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Algorithm 1: DSDTWnano
Input: long reference X, query Y , scale sbase and

boundary r
1 SubProcedure DSDTW(X,Y)
2 Pad Y to Y′ = (y0, y1, · · · , yM);
3 Dmin ← ∞, te ← 0, t ← 0;
4 while t ≤ N do
5 D(t, 0)← 0;
6 for j = 1 to M do
7 d ← ‖xt − y j‖ ;
8 D(t, j) =

d+min{D(t−1, j),D(t, j−1),D(t−1, j−1)};
9 end

10 if Dmin > D(t,M) then
11 Dmin = D(t,M), te = t;
12 end
13 Update ε = avg(D(·,M)) − 5dev(D(·, M));
14 if t − te ≥ M and Dmin < ε then
15 break;
16 end
17 t ← t + 1;
18 end
19 return te.
20 Procedure DSDTWnano(X,Y, sbase, r)
21 X′ = Resampling(1/sbase, X), i.e., X′ = (x′1, · · · , x

′
N′ );

22 te = DSDTW(X′,Y);
23 Wcoarse = PathTrackback(te, X′,Y);
24 B = ReMapIndex(Wcoarse, r);
25 W f ine = cDTW(X,Y, B);
26 return W f ine.

In particular, cwSDTWnano starts from seed search on the
compressed raw signals. Based on the mapping paths of the
seeds, the signal sequences with no high-similarity segment
(i.e., non-hit signals) are filtered out. For the candidate signal
sequences that pass the filter, a low-resolution wavelet trans-
form is imposed on the long nanopore signal and the query sig-
nal sequences to highly compress the information, which are
utilized to generate the coarse path with the help of seeds. Fi-
nally, with the multi-scale analysis of CWT, the mapping path
between the query signal sequence and the raw signal sequence
is calculated recursively from a lower-resolution projection to
a higher-resolution one.
3.2.1 Seeds with minimal length
In genomic read mapping, the k-long subsequences (i.e., k-
mers) in a query sequence are often used as a quick indicator
of whether and where the reference contains the query. These
k-mers are called “seeds” and their inquiry is usually done
through hashing. Because of the high noise and non-stable
sampling rates in nanopore sequencing, it is difficult to build
such a k-mer hash function in the similarity search of the query
signal. However, we still can use the idea of “seed” to quickly
determine the range where the query signal locates in the raw
signals.

Our observation is that if a query signal exceeds a certain
length, we could detect this signal in the long raw signal se-
quence without ambiguity, and this certain length is denoted as the minimal length. An experiment is presented to
show how the length of the query affects the similarity search. As discussed in Section 2.3, the subsequence in the
compressed raw signals with the highest similarity to the query signal will result in the minimum DTW distance,
which behaves as a sharp peak. Fig. 3(A) shows that a 32bp- or 64bp-long query signal cannot determine a unique
result because there is no distinguishable peak of the DTW distance among different locations. On the contrary, a
query with 96bp or 128bp length is able to detect a clear sharp peak. Two reasons may explain why a very short query
fails: (i) the noise in the raw signal degenerates the DTW distance of the true result, and (ii) there exist multiple similar
subsequences in the raw signal sequence.

Through comprehensive experiments, we find that a length of 128bp is enough for a short query to be detected in
the raw signals. We also found that if the distributions of the electrical current values in raw signals are given, we may
infer the theoretical minimal length from the given distribution, which shows the existence of the minimal length in
any nanopore system (a brief proof is given in Section S1). Therefore, we denote a short segment in a query signal
with length at least minimal length as a seed.

Figure 3: (A) The change of the DTW distance with different query lengths. (B) Linear relationship of the mapped path of 3 short seeds that are
extracted from a long query sequence.

