Surfaces, Interfaces, and Applications

Reduction and Increase in Thermal Conductivity of Si Irradiated with Ga+ via Focused Ion Beam

Seyedhamidreza Alaie, Mohammadhosein Ghasemi Baboly, Ying Bing Jiang, Susan B. Rempe, Dalaver H. Anjum, Sahraoui Chaieb, Brian Francis Donovan, Ashutosh Giri, Chester J Szwejkowski, John Thomas Gaskins, Mirza Elahi, Drew Goettler, Jeffrey L. Braun, Patrick E. Hopkins, and Zayd Chad Leseman

ACS Appl. Mater. Interfaces, Just Accepted Manuscript • DOI: 10.1021/acsami.8b11949 • Publication Date (Web): 03 Oct 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Reduction and Increase in Thermal Conductivity of Si Irradiated with Ga+ via Focused Ion Beam

S. Alaie1, M. G. Baboly2, Y.-B. Jiang3, S. Rempe4, D. H. Anjum5, S. Chaieb6,7,8, B. F. Donovan9, A. Giri10, C. J. Szwejkowski10, J. T. Gaskins10, M. M. Elahi11, D. F. Goettler12, J. Braun10, P. E. Hopkins10,13,14, Z. C. Leseman15*

1Department of Radiology, Weill Cornell Medicine, Cornell University New York, NY, 10065, USA.
2Department of Engineering, University of Jamestown, Jamestown, ND, 58405, USA.
3Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87131, USA.
4Sandia National Laboratories, Albuquerque, NM 87123, USA.
5Advanced Nanofabrication, Imaging, and Characterization Lab, King Abdullah University of Science & Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
6Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology Thuwal, 23955-6900, Kingdom of Saudi Arabia
7Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
8Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan
9Department of Physics, United States Naval Academy, Annapolis, 21402, MD, USA.
10Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, 22904 VA, USA.
11Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, 87131, USA.
12Department of Mechanical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA.
13Department of Materials Science and Engineering, University of Virginia, Charlottesville, 22904 VA, USA.
14Department of Physics, University of Virginia, Charlottesville, 22904 VA, USA.
15Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS, 66506, USA.

*Correspondence and requests for materials should be addressed to Zayd C. Leseman (zleseman@ksu.edu).

Abstract

Focused Ion Beam (FIB) technology has become a valuable tool for the microelectronics industry and for the fabrication and preparation of samples at the micro/nanoscale. Its effects on the thermal transport properties of Si, however are not well understood, nor do experimental data exist. This paper presents a carefully designed set of experiments for the determination of the thermal conductivity of Si samples irradiated by Ga+ FIB. Generally, the thermal conductivity decreases with increasing ion dose. For doses of >1016 (Ga+/cm2), a reversal of the trend was observed due to recrystallization of Si. This report provides insight on the thermal transport considerations relevant to engineering of Si nanostructures and interfaces fabricated or prepared by FIB.

KEYWORDS: Focused Ion Beam (FIB), Thermal Conductivity, Gallium, Irradiated, Nanostructures, Time Domain Thermo-Reflectance (TDTR)

Introduction

Over the last two decades the thermal conductivity of different nano/micro structured silicon samples has been extensively investigated for a range of purposes. For example, in order to understand the physics of phonon thermal transport at the nanoscale, silicon films with different thicknesses have been experimentally and theoretically investigated1–3. Additionally, the possibility of using silicon as a thermoelectric material has been confirmed4–6. Accordingly, manipulation of the thermal conductivity of silicon, with minimal alteration of the electrical properties, has become an active area of research7–9. To fabricate different Si structures, photolithography7,10 and e-beam lithography4,5 techniques have been employed. Recently, gallium focused ion beam (FIB)8,10 has been used as a
promising alternative. However, it is known that FIB can potentially damage, dope or roughen silicon surfaces11–13. Therefore, in this work, a carefully designed set of experiments to determine the effects of FIB, and resulting Ga ion (Ga+) implantation, on the thermal conductivity of Si is undertaken.

