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ABSTRACT- 

Multifunctional electronics featuring optical transparency, portability, mechanical flexibility, light-

weight and environment-friendly are of great demands for next-generation smart electronics. 

Memristor represents one of the important chains in next-generation devices as the information 

computing and storage component. Here, we design the transparent flexible structure based on van 

der Waals heteroepitaxial AZO/NiO/AZO/muscovite (ANA/muscovite) for a memristor application. 

The (ANA/muscovite) memristor satisfies all the hardest requirements of a transparent soft device 

such as optical transparency over 80 % in visible light and high performance with a ON/OFF 

resistance ratio >10
5
, stable endurance to 10

3
 cycles and long retention time of 10

5 
s. In addition, the 

ANA/muscovite memristor can work at various bending radii down to 5 mm, a mechanical bending 

after 1000 cycles at a curvature with a radius of 6.5 mm and a high temperature up to 185 
o
C, which 

deliver a pathway for future applications in flexible transparent smart electronics. 

Graphical Abstract: 

 

 

 

 

 

Keywords:  

AZO/NiO/AZO/muscovite, aluminum doped zinc oxide (AZO), van der Waals, transparent flexible 

memristor 

 

 

 



3 

 

1. Introduction 

The advantages of the Internet of Thing (IoT) generator greatly change our daily life, creating a 

strong demand on smart electronics with multifunctionalities such as mechanical flexibility, light-

weight, stretchability, wearability, optical transparency, environmental friendliness and robustness 

to satisfy the requirements of the IoT generator. Thus, it has attracted significant attention from both 

academic and industrial communities[1]
,
[2]. Along with this research direction, transparent flexible 

devices, including  transistors[3–7], photodetectors[8,9], displays[10–12], sensors[13–15], 

triboelectric nanogenerator[16,17] and nonvolatile memory devices[18]
,
[19,20] have played a 

critical role in various types of smart electronic applications. Among them, memristors or resistive 

switching memories[21–23] can store and process information by recording changes of resistance 

states under an external electric field. Therefore, they have been widely investigated as one of the 

most promising candidates for next-generation logical, computing, synaptic, and nonvolatile 

memory devices due to its simple structures, small size, high speed, low power consumption, good 

endurance, long retention and cost-effective[21,24–27]. In previous studies, transparent flexible 

memristors have been successfully fabricated on polymer substrates e.g. soft 

polydimethylsiloxane[19], colorless polyimide[20], polyethylene terephthalate[28]
,
[29] and 

polyethersulfone[30]. These substrates show the good mechanical flexibility compared to 

conventional substrates. However, there are critical features of polymer materials such as low 

processing temperature and poor adhesion. Thus, these devices typically result in the poor 

crystallinity and the short lifetime without the good thermal stability. Recently, muscovite mica is 

considered as a good template to epitaxially integrate functional materials for flexible and 

transparent electronics due to its unique characteristics[31,32]. Firstly, the atomically smooth 

surface and the high melting point (1150–1300 K) make the muscovite compatible with the 

fabrication processes of most functional materials. Secondly, the thickness of the muscovite can be 

reduced to few microns by the exfoliation technique due to the weak van der Waals interaction 
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between interlayers of the muscovite, which creates unconstrained films with the superior 

mechanical flexibility. Thirdly, the muscovite displays the high optical transparency associated with 

the chemical inertness, making it suitable in the applications of environmental robustness. 

Therefore, a new platform called MICAtronics[31,32] has been created to build up oxide 

heteroepitaxy for novel transparent soft technology with superior chemical and thermal stabilities. 

In this work, a transparent flexible memristor based on the van der Waals heteroepitaxial 

growth composed of Al-doped ZnO (AZO)/NiO/AZO (ANA) sandwich structure on the muscovite 

substrate was fabricated. NiO is a promising candidate for transparent flexible memristor 

applications, which is attributed to its wide band gap (3.6-4.0 eV), high-temperature stability and 

reliable memory characteristics[33–37]
,
[38,39]. In addition,  AZO is suggested as a possible 

solution for the next-generation transparent conducting electrode[40]. Interestingly, 

ANA/muscovite memristor exhibits not only transparent and flexible memristor with the ON/OFF 

resistance ratio >10
5
, the stable endurance to 10

3
 cycles and the long retention time of 10

5 
s, but also 

the excellent electrical performances together with the mechanical flexibility, the durability and the 

thermal stability. In addition, the ANA/muscovite memristor can work at various bending radii 

down to 5 mm, the mechanical bending after 1000 cycles at the bending radius of 6.5 mm and the 

high temperature up to 185 
o
C, which deliver a pathway for future applications in flexible 

transparent smart electronics. This study marks an important milestone in the advancement of 

transparent flexible nonvolatile electronics for next-generation smart wearable devices. 