3.2.2 Filtering non-hit signals by seeds
Given a long query signal sequence (≥ 1000), it is possible to utilize the seeds to filter raw signals with no high-
similarity segment, which will significantly reduce the total query time. The key observation is that if a query sequence
has a highly similar region in the compressed raw signal sequence, linear ordered seeds on the query sequence will
also have a linear relationship to the hit regions in the compressed signal sequence (Fig. 3(B)). On the contrary, if the
query sequence does not have a highly similar region in the compressed signal, no seeds will be detected or the seeds
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will not follow a linear order. Based on this observation, a filtering operation is developed to quickly exclude those
non-hit signals:

1) Select a set of segments {Qi}i=1,··· ,K from the query signal Y as the seeds;
2) For each seed, search in the compressed signal sequence X′ by sDTW(·) to get the local mapping with the highest

similarity;
3) Trackback from the endpoint of the mapping to get the mapping path for each seed;
4) Make a linear regression based on the mapping paths of these seeds and check their consistency;
5) If the consistency is weak, stop the process.

With the filtering operation, if the linear relationship of the seeds is violated, we can stop the search process to save
time. If we select K seeds with length L, the total cost for a raw signal sequence with N time points is O( N

sbase
KL), in

which both K and L are small numbers.
3.2.3 Multi-scale search based on continuous wavelet transform
When handling long signal sequences, multi-scale analysis has been widely used to reduce the runtime [15, 16, 17],
and CWT has been adopted to preserve the feature information [18]. Recently, a multi-scale analysis with CWT
has been proposed for global end-to-end mapping of two ultra-long signals [8]. Here we apply a similar idea to the
genome-to-signal subsequence search problem.

Multi-scale representation by CWT: Following [8], a nanopore signal sequence could be transformed by CWT
with different scales a to capture multi-scale information (a brief introduction of CWT is given in Section S2). Then, a
feature extraction procedure can be carried out (denoted as PickPeaks(·)) to reduce the length of a raw signal X under
different scales a:

1) Obtain the spectra CWT(X, a);
2) Normalize CWT(X, a) based on Z-score normalization;
3) Extract peaks and nadirs from each spectrum as the feature sequence.

The length of a signal sequence could be dramatically reduced by more than a times for a nanopore raw signal se-
quence.

Coarse path Generation: As introduced in Section 3.2.2, a number of seeds are used and their mapping paths with
the compressed signal sequences are recorded. These short mapping paths can be used as anchors in the construction
of the coarse mapping path between the query sequence and the raw signal sequence using the lowest resolution
transform (i.e., with maximal level coarsening scale) from CWT:

1) Given the query sequence Y with length M, get the maximal level coarsening scale a = log2(M) − 2;
2) Get the feature signals for both CWT(X′, a) and CWT(Y, a);
3) Run the subsequence DTW on the feature signals and get all the paths;
4) Find out the coarse path that covers the seeds;
5) Combine both the seeds and the coarse path to generate a more detailed path.

Then, the generated coarse mapping path is fed into cwDTW [8] to determine the final mapping.
The continuous wavelet subsequence DTW: Algorithm 2 shows cwSDTWnano, where cwDTW(·) is the con-

tinuous wavelet-based multi-level DTW [8], SelectSeeds(·) is the procedure to get K segments with length L from
Y , CheckFalse(·) is the filtering of false alignment described in Section 3.2.2, ReMapIndex(·) is a context-dependent
constraint generation from a coarse path Wcoarse with a window size of r, CWT(·) is the continuous wavelet transform
and PickPeaks(·) is the procedure to get feature sequence [8], CoarsePath(·) is the coarse path generation procedure
described in the previous paragraph and cDTW(·) is the constrained DTW [14]. We notice that the false filtering
procedure has a complexity of O( N

sbase
KL) and the procedure of cwDTW(·) is bounded within O(N log N), the overall

complexity for Algorithm 2 is O( N
sbase

KL + N log N), which has an obvious advantage when the signal length increases.

4 Experiments and Results
To demonstrate the efficiency and effectiveness of the two proposed local genome-to-signal search (abbr. local search)
algorithms, we comprehensively evaluate the performance of DSDTWnano and cwSDTWnano on two real nanopore
datasets from human and lambda phage. Furthermore, a successful SNP detection case study was presented using the
dataset from E. coli with a low sequencing coverage.