Though the thermal conductivity of silicon with various (small) dimensions and doping has been previously investigated, the effect of gallium impurities on silicon’s thermal conductivity has not been previously studied. More specifically, the thermal conductivity of thin Si films1–3, Si nanowires6,14, patterned Si films4,10, and other Si structures15 have been the subject of prior work. The literature established that at smaller dimensions the boundary scattering of phonons dominates, which results in a considerable reduction of thermal conductivity (~ 2 W/mK4). In addition to the size-effect, effects of different dopants and mass impurities, such as phosphorous16,17 and germanium,18–21 on the thermal conductivity of silicon have been studied. Most remarkably, its shown that Si\textsubscript{x}Ge\textsubscript{(1–x)} can feature a thermal conductivity as low as ~9W/mK in bulk and when combined with the size-effect it can reduce to ~2W/mK18. However, the effects of gallium as a dopant or mass impurity on the thermal conductivity of silicon are yet unknown, regardless of its common occurrence in FIB-processed silicon.

Ga+ FIB has been widely employed in milling13,22,23, imaging9,24, and affixing nanosamples9,25. FIB is a versatile tool for milling thin films with submicron resolution. The FIB’s spot size can be as small as 5-7 nm26 for milling materials and it can also be used to deposit a variety of materials to fabricate sophisticated nanostructures26. For thermal applications, it has been employed to fabricate phononic crystals in silicon thin films13. Additionally, FIB is used for imaging nano/micro samples while they are handled for thermal characterization24,25 and is employed for the deposition of materials for affixing nano/micro samples to microelectromechanical structures for thermal characterization9,23. However, despite its widespread use as a nanoscience tool, the FIB can potentially have a negative impact due to implantation of Ga+ into samples that introduce defects and impurities into the sample.

In this work, the thermal conductance and the equivalent thermal conductivity of regions of single crystal Si wafers irradiated by Ga+ FIB is studied. To fully understand the effects of the implanted Ga+, samples with different doses ranging from 1012 to 1018 Ga+/cm2 are studied. After irradiation, samples are coated with a thin layer of aluminum for characterization by Time Domain Thermo-Reflectance (TDTR). The thermal properties gathered by this technique are crucial in understanding the thermal effects of FIB-induced Ga dopants on micro/nanosamples of Si. Results may be extrapolated to other material systems.

\textbf{Results and Discussion}

The thermal conductance across the Ga+-irradiated silicon region is reported in Figure 1 for different doses. In practice, due to the small thickness of the Ga+ irradiated region (<70 nm thick), the conductance is reported as an effective thermal boundary conductance (TBC) across the Al/Ga+-irradiated volume/Si interfacial region27, and by definition also includes
the thermal boundary conductances across the Al/Ga⁺-irradiated region and Ga⁺-irradiated region/Si interfaces. However, the variation in the measured conductance clearly demonstrates the role of the Ga⁺ irradiation process on the decrease in thermal conductivity of the near surface irradiated region. The measured TBC drops for doses from 10^{12} to 10^{14} Ga⁺/cm² while a trend of saturation occurs for the doses ranging from 10^{14} to 10^{16} Ga⁺/cm². For higher doses, $>10^{16}$/cm², an increase is observed in the TBC.

Figure 1. Thermal conductance of Ga⁺ irradiated region versus the dose of gallium induced by FIB. Due to the small thickness of the Ga⁺ irradiated region (<70 nm thick), the conductance is reported as an effective thermal boundary conductance across the Al/Ga⁺-irradiated volume/Si interfacial region, and by definition also includes the thermal boundary conductances across the Al/Ga⁺-irradiated region and Ga⁺-irradiated region/Si interfaces. Insets (1-3) are TEM images demonstrating the morphological evolution of the irradiated Si for increasing dose. The tops of the insets are the surface of the Si that was irradiated with Ga⁺; irradiation was perpendicular to this surface. The circled portion of Inset 3 is further magnified to more clearly show the existence of polycrystals of Si for higher doses. For the insets arrows have been drawn to show the different morphological regions of the Si. For the 10^{12} Ga⁺/cm², a green arrow indicates the strained Si (s-Si). For the 10^{15} Ga⁺/cm², the cyan arrow shows the a-Si. And for the 10^{17} Ga⁺/cm², the magenta arrows shows the depth of the a-Si.