 

2. Material and methods 

Sample preparation. Commercial AZO (2 %Al) and NiO targets were used to deposit AZO and 

NiO layers on a (001) muscovite substrate by the pulsed laser deposition method. A KrF excimer 

laser (λ = 248nm) was operated at a repetition rate of 10 Hz with the laser energy of 1 J/cm
-2

. The 

first, 120 nm AZO film were grown on mica as a bottom electrode with a 
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substrate temperature of 420 °C in 0.1 mTorr oxygen pressure. Then, NiO thin film were deposited 

on AZO/mica at a substrate temperature from 400-600 °C in high vacuum from 0.01-10 mTorr in 

oxygen environment to optimize the conditions. The best performance of device is 120 nm NiO/ 

(120 nm) AZO/muscovite mica at temperature and pressure 0.1 mT.  

Structural Characterizations.  

A Bruker D8 X-ray diffractometer equipped Cu Kα1 radiation (λ=1.5406A
0
) was employed to 

obtain structural information. The details of the microstructure were investigated by using 

spherical-aberration corrected transmission electron microscope (Cs-TEM, JEOL ARM 200F) at 

room temperature kV. The samples were prepared by a focused ion beam (FIB) in a cross-sectional 

geometry. Conductive atomic force microscopy was measured by using Innova (Bruker) 

microscope. The optical spectra were collected in the transmission mode using a Perkin-Elmer 

Lambda-900 spectrometer (200－2600 nm).  

I-V measurements.  

The electrical characterizations and resistive switching characteristics of the fabricated devices were 

investigated using a Keithley 4200 semiconductor parameter analyzer in voltage sweeping mode. 

All of the operation voltages were applied on the top AZO electrode, and the AZO bottom electrode 

was grounded. The current compliance of 100 µA was applied to avoid the breakdown of the 

memristor device. A home-made bending stage was used to set up different radii. The temperature 

change measurement system was used to measure resistance with the temperature ranging from 25 

o
C to 185 

o
C. 

3. Results and Discussion 

The NiO film was directly fabricated on a 50 µm-thick muscovite substrate with the AZO layer 

as the bottom electrode via the pulsed laser deposited (PLD) method. The details on the growth 
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conditions can be found in the method session. A shadow mask with the circle shape of 200 µm in 

diameter was used to define the diameter of top AZO electrodes. The natural photographs and its 

schematic of ANA/muscovite heterostructure are shown in Fig. 1(a) and the inset. The logo at the 

bottom can be easily observed through the structure due to the high optical transparency of AZO, 

NiO and muscovite layers as shown in the inset of Fig. 1(b), of which the corresponding 

transmittance behaviors were measured as shown in Fig. 1(b). Clearly, the optical transmittance of 

the ANA/muscovite structure is over 80 % at the wavelength higher than 550 nm in the visible 

wavelength region between 300 to 800 nm. Furthermore, the phases and crystal structures of the 

heterostructure were investigated by X-ray diffraction (XRD). Fig. 1(c) shows XRD 2- scans of 

ANA/muscovite heterostructure. Only muscovite (00l), AZO (00l) and NiO (lll) diffraction peaks 

were detected, indicating the epitaxial feature of the heterostructure without any impurity phase. 

The estimated out-of-plane lattice constants of NiO (0.42 nm) and AZO (0.5218 nm) suggest the 

small compressive strains of 0.33 % and 0.17 %, respectively. This feature is similar to some earlier 

research about the grown epitaxial materials on muscovite substrates,[40–44]. In addition, the in-

plane structural relationships are obtained by analyzing the ϕ-scan results of NiO {022}, AZO {101} 

and muscovite {202} diffraction peaks as shown in Fig. 1(d). The six-fold symmetry of AZO {101} 

indicates that a single-crystalline AZO layer is epitaxially grown on the muscovite substrate. 

