

(5)
i the set of 5-node CISes in

G isomorphic to graphlet G
(5)
i . The graphlet count of G

(5)
i

is defined as ηi = |C(5)
i |, 1 ≤ i ≤ 21. Recently, Pinar et

al. [1] propose a fast method ESCAPE for counting 5-node
graphlets by utilizing the relationships between 3-, 4-, and 5-
node graphlets counts. However, ESCAPE is not scalable to
large graphs, which requires more than 10 hours to handle
graphs with millions of nodes and edges. To address this

challenge, we propose a novel sampling method MOSS-5 to
fast estimate the counts of 5-node graphlets.
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Figure 1. 5-node undirected graphlets G
(5)
i , i = 1, . . . , 21.

II. OUR METHOD

We observe that 1) except CISes in C
(5)
1 ∪ C

(5)
2 ∪ C

(5)
6 ,

5-node CISes include at least one subgraph isomorphic to
graphlet G

(5)
3 ; 2) except CISes in C

(5)
2 ∪ C

(5)
3 ∪ C

(5)
8 , 5-

node CISes include at least one subgraph isomorphic to
graphlet G

(5)
1 . Let Ω1 = {1, . . . , 21} − {1, 2, 6} and Ω2 =

{1, . . . , 21}−{2, 3, 8}. Inspired by the above two observations,
we develop a method MOSS-5 consisting of two sub-methods:
T-5 and Path-5, where T-5 is customized to fast sample 5-node
CISes isomorphic to G

(5)
i , i ∈ Ω1, and Path-5 is customized to

fast sample 5-node CISes isomorphic to G
(5)
j , j ∈ Ω2. For any

i ∈ Ω1, we provide an unbiased estimate η̂
(1)
i of ηi based on

sampled CISes of T-5. For any j ∈ Ω2, similarly, we provide
an unbiased estimate η̂

(2)
j of ηj based on sampled CISes of

Path-5. Based on η̂
(1)
i and η̂

(2)
j , we propose a more accurate

estimator η̂k of ηk, k ∈ Ω1 ∪ Ω2 = {1, . . . , 21} − {2} and
provide an unbiased estimator η̂2 of η2.



The T-5 Sampling Method. Denote Γ
(1)
v = (dv − 1)(dv −

2)
∑

x∈Nv
(dx − 1), v ∈ V . We assign a weight Γ(1)

v to each

node v ∈ V . Define Γ(1) =
∑

v∈V Γ
(1)
v and ρ

(1)
v =

Γ(1)
v

Γ(1) . Let
Nv denote the set of neighbors of v in graph G. To sample a
5-node CIS, T-5 uses six steps: Step 1) sample a node v from
V according to the distribution ρ(1) = {ρ(1)v : v ∈ V }; Step
2) Sample a node u from Nv according to the distribution
σ(v) = {σ(v)

u : u ∈ Nv}, where σ
(v)
u is defined as σ

(v)
u =

du−1∑
x∈Nv

(dx−1) , u ∈ Nv; Step 3) sample a node w from Nv −
{u} at random; Step 4) sample a node r from Nv −{u,w} at
random; Step 5) sample a node t from Nu − {v} at random;
Step 6) return the CIS s that includes nodes v, u, w, r, and
t. We run the above procedure K1 times to obtain K1 CISes
s
(1)
1 , . . . , s

(1)
K1

. For a CIS s isomorphic to graphlet G(5)
i , 1 ≤

i ≤ 21, denote ϕ
(1)
i as the number of subgraphs in s that are

isomorphic to graphlet G
(5)
3 . Using the sampling procedure

once (i.e., K1 = 1), T-5 returns a CIS s ∈ C
(5)
i sampled

with probability p
(1)
i =

2ϕ
(1)
i

Γ(1) , 1 ≤ i ≤ 21. We let G(5)(s)
be the 5-node graphlet ID of s when s is a 5-node CIS, and
-1 otherwise. We define m

(1)
i =

∑K1

k=1 1(G
(5)(s

(1)
k ) = i). For

i ∈ Ω1, p(1)i is larger than zero and thus we estimate ηi as

η̂
(1)
i =

m
(1)
i

K1p
(1)
i

. For i ∈ Ω1, η̂(1)i is an unbiased estimator of ηi,

i.e., E(η̂(1)i ) = η
(1)
i , and the variance of η̂

(1)
i is Var(η̂(1)i ) =

ηi

K1

(
1

p
(1)
i

− ηi

)
.