The trend of decreasing followed by increasing TBC is explained by the morphological evolution of the sample shown in the insets of Fig. 1. For low doses of Ga⁺, the single crystal Si (SC-Si) lattice becomes strained as indicated by the darker (black) region of the 10^{12} Ga⁺/cm² dose inset, Inset (1). Lattice distortion is known to modify the phonon dispersion and phonon scattering rates and thus the thermal conductivity of Si and other semiconductors and dielectrics. Upon further irradiation, the Si becomes amorphous as seen in the inset corresponding to a dose of 10^{15} Ga⁺/cm², Inset (2). Amorphous materials have lower thermal conductivities than their crystalline counterparts in semiconducting materials, such as Si, because it relies on the exchange of vibrational energy carried through the crystalline lattice. For increased doses, the Si changes into polycrystalline Si as seen in the TEM inset for a dose of 10^{17} Ga⁺/cm², Inset 3. As the
sample returns from amorphous to crystalline (polycrystalline), an increase in the effective TBC is measured due to the Si regaining some level of crystallinity, circled region of Inset (3).

Figure 2. Effective out-of-plane thermal conductivity of irradiated volume of Si versus the dose of Si dopant.

Figure 2 shows the normalized effective thermal conductivity of the implanted region versus the dose of gallium. The thermal conductivity here is the effective thermal conductivity of the irradiated Si, which is the product of the measured TBC and the thickness of the irradiated regions as determined by TEM cross sections similar to those seen in the insets of Fig.1. The thermal conductivity follows a power trend (linear on a linear-log scale) for a regime between the doses of 10^{13} and 10^{17} Ga$^+/cm^2$. The thermal conductivity again increases for a dose beyond 10^{17} Ga$^+/cm^2$, which is near the dose required for milling31 (removing of material). It is notable that the effective thermal conductivity of the implanted region is approximately two orders of magnitude lower than the thermal conductivity of Si and consistent with what has been reported for thin (<100 nm thick) films of pure a-Si, which have been measured to be between 1 and 2 W/mK32,33.

The most interesting observation found in this work is that poly-crystalline Si recrystallizes for doses greater than 10^{16} Ga$^+/cm^2$. Recrystallization occurs for higher doses due to the thermal history of the sample. Temperatures of the interaction volume of the Ga$^+$ beam are
in excess of 1000 K as determined using an energy balance approach and the heat equation34. FIB interacts with a sample as a beam that rasteres an area points by point. Therefore, irradiation of adjacent points may induce a time at elevated temperatures in addition to that of the direct beam exposure. The intrinsic crystallization temperature for aSi is \(\sim 900\) K35, as determined in parallel work that uses short pulse lasers to crystallize aSi36. Note that the absorbed laser energy during TDTR measurements of the samples in this study raises their temperature by <1 K37, and is not responsible for the recrystallization.

Previously, it was believed that the maximum temperature experienced by Si samples when milled by Ga+ FIB was only a few degrees38 over ambient and that once the semiconducting material becomes amorphous it remains amorphous. This is due to the common assumption that the thermal conductivity of the Si under the FIB is that of the bulk material38. Inset (2) of Fig. 1 clearly shows that the material under the FIB is amorphous in nature. For thin films of a-Si of the thickness in the insets of Fig. 1, reported values are more than 100 times less than that of their bulk counterparts32,39, which is what leads to the greater than 1000 K temperature excursions. Note that other researchers have experienced “extreme microstructural modifications” in fine grained metals40 when using Ga+ FIBs. TEM, STEM and EBSD methods have been used to show that polycrystalline Cu (fcc) when exposed to Ga+ FIB experiences changes in crystal orientation, grain size, and the formation of intermetallic compounds41,42. Similar results were noticed in Au and Ni (bcc) metals as well40,43 due to thermal spikes42. Note that Cu, Au, and Ni all have lower recrystallization temperatures than Si35,44. It has also been shown that grain growth in the metallic samples has preferential growth directions that are dictated by the channeling of ions through their crystalline structures. The zoomed in view of Fig. 3 shows some evidence of orientation directed growth of the Si polycrystals along the direction of Ga+ irradiation42.