Meanwhile, the six symmetric peaks of the NiO {022} suggest that the NiO possesses three sets of 

structural domains. The epitaxial relationship can be determined as 

NiO(111)//AZO(001)//muscovite(001) and NiO[01-1]//AZO[010]//muscovite[010]. In order to 

examine the interface structure, the heterostructure was further investigated by transmission 

electron microscopy (TEM) as shown in Fig. 1(e). The cross-sectional TEM image reveals the layer 

structure of the ANA/muscovite heterostructure (left panel in Fig. 1(e)). The high-resolution TEM 

images exhibit defect-free and coherent interfaces at the interfaces of NiO/AZO and 

AZO/muscovite in the heterostructure (middle panel in Fig. 1(e)). The Fast Fourier Transform (FFT) 
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patterns of interlayers (right panel in Fig. 1(e)) (NiO (blue and orange), AZO (red) and muscovite 

(yellow)) in the insets show the epitaxial relationship as NiO[111]//AZO[001]//muscovite[001] and 

NiO[01-1]//AZO[010]//muscovite[010], which are consistent with the XRD results. A schematic of 

the NiO/AZO heterostructure grown on muscovite with the orientation relationship is constructed 

and shown in Fig. 1(f). These results demonstrate high-quality transparent ANA/muscovite 

heteroepitaxy was fabricated.  

To investigate the device performance of memristor based on the ANA/muscovite 

heteroepitaxy, the bottom electrode was grounded and a voltage was swept to the top electrode. An 

exploration of the optimized electrical performance was carried out by tuning growth conditions 

and varying the thicknesses of NiO layers. The ratio of resistance change in various conditions can 

be found in (Fig. S1, Supporting Information). In Fig. 2(a), the I-V curve operated with a sequence 

of 0-+4V-0--4V-0 on five different memristors show the same shape in the operation of a positive 

bias. The set process is defined as the change of resistance from high resistance state (HRS) to low 

resistance state (LRS). On the contrary, the resistance changed from LRS to HRS is called the reset 

process. Interestingly, these memristors exhibit a typical bipolar resistive switching with a high 

ratio of resistance change >10
5
 without the electroforming process, namely forming free.  Note that 

the voltages are read at 0.5 V as VSET and VRESET and the resistance of HRS and LRS at VSET and 

VRESET are defined as RHRS and RLRS, respectively. Even though the I-V curves in the negative bias 

process are unstable, they are necessary for the repeating in the positive bias process. In Fig. 2(b), 

the performances of electrical endurance and retention of the fifth device are shown in the set 

process at the bias of 0.5 V. The device can be operated repeatable up to over 1000 cycles without 

the obvious degradation after 10
5
 s, delivering excellent electrical endurance. The cumulative 

statistical probability of the device shows a uniform distribution of HRS and LRS (Fig. S2 in the 

Supporting Information). These characteristics confirmed that the ANA/mica heteroepitaxy is 

applicable to a highly transparent memristor device.  
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To understand the conduction mechanism of the ANA/muscovite memristor during resistive 

switching, the models of the Ohmic and space-charge-limited conduction (SCLC) (Fig. 3(a)) and 

conductive atomic force microscopy (c-AFM) have been examined. The fitting results of the logI-

logV plots in Fig. 3(b) suggest that the conduction mechanism in the HRS region is the SCLC while 

the Ohmic conduction mechanism dominates in the LRS region. Moreover, the surface of NiO layer 

was examined by the current mapping of c-AFM (Fig. 3(c)) where many conductive spots (circle 

region) with diameters from 10 nm to 100 nm (inset in Fig. 3(c)) distributed on the surface were 

confirmed. The conductive spots display a higher density in LRS as compared to HRS. In addition, 

these conductive spots show different I-V characteristics in Fig. 3(d). At the square region, I-V 

curves present a typical bipolar memristive behavior while it expresses a linear I-V characteristic at 

the circle region (90 nm in diameter). The results of c-AFM directly exhibit an evidence of the 

formation and removal of filaments on the surface, which supports the filament model as the 

switching mechanism in the memristor. Based on the above experimental results (Fig. 3(a)) and 

theoretical analysis (Fig. 3(b)), a schematic diagram of the switching mechanism is illustrated in Fig. 

3(e) and Fig. 3(f). In fact, the growth of AZO and NiO layers was executed in a relatively low 

oxygen environment, thus the existence of oxygen vacancies is highly expected. In the set process, 

the accumulation of oxygen vacancies to form the conduction channel is driven by the external 

electrical field while the conduction path is broken in the reset process, resulting in the resistance 

change between HRS and LRS. To shed light on the oxygen-vacancy driven conduction, the 

investigation of TEM was conducted. However, due to the dark contrast of the NiO crystalline layer, 

it is difficult to look for the existence of filaments with obvious contrast. In addition, no other 

phases were found after the devices were switched to LRS under the TEM study, implying the 

proposed model based on the motion of oxygen vacancies is the dominated one. 

