Title: Reversible Band Gap Narrowing of Sn-based Hybrid Perovskite Single Crystal with Excellent Phase Stability

Authors: Dianxing Ju, Xiaopeng Zheng, Jialiang Liu, Yan Chen, Jian Zhang, Bingqiang Cao, Hang Xiao, Omar F. Mohammed, Osman M. Bakr, and Xutang Tao

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201810481
Angew. Chem. 10.1002/ange.201810481

Link to VoR: http://dx.doi.org/10.1002/anie.201810481
http://dx.doi.org/10.1002/ange.201810481
Reversible Band Gap Narrowing of Sn-based Hybrid Perovskite Single Crystal with Excellent Phase Stability

Abstract: An intriguing reversible band gap narrowing behavior of the lead-free hybrid perovskite single crystal DMASnI$_3$ (DMA = CH$_3$NH$_2$CH$_2$) from yellow to black is observed without phase transformation. We discuss the transformation mechanism in detail. More interestingly, the transformed samples in black can rapidly self-heal into yellow ones when exposed to deionized water (DI water). Contrary to other hybrid perovskites, DMASnI$_3$ crystals exhibit excellent water phase stability. For example, DMASnI$_3$ was immersed in DI water for 16 h and no decomposition was observed. Inspired by its excellent water phase stability, we demonstrate a potential eco-friendly application of DMASnI$_3$ in photo-catalysis for H$_2$ evolution in DI water. We present the first H$_2$ evolution rate of 0.64 μmol h$^{-1}$ with good recycling properties for pure DMASnI$_3$ crystals. After the narrowing process, the optical band gap of DMASnI$_3$ can be lowered from 2.48 eV to 1.32 eV. Systematical characterizations are applied to investigate their structures and optoelectronic properties. The reversible band gap narrowing behavior and outstanding electrical properties, such as higher carrier mobility and long carrier lifetime show that DMASnI$_3$ has a great potential for optoelectronic applications.

Since hybrid perovskites were first used as light absorbers in solar cells, organic-inorganic hybrid perovskites have rapidly attracted the world’s attention.[1-5] Great efforts have been made from materials growth to device fabrications and the record cell efficiency jumped from 3.8% to 23.3%,[6,7] surpassing many conventional semiconductor absorbers. The outstanding performance of these materials has endowed lead-containing perovskites with great potential in optoelectronics industry. Despite this achievement, the toxicity of lead (Pb) and the lack of stability, hinder their further optoelectronic applications.[8]

Sn has been proposed to replace lead to form the less toxic perovskites like MASN$_3$, FASN$_3$, and got an efficiency of over 6% to 9%.[9-13] However, the quick oxidation of them leads to poor photovoltaic performance, and all materials and devices fabrication processes have to be performed in nitrogen gas atmosphere to avoid quick degradation.[14-17] Unlike the MASN$_3$, FASN$_3$,[9] or MAPbI$_3$,[18] most hybrid perovskites are not very useful for photovoltaic applications, due to their large band gap (> 2 eV), even though they have high air stability.[19, 20]

Herein, we show an intriguing reversible band gap narrowing behavior of DMASnI$_3$ single crystals with excellent water phase stability without phase transformation. Unlike the transformation from MAPbI$_3$ H$_2$O to MAPbI$_3$ with the crystal structure changing from tetragonal to monoclinic (Figure S1),[21] the DMASnI$_3$ kept its structure before and after the transformation. The detailed narrowing process is shown in situ in Figure 1a. The original DMASnI$_3$ crystal exhibits a rod-like yellow morphology. Once the crystals are exposed to the air, the yellow DMASnI$_3$ gradually turns to black while keeping their morphology unchanged. If the temperature is increased to 50 °C, the transformation process will be shortened (Figure S2). This can also be observed obviously from the bulk single crystals (Figure S3). More interestingly, this process is reversible (Figure 1c). After the treatment of the DI water, the DMASnI$_3$ self-heal from black to yellow and can further transform into black again, as their XRD patterns match well with the initial calculated (see Figure 1b-e) and Figure S4).

![Figure 1](https://example.com/figure1.png)

Figure 1. (a) In situ observation of the DMASnI$_3$ transformation from yellow to black at room temperature in air. (b) The powder XRD patterns of the samples. (c) In situ observation of the reversible DMASnI$_3$ transformation process at 80 °C in air. (d, e) The corresponding powder XRD patterns of the samples before and after the treatment of DI water.