4.1 Datasets
Three nanopore sequencing datasets are used in our experiments, among which the first (human) and second (lambda
phage) are used to evaluate the accuracy of our proposed local search algorithms, and the third (E. coli) is used to
demonstrate the power of our algorithms on hit signal discrimination and low-coverage SNP detection.
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Algorithm 2: cwSDTWnano
Input: long reference X, query Y , scale sbase, seed number

K, seed length L and boundary r
1 SubProcedure cwDTW(X,Y,WS , S , r)
2 Initialization: s← S − 1;
3 while s ≥ 1 do
4 Xs = CWT(X, 2s−1), PXs = PickPeaks(Xs

p) ;
5 Y s = CWT(Y, 2s−1), PY s = PickPeaks(Xs

g) ;
6 Bs = ReMapIndex(Ws+1, r) ;
7 Ws = cDTW(PY s , PXs , Bs);
8 s← s − 1;
9 end

10 return Ws=1.
11 Procedure cwSDTWnano(X,Y, sbase, s, L, r)
12 X′ = Resampling(1/sbase, X), i.e., X′ = (x′1, · · · , x

′
N′ );

13 {Qi}i=1,··· ,K = SelectSeeds(Y,K, L);
14 {Wi}i=1,··· ,K ← 0;
15 foreach Qi do
16 te = DSDTW(Qi,Y),

Wi = PathTrackback(Qi, X′,Y);
17 end
18 if CheckFalse({Wi}) = true then
19 return ∅;
20 end
21 S = log2(M) − 2;
22 X′S = CWT(X′, 2S ), YS = CWT(Y, 2S );
23 Wcoarse = CoarsePath(X′S ,YS , {Wi});
24 Ws=1 = cwDTW(X′,Y,Wcoarse, S , r);
25 B = ReMapIndex(Ws=1, r);
26 W f ine = cDTW(X,Y, B);
27 return W f ine.

The first dataset is a subset of the public available hu-
man data, which comes from human chromosome 21 from
the Nanopore WGS Consortium [19] and contains 6318 se-
quenced reads. The samples in this dataset were sequenced
from the NA12878 human genome reference on the Oxford
Nanopore MinION using 1D ligation kits (450 bp/s) with R9.4
flow cells1. We denote this dataset as the Human21 database.

The second and third datasets are from the genome of
lambda phage and E. coli, respectively. These two datasets
were all prepared and sequenced at the University of Queens-
land by Prof. Lachlan Coin’s lab. The lambda phage dataset
contains 27004 reads and the E. coli dataset contains 27608
reads. The samples were sequenced on the MinION device
with 1D protocol on R9.4 flow cells (FLO-MIN106 protocol).
We denote these two datasets as the Lambda phage database
and the E. coli database, respectively. Specifically, E. coli has
a relatively low coverage (20×).

To evaluate the accuracy of the algorithms, we created a
subset by randomly sampling 3000 reads from Human21 and
Lambda phage2. The average length of the DNA sequences
in the sampled datasets is 7890 and 8461 for Human21 and
Lambda phage, and the average length of the nanopore raw
signal sequences is 65,947 and 69,715, respectively.

4.2 Evaluation criteria
4.2.1 Edit mapping error of a local search algorithm

Suppose the reference genome is known, we may use the edit mapping error to evaluate the difference between the
mapping path generated by a local genome-to-signal search algorithm and the global mapping path.

Specifically, given a nanopore raw signal sequence, as we know the reference genome, it is possible to find the
corresponding genomic region to the raw signals [11]. Then, the global mapping path W ′ between the genomic region
and the raw signal sequence can be derived by the original DTW or other dynamic programming algorithms [8, 7].

Thus, for a genomic region G = g1g2 · · · gL and its corresponding raw signal sequence R = r1r2 · · · rN , the accuracy
of the mapping path W generated by a local search algorithm is defined as:

emError(W,W′) =
1
L

L∑
i=1

EditDist(signalW (gi), signalW′ (gi))
L(signalW′ (gi))

, (4)

where signalx(gi) returns the set of signal indexes {r j} that corresponds to the query sequence position gi from a certain
mapping path x ∈ {W,W ′}. This is because on average, each nucleotide corresponds to 8 to 9 signals in the raw signal
sequence due to the redundant sampling in nanopore. EditDist(·) is the edit distance and L(·) is size of the signal index
set.