To address the thermal stability of memristor devices, electrical characteristics of transparent 

flexible ANA/muscovite  memristors were measured at different temperatures ranging from 25 
o
C 
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(room temperature) to 185 
o
C with an incremental step of 15 

o
C as shown in Fig. 4(a). To shed light 

on the performance of the devices, the complete device characteristics at selected temperatures at 25, 

85, 125 and 185 
o
C are shown in (Fig. S3 of the Supporting Information), revealing the properties 

of the threshold resistive switching. The linear fitted of Vthreshold and Vhold was analyzed from I-

V curves as a function of voltage versus temperature (Fig. 4(c)). Furthermore, the I-V curves 

exhibited a high resistance ratio with the RHRS/RLRS of ~10
5
 at 25 

o
C  and decrease to ~10

3
 at 185 

o
C 

(Fig. 4(d)) . The thermal activation energy (Ea), which represents the location of defect levels below 

the conduction band, can be calculated by an Arrhenius plot using the relationship I = Ioexp(Ea/kT) 

where k is the Boltzmann constant and T is the absolute temperature. The thermal activation energy 

of HRS and LRS can be extracted to be 0.66 and 0.15 eV, respectively as shown in Fig. 4(b). The 

difference of the activation energy conforms to the difference in the carrier conduction mechanisms 

between HRS and LRS. In addition, the I-V tests on electrical endurance, and retention were carried 

out (Fig. S4, 5, Supporting Information) show that the high ratio of resistance maintained at 

different temperature increase from 25 
o
C to 185 

o
C. Note that the ON/OFF ratio higher than 10

3
 

remains at 185 
o
C, demonstrating the good memory reliability at an elevated temperature. These 

results suggest that the ANA/muscovite memristor device can safely work in the temperature ranges 

of 25-185 
o
C.  

To verify the mechanical flexibility of the ANA/muscovite memristor, the I-V test under three 

kinds of strain including flat, tensile (inset in Fig. 5(a)) and compressive (inset in Fig. 5(d)) modes 

were examined. (Fig. S6, Supporting Information) were examined. I-V behaviors under different 

tensile and compressive bending curves were investigated (Fig. S7(a), Supporting Information). 

There is no obvious change of the I-V characteristics under various bending conditions. The ratios 

of RHLS/RLRS as the function of bending radii at 0.5 V were extracted as shown in Fig. 5(a). A slight 

degradation of the RHRS/RLRS ratio happens when radius is smaller than 8 mm in the positive bias 

region, but overall, there is negligible change in electrical performance upon the bending. 
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Furthermore, endurance and retention characteristics of the ANA/muscovite memristor were tested 

under tensile and compressive bending tests with the bending radii ranging from 15 to 5 mm as 

shown in Fig. 5(b) and Fig. 5(c). The I-V behaviors of memristor were maintained with the ratio of 

10
5
 in 1000 cycles and longer than 10

4 
s while the only slight degradation can be observed at 5 mm 

of radius. To investigate the mechanical reliability, the memristor was bent continuously up to 1000 

cycles at the bending radius of 6.5 mm. The I-V curves (Fig. S7(b), Supporting Information) and 

the RHRS/RLRS ratios are shown in Figure 5d, indicating no clear degradation. In addition, the 

endurance and retention under the mechanical bending at the bending radius of 6.5 mm were also 

carried out as shown in Fig. 5(e) and Fig.5(f). The memory device shows the good endurance 

performance up to 300 cycles without the significant variation in current states. A comparison of 

the memristors composed of the NiO layer on rigid substrates, muscovite and other transparent 

flexible memristors is summarized in Table 1. Clearly, the AZO/NiO/AZO/muscovite 

(ANA/muscovite) memristor satisfies all the hardest requirements of a transparent soft device such 

as optical transparency over 80 % in visible light, high performance with a ON/OFF resistance ratio 

>10
5
, stable endurance to 10

3
 cycles and long retention time (10

5 
s). In addition, the 

AZO/NiO/AZO/muscovite memristor can work under various bending radii down to 5 mm, 

mechanical bending after 1000 cycles at the bending radius of 6.5 mm and high temperature up to 

185 
o
C, which deliver a pathway for future applications in flexible transparent smart electronics. 