The Path-5 Sampling Method. Let Γ
(2)
v =(∑

x∈Nv
(dx − 1)

)2 −∑
x∈Nv

(dx − 1)2, v ∈ V . We assign a
weight Γ(2)

v to each node v ∈ V . Define Γ(2) =
∑

v∈V Γ
(2)
v

and ρ
(2)
v =

Γ(2)
v

Γ(2) . To sample a 5-node CIS, Path-5 mainly
consists of six steps: Step 1) sample a node v from V

according to the distribution ρ(2) = {ρ(2)v : v ∈ V };
Step 2) sample a node u from Nv according to the
distribution τ (v) = {τ (v)u : u ∈ Nv}, where we define
τ
(v)
u =

(du−1)(
∑

y∈Nv−{u}(dy−1))

Γ
(2)
v

, u ∈ Nv; Step 3) sample
a node w from Nv − {u} according to the distribution
µ(v,u) =

{
µ
(v,u)
w : w ∈ Nv − {u}

}
, where we define

µ
(v,u)
w = dw−1∑

y∈Nv−{u}(dy−1) , w ∈ Nv − {u}; Step 4) sample
a node r from Nu − {v} at random; Step 5) sample a node
t from Nw − {v} at random; Step 6) return the CIS s that
includes nodes v, u, w, r, and t. We run the above procedure
K2 times to obtain K2 CISes s

(2)
1 , . . . , s

(2)
K2

. For a CIS s

isomorphic to graphlet G(5)
i , 1 ≤ i ≤ 21, let ϕ(2)

i denote the
number of subgraphs in s that are isomorphic to G

(5)
1 . Using

the sampling procedure once (i.e., K2 = 1), Path-5 samples
a CIS s ∈ C

(5)
i with probability p

(2)
i =

2ϕ
(2)
i

Γ(2) , 1 ≤ i ≤ 21.
Denote m

(2)
i =

∑K2

k=1 1(G
(5)(s

(2)
k ) = i). For i ∈ Ω2, p(2)i is

larger than zero and we then estimate ηi as η̂(2)i =
m

(2)
i

K2p
(2)
i

. For

i ∈ Ω2, η̂(2)i is an unbiased estimator of ηi and its variance is

Var(η̂(2)i ) = ηi

K2

(
1

p
(2)
i

− ηi

)
.

Hybrid Estimator of 5-Node Graphlet Counts. We estimate
ηi as η̂

(1)
i and η̂

(2)
i for i ∈ Ω1 − Ω2 and i ∈ Ω2 − Ω1

respectively. When i ∈ Ω1 ∩ Ω2, we estimate ηi based on
its two unbiased estimates η̂

(1)
i and η̂

(2)
i . Formally, let

λ
(1)
i =

Var(η̂(2)i )

Var(η̂(1)i ) + Var(η̂(2)i )
, λ

(2)
i =

Var(η̂(1)i )

Var(η̂(1)i ) + Var(η̂(2)i )
.

For i ∈ Ω1 ∪ Ω2 = {1, 3, 4, 5, . . . , 21}, we estimate ηi as

η̂i =


λ
(1)
i η̂

(1)
i + λ

(2)
i η̂

(2)
i , i ∈ Ω1 ∩ Ω2,

η̂
(1)
i , i ∈ Ω1 − Ω2,

η̂
(2)
i , i ∈ Ω2 − Ω1.

For a CIS s isomorphic to graphlet G(5)
i , 1 ≤ i ≤ 21, let ϕ(3)

i

denote the number of subgraphs in s that are isomorphic to
graphlet G(5)

2 . Let Λ4 =
∑

v∈V

(
dv

4

)
. Then, the number of all

5-node subgraphs (not necessarily induced) in G isomorphic to
graphlet G(5)

2 is Λ4. Let Ω3 = {j : ϕ(3)
j > 0} and Ω∗

3 = Ω3 −
{2}. We observe that

∑
i∈Ω3

ϕ
(3)
i ηi = Λ4. Since ϕ

(3)
2 = 1, we

estimate η2 as
η̂2 = Λ4 −

∑
i∈Ω∗

3

ϕ
(3)
i η̂i.

Experimental results. Table I shows the expected smallest
computational time of MOSS-5 required to obtain all esti-
mates η̂1, . . . , η̂21 with NRMSE smaller than 0.1. To com-
pute η1, . . . , η21, the state-of-the-art exact computing method
ESCAPE requires 52 hours, 32 hours, and 23 hours for
graphs Flickr, com-Orkut, and LiveJournal respectively. We
can see that the computational time of ESCAPE does not
strictly increase with the graph size. For example, graph ca-
HepPh is more than ten times smaller than graphs YouTube
and Web-Google. To compute η1, . . . , η21, however, ESCAPE
requires much more time for ca-HepPh than for YouTube
and Web-Google. From Table I, we see that our method
MOSS-5 is 2 to 18,945 times faster than ESCAPE when
providing accurate estimates with NRMSE smaller than 0.1.
When maxi=1,...,21 NRMSE(η̂i) = 0.1. the average NRMSE
varies from 0.01 to 0.04 for all graphs studied in this paper.

Table I
MOSS-5 IN COMPARISON WITH EXACT COUNTING METHOD ESCAPE.

Graph ESCAPE MOSS-5, maxi=1,...,21 NRMSE(η̂i) = 0.1

(time) time 1
21

∑21
i=1 NRMSE(η̂i)

Flickr 189,450 s 10 s 0.039
com-Orkut 116,029 s 103 s 0.015
LiveJournal 82,445 s 31 s 0.037

Pokec 3,696 s 31 s 0.024
Wiki-Talk 1,877 s 47 s 0.018

Xiami 518 s 82 s 0.013
Web-Google 112 s 25 s 0.013

YouTube 193 s 96 s 0.011
ca-HepPh 589 s 64 s 0.011
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