For example, if we have a query G = g1g2g3 with L = 3. Suppose its local mapping path W is {(10, 1), (11, 1), (12, 1),
(13, 2), (14, 2), (15, 2), (16, 3), (17, 3)}, and the global mapping path W ′ is {(11, 1), (12, 1), (13, 2), (14, 2), (15, 2), (16, 3),
(17, 3)}. Then we will have the edit distance for g1, g2 and g3 being 1, 0 and 0, respectively, and thus emError(W,W ′) =
1
3 · (

1
2 + 0

3 + 0
2 ) = 0.166. If the local search algorithm returns a perfect mapping path, the error is zero. Note that the

error may exceed 100% if the mapping is way off.

4.2.2 Normalized signal distance of a local search algorithm
Suppose the reference genome is unknown or not accurate (e.g., in many real-world applications such as SNPs or
methylation detection), it is difficult to obtain the global mapping. In this case, we may use the normalized signal
distance to evaluate the quality of the mapping path W generated by a local search algorithm, which is defined as:

nDist(W) =

∑L(W)
n=1 c(wni,wn j)

L(W)
, (5)

1The nanopore raw signal data were downloaded from nanopore-wgs-consortiumhttp://s3.amazonaws.com/nanopore-human-wgs/
rel3-fast5-chr21.part03.tar

2https://drive.google.com/drive/folders/1LuOxg9qE1l9AuDcfyUz9aF10X4cgmX5t?usp=sharing
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where L(W) is the length of the mapping path W, and c(wni,wn j) is the absolute (or, Z-score) difference of the nth
aligned element between the two signal points xi (the nanopore raw signal) and y j (the expected signal from the k-mer
pore model). Different from emError(W,W ′), here nDist(W) is defined over one mapping path W only, instead of over
two mapping paths W and W ′.

4.3 Performance
4.3.1 Visualization of a detailed example

Figure 4: A demonstration of the raw signal similarity search and mapping by our algorithm. Here, the top signal (blue) is a query signal with 300
length, and the bottom signal (black) is a nanopore raw signal with 10,000 length. The zoom-out subfigure locating at [145:185] shows how the
query signal corresponds to the {A,C,G,T } nucleotide acids. The red signal that locates at [4553:7641] on the raw signal is the query result. By
further selecting the segment [6197:6594] on the raw signal and overlapping it with the segment [145:185] on the query signal, a superimposed
image with high degree of overlapping is produced.

To demonstrate the effectiveness of our algorithms in discovering the corresponding subsequences in the raw signal
sequence, we give one example in Fig. 4 to show the detailed steps of local genome-to-signal search.

Here, a short region of the DNA sequence with 300bp length is selected as the query sequence and a raw signal
sequence with 100,000 time points is served as the signal database (the black signal depicted on the bottom of Fig. 4).
Both the DNA sequence and the raw signal sequence are selected from the Human21 dataset.

Below are the four steps of the genome-to-signal search procedure:
A) The query sequence is translated into a query signal sequence based on the 6-mer pore model provided by

Nanopore Technologies (the blue signal sequence depicted on the top of Fig. 4).
B) Run the DSDTWnano algorithm to obtain the detailed region ([4553:7641]) on the raw signal sequence that has

the highest similarity with the query signal sequence (the red signal region depicted on the bottom of Fig. 4).
This query operation takes 29 ms and results in a normalized signal distance of 0.1556 between the query signal
sequence and the red region of the raw signal sequence. Typically, a normalized signal distance ranging from
0∼0.20 indicates a good match.

C) By comparing the zoomed out regions of the query and raw sequences, we can find that these two signals are
very similar to each other. However, it should be noted that the query result in the raw signal sequence is about
9× longer than the query signal, which is the typical difference in the sampling speed in nanopore sequencing.
Nevertheless, our algorithm still produced accurate mapping.

D) By further selecting the segment [145:185] on the query sequence and the segment [6197:6594] on the raw se-
quence, we may align and visualize them according to the mapping path produced by our algorithm.

4.3.2 Accuracy analysis

We evaluate the performance of DSDTWnano and cwSDTWnano using the subset of the Human21 dataset and the
Lambda phage dataset. In doing so, we randomly select a segment with length l as the query sequence and then run
the two algorithms on the corresponding raw signals to find out its maximal response mapping. Finally, we compare
the query results of DSDTWnano and cwSDTWnano with the global mapping by the edit mapping error.