Conclusion

In this report, the thermal conductance of Si regions irradiated with Ga+ FIB have been measured using TDTR and their morphology characterized using cross sectional TEM. It was found that irradiation of Si with Ga+ lowers the thermal conductivity of Si up to a dose of \(\sim 10^{16}\) Ga+/cm2. Over this range of doses TEM cross sections reveal the evolution of the morphology from crystalline to amorphous. For doses \(>10^{16}\) Ga+/cm2, the thermal conductivity increases due to the recrystallization of Si. This is due to the temperature of Si reaching an excess of 1000 K, well above the intrinsic crystallization temperature of amorphous Si. This work provides crucial information for engineering of thermal samples at the nano/microscale in applications where gallium FIB is involved.

Methods

Sample Preparation: Single crystalline Si, 525 \(\mu\)m total thickness, was exposed to Ga+ FIB with different currents in the manner depicted in Fig. 3. An FEI, Quanta 3D dual beam FIB/SEM was used to expose the samples with an accelerating voltage of 30 kV. The insets of Figure 3 (a & b) show the SEM images before and after the irradiation with Ga+. Different nominal currents were chosen (1.5 pA, 20 pA, 1 nA, and 5 nA) in order to cover the entire range of doses studied. However, the actual current received by the sample was calibrated with a Faraday Cup for each current and used in the calculation of dosage. For each current, several different exposure times are used to attain different dosages. Knowing
the time span of the exposure, current received by the sample, and the area for the exposure the dose of Ga ions for each sample was calculated.

Figure 3. From top to bottom in left column: a) bare Si with fabricated alignment marks, b) exposure to Ga⁺ FIB, deposition of Al and characterization using TDTR.

Thermal Characterization: Time-domain thermoreflectance (TDTR) was used to measure the thermal conductance across the Ga⁺ implanted region of the Si, the details and analyses for which are described in detail elsewhere. In our specific experiments, the pump and probe 1/e² radii are 29 and 7.5 µm, respectively, ensuring nearly one-dimensional heating during our TDTR measurements. To avoid any annealing of the samples, TDTR experiments were performed at ~300K with a maximum steady-state temperature rise of <1 K, as determined by solving the heat diffusion equation for the surface temperature of a multilayer sample. As the goal in this work is to resolve the changes in thermal conduction of the implanted region of the Si, and since this implanted region is restricted to d ≈ 10 – 75 nm beneath the Si surface (cf. TEM images – see Fig. 1), we report all thermal conductances using a relatively high pump-modulation frequency for TDTR measurements (8.8 MHz) to ensure increased sensitivity to the thermal resistance near the silicon surface. We treat the entire Ga⁺ implanted region as an interface in our thermal analysis, fitting for the effective thermal boundary conductance (TBC) across the Al/Si interface in our analysis using a two-layer model. The effective thermal conductivities derived from the measured TBC data are calculated by multiplying the measured conductances by the damaged depth obtained from TEM analyses. However, given the effective thermal conductivities reported are around ~1 W/mK, the thermal penetration depth into this layer would be Lₓ ≈150 nm. Thus, the ratio of thermal penetration depth is Lₓ/d ≈ 2 – 15, putting some samples in a regime where the treatment of the Ga⁺ implanted region as an interface ambiguous. As such, for samples having Lₓ/d > 4.24, we additionally analyze the TDTR data treating the Ga⁺ implanted region as a thin film using a three-layer model and fitting for the thermal conductivity of the thin film directly. We find agreement between the two methods within 10% of the reported values, within experimental uncertainty. Additionally, all trends are preserved using this analysis. In both cases, due to the relatively small thickness of the Ga⁺ implanted region, the intrinsic thermal conductivity of the implanted region cannot be explicitly measured separately from the Al/Ga⁺ implanted region and Ga⁺ implanted region/Si substrate interfaces. Thus, these interfacial thermal conductances are intrinsically included in the effective thermal conductivity reported. However, based on previous reported values for TBCs for Al/a-Si and a-Si/Si of similar film thicknesses, the thermal conductivity of the Ga⁺ implanted region will dominate the overall conductance. Moreover, this previous study suggests that the combined thermal boundary conductance will be relatively constant for varying thicknesses, so that any changes in effective thermal conductivities can be attributed to the Ga⁺ region rather than the interfaces. Thus, although the interfacial thermal resistance can be significant for doses < 10¹⁴ Ga⁺/cm², any differences in the measured
conductance shown in Fig. 1 are attributed to changes in thermal conductivity due to Ga\(^+\) ion irradiation, and therefore capture the implications of Ga\(^+\) irradiation on thermal conductivity of the irradiated region.