The crystal structures were determined by the single-crystal X-ray diffractions at different temperature. Figure 2 (a-f) displays the ball-and-stick diagrams of the crystal structures before and after the transformation. Both of them belong to the orthorhombic crystal system and Pnna space group at room...
temperature. Even at 350 K, the crystal structures keep the space group of Pnma, which are in agreement with the XRD patterns of above. The related single-crystal parameters of DMASnI3 before and after the transformations are presented in Tables S1 (see the Supporting Information). Different from DMASnI3, DMAGeI2 and DMAPbI3 crystals do not present the similar self-deepening phenomena. Their crystal structures are shown in Figure S5, which exhibit the orthorhombic and hexagonal crystal system with the Pna21 and P63/mmc space group, respectively.16 The related single-crystal parameters are presented in Table S2.

Figure 2. Photos of DMASnI3 used to determine crystal structure before and after the transformation, (a) yellow DMASnI3, (d) black DMASnI3, (g) black DMASnI3 at 350 K. Ball-and-stick diagrams of crystal structures for the DMASnI3 single crystals. (b) Yellow DMASnI3, (e) black DMASnI3, (h) black DMASnI3 at 350 K. In the (SnI6) octahedral structure unit of (c) yellow DMASnI3, (f) black DMASnI3, (i) black DMASnI3 at 350 K. The N and C elements represent the disordered organic groups; hydrogen atoms bonded to the C or N atoms were omitted for clarity.

To understand the consequent oxidation process, we employed X-ray photoelectron spectra (XPS) for the black DMASnI3 single crystal to study the valence states of Sn2+. As shown in Figure S6 (a, b). As we know, the peaks of 486.3 eV and 487.3 eV are associated with Sn2+ and Sn4+, respectively. Here, the Sn 3d52 peak at 486.3 eV demonstrates the oxidation state of Sn2+ (Figure S6b).22 The FTIR results also suggest the stable phase of DMASnI3 before and after the transformation from yellow to black, as shown in Figure S6(c, d). The reason for this transformation was also investigated in detail (Figure 3). After the treatment of DMASnI3 crystals in pure O2, the peak of Sn4+ emerge obviously, demonstrating the degradation of the crystals (Figure 3a). However, when the sample was exposed to the vacuum, the crystal color and their XRD patterns kept stable (Figure 3b). Once the crystals were exposed to the air, the yellow DMASnI3 turned to black and their surface exhibited a phenomenon of roughness and abundant of the iodine element in comparison to the yellow DMASnI3, evidenced by the EDS (Energy Dispersive X-Ray Spectroscopy) and XRF (X Ray Fluorescence) measurements of Figure S7 and Table S3. More experiments were carried out and the results of which are shown in Figure 3(c, d). After 10 days, the I3− ions were identified from the XPS and Raman spectrum23,24 indicating the formation of iodide vacancies. As reported by H. I. Karunadasa, et al, the high density of defects may lead to band-edge reconstruction and the decrease of band gap.25 Thus, the possible underlying mechanism is that the iodide defects induce the band-edge reconstruction and decrease the band gap while keeping the crystal structure stable. First-principles calculations were also conducted to verify this mechanism. The trend of band gap variation matches well with that of experiments after the introduction of iodide vacancies, as shown in Figure S8. Moreover, due to the increase of the trap-state density, the single crystal transformed into the poly-crystal, demonstrated by the single crystal X-Ray diffraction (Figure S9), with crystal structure keeping the same. Intriguingly, after the further treatment of DI water, the DMASnI3 crystals recovered into their original states (Figure S10-S11), indicating that the color-changing transformation is a reversible process. Unusually, the DMASnI3 crystal kept its structure integrity when they were immersed in different solvents for a long period of time, indicating its excellent phase stability. Exceptionally, DMASnI3 remained stable after it was immersed in the DI water for 16 h (Figure S12). With excellent water stability, DMASnI3 shows great potential for eco-friendly applications. For example, DMASnI3 can be used as photo-catalyst for H2 evolution in DI water rather than in the saturated HI solution of lead perovskite as reported.26 The first H2 evolution rate of 0.64 µmol·h−1 with good recycling properties are shown in Figure S13. Note that, due to the formation of O2 after the evolution of H2, the peaks of SnI3 is formed (Figure S13 b).
The variations of UV-vis diffuse reflectance spectra demonstrate the band gap narrowing of yellow DMASnI$_3$, as shown in Figure 4. Notably, the black DMASnI$_3$ displays significantly 438 nm red-shifted light absorption peak with the band gap value of 1.32 eV (Figure 4b), compared with the yellow DMASnI$_3$. The corresponding UPS spectrum was also provided to determine their HOMO and LUMO values, as shown in Figure S14. The corresponding thin film also exhibits the band gap of 1.86 eV with the PL peak position located at~650 nm (Figure 4c, d). The XRD patterns and SEM images are shown in Figure S15. As we know, > 30% PCE can be achieved for the tandem solar cells, if top-cell with bandgap of 1.70-1.85 eV is combined with Si bottom-cell.[27, 28] The DMASnI$_3$ thin film has great potential in tandem solar cell applications. To investigate the transport properties of perovskite thin film and single crystals, we also estimated their carrier lifetime by using TRPL measurements. All the TRPL spectra of perovskite were fitted by bi-exponential decays, including the fast and slow components (Figure 4e, f). Obviously, both of them exhibit long carrier lifetimes, which is desired for the high efficiency hybrid perovskite solar cell.[29-31]