We first run an experiment of DSDTWnano and cwSDTWnano (with parameter K = 3 and L = 128) with the
mapping boundary r = 50 and the query length l = 1000. As shown in Fig. 5(A), the distribution of the edit
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mapping error of cwSDTWnano is very similar to that of DSDTWnano, and the majority of the error ranges between
0 and 0.01. Fig. 5(B) shows the scatter plot between the edit mapping error of DSDTWnano (x-axis) and that of
cwSDTWnano (y-axis), which indicates that most of them are the same (on the diagonal of the scatter map). The
outliers of cwSDTWnano may be caused by the coarsening in the multi-scale analysis.

Figure 5: Statistics of the edit mapping error of our algorithms on the Human21 database, where for both DSDTWnano and cwSDTWnano the
mapping boundary r = 50 and query length l = 1000. (A) Distribution of the edit mapping error of DSDTWnano (in yellow) and cwSDTWnano
(in blue). (B) Scatter plot between the edit mapping error of the DSDTWnano (x-axis) and that of cwSDTWnano (y-axis).

We then challenge both algorithms with different lengths l of the query sequence and different radius r of the
mapping path boundary. The average edit mapping error of the query results by DSDTWnano and cwSDTWnano
on the Human21 database and the Lambda phage database are summarized in Tables 1 and 2, respectively. We can
find that for queries with different lengths, (i) DSDTWnano almost always outputs a query result within 0.01 edit
mapping error, and no larger than 0.006 for most of the cases; (ii) the edit mapping error of cwSDTWnano can also be
controlled around 0.006 if a suitable r is selected (r = 50 for l 6 2000 and r = 70 for l 6 4000). This is normal as the
performance of cwSDTWnano depends on the mapping boundary r which is required for the coarsening of the input
signals. As a result, although human and lambda phage are two completely different species, from the little difference
between the two tables, we know that the performance of our methods is stable and consistent over different species.

Table 1: The average edit mapping error on the Human21 database

Edit Mapping Error l = 600 l = 1000 l = 2000 l = 3000 l = 4000

DSDTW
nano

r = 30 0.003992 0.004477 0.005322 0.005602 0.005575
r = 50 0.004131 0.004440 0.005213 0.005361 0.005326
r = 70 0.004092 0.004533 0.005147 0.005368 0.005158

cwSDTW
nano

r = 30 0.004444 0.007988 0.012675 0.019269 0.030104
r = 50 0.004183 0.004651 0.005647 0.005867 0.006013
r = 70 0.004100 0.004598 0.005308 0.005504 0.005395

Table 2: The average edit mapping error on the Lambda phage database

Edit Mapping Error l = 600 l = 1000 l = 2000 l = 3000 l = 4000

DSDTW
nano

r = 30 0.003813 0.003940 0.004631 0.004898 0.004686
r = 50 0.003544 0.004059 0.004527 0.004667 0.004583
r = 70 0.003763 0.003933 0.004347 0.004453 0.004265

cwSDTW
nano

r = 30 0.004674 0.006521 0.014902 0.035661 0.052850
r = 50 0.003791 0.004549 0.005384 0.005728 0.005973
r = 70 0.003791 0.004294 0.004673 0.004758 0.004667

Table 3: The average edit mapping error of query results on the Human21
database for cwSDTWnano with different configurations

Edit Mapping Error l = 600 l = 1000 l = 2000 l = 3000 l = 4000
K = 3, L = 128 0.004183 0.004651 0.005647 0.005867 0.006013
K = 4, L = 128 0.004155 0.004819 0.005569 0.006062 0.005725
K = 5, L = 128 0.004202 0.004643 0.005549 0.005785 0.005832
K = 3, L = 192 0.004444 0.004626 0.005355 0.006047 0.005624
K = 4, L = 192 0.004223 0.004745 0.005398 0.005949 0.005759
K = 5, L = 192 0.004177 0.004950 0.005322 0.006114 0.005730

Because cwSDTWnano has two extra parameters K
and L to define the seed number and the seed length, we
further analyze the parameter sensitivity. Table 3 sum-
marizes the average edit mapping error on the Human21
database for cwSDTWnano with different seed number K
and seed length L (here the search radius r is set to 50).
From Table 3 we can find that the seed length has an in-
fluence on the quality of the result but the number of seed does not have. Also, the edit mapping error demonstrated
in Table 3 indicates that cwSDTWnano is robust for K > 3 and L > 128. Thus a very short seed may cause false
dismissals, whereas a seed length of 128 can ensure the correctness of cwSDTWnano for almost all the query, and a
seed length of 192 is sufficient for a dataset with raw signals with reasonably good quality.