Results were not dependent on the Ga\(^+\) current levels chosen for irradiation. The Ga\(^+\) FIB instrument used in this work utilizes a single Ga\(^+\) source operated with an extraction voltage of 30 kV, i.e., all ions impact the surface with a constant energy. Currents are varied by changing a physical aperture that is in-line with the source. Therefore, only the area over which Ga\(^+\) impact the surface is modified when changing the instrument’s current. To verify that no difference exists when changing currents, experiments were run at constant doses with varying currents. TBC values for all experiments were all within the error of commensurate measurements.

Carbonaceous layers can form in an SEM/FIB vacuum chamber due to the organic contamination\(^{48}\). To ensure a lack of a carbonaceous film in this work a set of samples are treated with oxygen radicals and compared with other control samples. Five control samples are measured in this work. Three of these samples were treated with oxygen radicals and the other two were not. This process was performed in the same chamber used for doping samples. The samples are treated by O radicals for half an hour. The setting, according to the manufacturer, minimizes the effects of surface damage by O atoms and oxidization of Si, while O radicals chemically attack possible organic contaminants. These samples were characterized using TDTR as described previously. The samples post-processed by O radicals have an effective thermal conductivity that is 7% higher than those that were unprocessed. This 7% change could be associated with either a change in the chemistry of the surface or removing some impurities. However, this topic is beyond the scope of this work. Accordingly, any erroneous effects of possible residues, in the setup, aside the Ga doping are expected to be smaller than 7%, which is within the margin of error for this report.

Transmission Electron Microscope (TEM) Characterization: TEM cross sections were created using the same Ga\(^+\) FIB used to create the samples. Cross sections were placed on a TEM grid and cleaned and imaged using a Titan 80-300 ST from Thermo-Fisher Scientific. An accelerating voltage of 300 keV was used and images were collected using a model US1000 CCD Camera from Gatan, Inc.

Acknowledgments
SA, MGB, DFG and ZCL acknowledge support from the National Science Foundation Division of CMMI under Award 1056077. Materials supplied by PEH et al. are based upon work partially supported by the Air Force Office of Scientific Research under award number FA9550-18-1-0352. PEH is also appreciative for support from the National Science Foundation, Grant No. CBET-1706388.

Author contributions
SA designed the masks for processing, assisted in the photolithography processing, prepared the irradiated samples, and wrote the first draft of the manuscript. Y-RBJ, MGB, SR, DA, and SA prepared the TEM samples and performed the TEM analyses. BFD, AG, CJS, JTG and JB conducted the thermal measurements and analyses. MMME performed the photolithography processing and the deposition of Al films. DFG was involved with irradiation of the samples and initially designed the method of sample preparation. PEH oversaw thermal characterization of samples and contributed to the discussion and interpretation of the results. ZCL proposed the idea for the article, oversaw: preparation of samples, processing, microscopy, and interpretation of the results. All authors reviewed the manuscript. ZCL was the final editor of the article.

Additional information

Competing financial interests: The authors declare no competing financial interests.

REFERENCES AND NOTES

(2) Asheghi, M.; Touzelbaev, M. N; Goodson, K. E.; Leung, Y. K.; Wang, S. S. Temperature-Dependent Thermal Conductivity of Single-Crystal Silicon Layers in

(31) Lehrer, C.; Frey, L.; Petersen, S.; Ryssel, H. Limitations of Focused Ion Beam