4. Conclusions 

A transparent flexible memristor based on the NiO/AZO/muscovite heteroepitaxy with 

aluminum doped zinc oxide (AZO) electrodes was demonstrated. The ANA/muscovite 

heteroepitaxy exhibits of transparent flexible memristor behaviors with the high performance 

(RHRS/RLRS ~ 10
5
) repeating in 1000 cycles and the long retention time (10

5 
s). The reliable 

mechanical flexibility of memristor device was shown at various bending radii (Rmin = 5 mm) and 

over 1000 bending cycles at the bending radius of 6.5 mm. Interestingly, it can also be worked at 
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high-temperature environment up to 185 
o
C. Such results deliver a new heterostructure based on 

oxide heteroepitaxy for the soft transparent memristor. 
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the device; I -V characteristics within a variety of temperatures; Endurance and retention results at 
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Table 1 Summary of various transparent flexible memristor devices and memristor composed of 

NiO layer on rigid substrates 

MEMRISTOR MATERIAL NIO H-BN TIO2/AGNW AL2O3 ZNO TIO2 NIO NIO NIO 

SUBSTRATE Mica PDMS CPI PET PES PET Plastic Nb:STO Pt/Ti/SiO2/Si 

TRANSFER REQUIRED No Yes No No No No Yes No No 

ENDURANCE (#) 1000 500 500 150 200 100 100 200 900 

RETENTION(S) 105 5x103 105 104 105 - 104 - - 

RHLS/RLRS RATIO >105 480 200 >105 10 >10 30 200 1000 

MIN. BENDING RADIUS 

(MM) 

5 14 10 10 20 - 7.5 - - 

BENDING 

CYCLES@RADIUS 

1000@6.5 850@14 No 1000@10 104@20 500@- - - - 

HIGHEST WORKING 

TEMPERATURE[OC] 

185 - - - 85 - 25 - - 

REFERENCE This work [19] [20] [28] [30] [29] [45] [46] [47] 

 

 

Figure 1. The photograph and optical properties of ANA/muscovite heterostructure. (a) Flexible 

and transparent features of the ANA/muscovite heterostructure. Inset shows a schematic 

of the layer structure. (b) Optical transmittance. (c) XRD 2θ-θ scans of the 

NiO/AZO/muscovite. (d) ϕ-scans of NiO{022}, AZO{101}, and muscovite{202} 

diffraction peaks of the ANA/muscovite heterostructure. (e) The cross-sectional TEM 

images, diffraction patterns, and (f) Schematic illustration of the epitaxial relationship 

between NiO, AZO, and muscovite layers.   

 

Figure 2. The memristor characteristics of ANA/muscovite heterostructure. (a) I-V curves of five 

different cells on the ANA/muscovite heterostructure. (b) Electrical endurance and 

retention performances of the memristor device read at 0.5 V.  
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Figure 3. The mechanism for the operation of the ANA/muscovite memristor device. (a) Measured 

and fitted semilogarithmic I-V curves. (b) The plot of logI-logV with the fitted conduction 

mechanisms in the positive sweep. (c) c-AFM images of the ANA/muscovite memristor 

device. (d) I-V characteristics at conductive spots in (c). Schematics of the mechanism of 

the filament in the (e) set and (f) reset processes. Statistical distribution of the size of 

conductive filaments was showed inset  (c).  

 

Figure 4. Temperature-dependent resistive switching behaviors of the ANA/muscovite device. (a) 

I-V characteristics in the positive voltage at the various operating temperatures from 25 
o
C 

to 185 
o
C. (b) The Arrhenius plot. (c) The voltages and (d) the RHRS/RLRS ratio as a 

function of temperature. 

 

Figure 5. Mechanical flexibility tests of the ANA/muscovite memristor. (a), (b), (c) RHRS/RLRS 

ratio, endurance, retention with the tensile bending and the compressive bending under 

various radii. (d), (e), (f) RHRS/RLRS ratio, endurance, retention with the tensile bending and 

the compressive bending at 6.5 mm of the radius. Images of mechanical flexibility test 

were observed in inset (a) (tensile) and inset (d) (compressive). 
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Highlights: 

Conceptual Insights Statements 

 

 A transparent flexible memristor based on the van der Waals heteroepitaxial grwoth composed of Al-

doped ZnO (AZO)/NiO/AZO (ANA) sandwich structure on the muscovite substrate was fabricated. 

 

 ANA/muscovite memristor exhibits not only transparent and flexible memristor with the ON/OFF 

resistance ratio >10
5
, the stable endurance to 10

3
 cycles and the long retention time of 10

5 
s, but also the 

excellent electrical performances together with the mechanical flexibility, the durability and the thermal 

stability. 

 

 The ANA/muscovite memristor can work at various bending radii down to 5 mm, the mechanical 

bending after 1000 cycles at the bending radius of 6.5 mm and the high temperature up to 185 
o
C 

 

 The models of the Ohmic and space-charge-limited conduction (SCLC) and conductive atomic force 

microscopy (c-AFM) were used to understand the conduction mechanism of the ANA/muscovite 

memristor during resistive switching.  

 