As the edit mapping error directly reflects how correct the signals aligned upon the nucleotide positions, it can
indicate the necessary signal coverage (an analogy to the read coverage) to ensure the success of the DNA mutation
analysis, such as SNP detection. A small edit mapping error indicates that there is little theoretical error introduced by
our algorithms. Specifically, learning from the <1% edit mapping error produced here, we can infer that a 10× ∼ 20×
signal coverage is enough for a mutation analysis if the raw signals are (i) with relative high-quality (∼90% accuracy),
and (ii) searched and mapped by our algorithms.

4.3.3 Runtime analysis

For a database with a number of raw signals, the running time for a query task is also very important. Generally,
the runtime of DSDTWnano is about 450 ms and that of cwSDTWnano is about 200 ms for a query sequence with
1000bp in length on a 100, 000 time points raw signal sequence. When the query length grows, the runtime may
increase considerably if there are hundreds or thousands of raw signals. Under this condition, cwSDTWnano is
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prepared because it can accelerate the query process dramatically by a multi-scale strategy. In this subsection, the
runtime for both DSDTWnano and cwSDTWnano is investigated.

Fig. 6 demonstrates the runtime of our algorithms. All the execution time is collected on a Fedora25 system with
128Gb memory and two E5-2667v4 (3.2 GHz) processors. From Fig. 6(A) we can find that DSDTWnano has a much
higher execution time compared with cwSDTWnano when the query length increases, whereas cwSDTWnano keeps
a low computational cost. Especially, the runtime of cwSDTWnano is always smaller than 900 ms even searching
a 6000bp-long query on a raw signal with 2 × 105 time points. From Fig. 6(B) we can find that the runtime of
cwSDTWnano will not exceed 1500 ms when searching a 1000bp-long query on a raw signal with 1×106 time points.

In summary, though the introduction of multi-scale coarsening analysis in cwSDTWnano causes a degeneration in
mapping accuracy (Tables 1 and 2), the loss of accuracy is acceptable when considering the benefit to the runtime. In
practice, we will (i) run DSDTWnano if the query length is short, and (ii) run cwSDTWnano if the query is long.

Figure 6: The runtime of our algorithms with different query lengths and raw signal lengths (r = 50, K = 3 and L = 128). (A) The runtime of
DSDTWnano and cwSDTWnano on a 2 × 105-long raw signal sequence when the length of the query changes; (B) The runtime of DSDTWnano
and cwSDTWnano for a 1000bp-long query when the length of raw signals changes.

4.3.4 Discrimination of hit and non-hit signals

Figure 7: The histogram of the normalized signal distance (nDist) on the E. coli database, which is generated from 200 query sequences whose
length is 600bp-long or 1000bp-long. Each query sequence has 200 non − hit raw signals (denoted as the f alse set) and about 25 hit raw signals
(denoted as the true set).

A fundamental task in nanopore sequencing is that, given a query sequence and a raw signal database, whether
we can find a set of signal segments (subsequences of raw signals) that are similar to the query. Here we use the
concept hit (non-hit) to indicate the raw signals that contain (do not contain) a signal segment with high-similarity to
the query. This is necessary because in some applications, the task is to find some non-standard events (e.g., SNPs or
DNA methylations), in which multiple numbers of hit signals are required for the reliable detection of these events.
However, it is not easy to implement a scoring function to discriminate hit and non-hit signals, especially when the
reference genome is unknown or not accurate. In this case, the global mapping is unknown and whether a raw signal
sequence contains the query sequence is also unknown. Here, the normalized signal distance (nDist) is proposed to
filter the non-hit signals, without the need of the reference genome.