Figure 4. UV-vis diffuse reflectance spectroscopy for DMASnI$_3$. (a) Yellow DMASnI$_3$, (b) black DMASnI$_3$, (c) black DMASnI$_3$ thin film. (d) Typical PL spectra for the black DMASnI$_3$ thin film. Time-resolved photoluminescence spectra for black DMASnI$_3$ thin film (e) and black DMASnI$_3$ single crystal (f).

Figure 5. (a) Dark current-voltage curve of DMASnI$_3$ single crystals for space charge limited current analysis. (b) The variation of trap-state density and dielectric constant with a change of test frequency. (c) The variation of carrier mobility and dielectric constant with a change of test frequency. (d) Carrier mobility and (e) Resistivity of black DMASnI$_3$ single crystals measurements by Hall Effect measurements (RT). (f) Dark current-voltage curve of DMASnI$_3$ thin film for space charge limited current analysis.

The trap-state density and the carrier mobility μ of DMASnI$_3$ single crystals were also estimated according to the space charge-limited current (SCLC) method, as shown in Figure 5.[27, 32, 33] As the increase of test frequency, the dielectric constant and the defect density exhibit a downturn in the order of 10^{11} cm$^{-3}$, while the carrier mobility exhibits an uptrend, which was estimated according to the Mott-Gurney’s power law.[27, 32] The mobility values match well with the result of Hall Effect measurements (Figure 5 c, d). The resistivity of black DMASnI$_3$ single crystals was also measured by Hall Effect measurements in the order of 10^{-5} Ω-cm, as shown in Figure 5(e). Moreover, the trap-state density of the DMASnI$_3$ was also estimated with the thickness of 200 nm in the order of 10^{16} cm$^{-3}$ (Figure 5f), which is comparable with that in previous reports of MAPbI$_3$ ($\sim 10^{15}$ to 10^{16} cm$^{-3}$).[34] All the related parameters of the above are presented in Table S4. We also calculated the carrier diffusion length by combining carrier lifetime with carrier mobility. The best-case diffusion length of 3.89 μm and the worst-case diffusion lengths of 0.82 μm were estimated (Table S5).[35, 36]

This article is protected by copyright. All rights reserved.
The thermos-stability of black DMASnI
crystal was determined by the thermogravimetric analysis (in Figure S16a).
The DSC curve ranging from 100 K to 375 K demonstrates the phase transition temperature of 230 K (Figure S16b),
where the space group is changed from Pnna to Pbca2 (Figure S16c-d). The related single-crystal parameters are presented in Table S6.

In summary, we reported an intriguing and reversible band gap narrowing behavior of the lead-free single-crystal DMASnI
and further revealed the mechanism of narrowing in detail. In addition to the reversible process, DMASnI crystals exhibit excellent phase stability in different solvents, even immersed into DI water for 16 h without decomposition. Removing the toxicity of the lead, our results not only exhibit an abnormal and intriguing phenomenon, but also show many desirable photoelectric properties for solar-cell application, such as narrow band gap, high stability, high carrier mobility and long carrier recombination lifetime, which shed light on highly promising applications in photovoltaic and other optoelectronic devices.

Acknowledgements

D.J. and X.Z. contributed equally to this work. This work was supported by the National Natural Science Foundation of China (grant nos. 51321091, 51772170, 51272129, 51227002), National Key Research and Development Program of China (Grant No.2016YFB1102201) and the Program of Introducing Talents of Disciplines to Universities in China (111 Project 2.0 (Grant No: BP2018013)).

Keywords: reversible • band gap narrowing • lead-free • phase stability • optoelectronic properties

Entry for the Table of Contents (Please choose one layout)

Layout 1:

Reversible band gap narrowing behaviour of Sn-based hybrid perovskite single crystal was first revealed with excellent phase stability, narrow band gap, higher carrier mobility and longer carrier lifetime, which is encouraging for the optoelectronic application.