We use the E. coli database to test the performance of nDist with DSDTWnano to identify hit and non-hit signals.
To construct the benchmark, we randomly select 600bp-long and 1000bp-long subsequences from the E. coli genome
as the query sequences, each with 200 samples. For each raw signal sequence in the E. coli database, as its correspond-
ing reference sequence is known, we are able to get the true label of each sequence. Since the sequencing coverage
of the E. coli dataset is around 20, we use all the hit signals as the true set, and randomly sample 200 non-hit as the
f alse set. For each pair of the query sequence and the raw signals in either the true or f asle set, we run DSDTWnano
to obtain the local mapping path and the corresponding nDist score.

As shown in Fig. 7, we observe that (i) there are two well-separated distributions of nDist, where most of the
left (right) belongs to the true ( f asle) set; (ii) nDist from the query sequence with different lengths reside in the
same distribution. Thus, nDist can distinguish the true and f alse set no matter the query sequence is 600bp-long or
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1000bp-long. It is obvious that there is a clear boundary around nDist = 0.2 that could separate the true and f alse
sets. Therefore, to obtain hit signals for the query sequence, we may set the threshold for nDist to 0.2 during the
database search. This result ensures the accurate identification of similar subsequences in raw signals to the query,
which is essential to the detection of SNPs in the signal level.

4.4 Case study
Currently, the identification of SNPs is mainly achieved by resequencing approach (i.e., searching for differences
between aligned reads and the reference genome) or assembly approach (i.e., de novo assembling consensus read
sequences against a reference genome) [20]. Recently, a few works explored the capability of nanopore sequencing
to identify SNPs [21], which shows that to reach a high detection rate (such as > 95%), more than 60× sequencing
coverage is needed[22].

Here, a case study is presented to demonstrate how we can identify and visualize SNPs based on the nanopore raw
signals by our algorithm. The experiment is carried out on the E. coli dataset with a relatively low coverage (20×).
In doing so, we first generate a synthetic reference genome by randomly substituting 100 bases on the reference
genome. Then we extract a 2000bp-long sequence on the synthetic genome that might contain a SNP and search it
against the nanopore signal database by cwSDTWnano, to locate the candidate raw signal segments and positions that
might contain a SNP. After that, for each candidate position, four mutated sequences each with that position being
{A,C,G,T }, respectively, are used as the query to search against the signal database. Finally, the mutation with the
expected signal closest to the observed signals in the database is chosen as the detected SNP at the candidate position
(more details are given in Section S3).

Figure 8: Illustration of SNP detection by cwSDTWnano, which is a segmentation from a set of aligned raw signals. Here, the nucleotide A, C, G
and T on the reference sequence (query) are labeled in red, yellow, green and blue , respectively. The aligned nanopore signals are shown in the
black squiggle curves and the red (green) curves indicate the 6-mer pore model for the reference (mutated) sequence centered at the candidate of
SNP position.

An example of SNP identification is shown in Fig. 8, which is a region of aligned raw signals (a full mapping
can be found in Section S3). Here the red (green) curves indicate the 6-mer pore model for the reference (mutated)
sequence centered at the candidate SNP position. The aligned nanopore signals are shown in black. There is a clear
difference of the pore model at the SNP position, which indicates a strong evidence. Experiments on the E. coli dataset
demonstrate that accurate SNP detection (around 95%) can be achieved by a low coverage (i.e., 20×). The success of
our algorithms lies in two folds: (i) the normalized signal distance measurement filters out low-quality signals, and (ii)
the signal-level operation guarantees a better searching and mapping.

5 Discussion and conclusion
We proposed two subsequence search algorithms for the genome-to-signal similarity search and mapping. The pro-
posed algorithms are based on the idea of DTW and directly operate on the nanopore raw signals. Furthermore, a
novel error measurement is proposed to specify the mapping accuracy between a genomic sequence and a raw signal
sequence. Comprehensive experiments on three real-world nanopore datasets demonstrate the proposed algorithm is
able to produce accurate and effective subsequence search, and detect SNPs with a low sequencing coverage.

Our proposed algorithms could also be extended and applied to detect other single nucleotide variants (SNV),
such as small insertions and deletions (InDels), as well as DNA modifications such as C5-methylcytosine (5-mC) and
N6-methyladenine (6-mA). Reports have shown that these events are very challenging for most of the current tools to
detect, especially at a low sequencing coverage or low-quality raw signals.
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