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I. EMERGENT ELECTROMAGNETISM FOR ANTIFERROMAGNETS

Consider an antiferromagnet with equivalent sublattices a and b. In the coupled

sublattice-spin space (|a〉, |b〉)⊗ (| ↑〉, | ↓〉), the Hamiltonian can be written as

H = (εÎ2 + γkτ̂x)⊗ Î2 − J(τ̂z ⊗ n + Î2 ⊗m) · σ̂, (1)

where J is the exchange coupling, σ̂ is the spin of the electron, t is the nearest-

neighbor hopping, εi and ĉ†i (ĉi) are the onsite energy, and the spinor creation (anni-

hilation) operator of site i, respectively. γk = −2t(cos kxa0+cos kya0), a0 is the lattice

constant, Î2 is the 2 × 2 identity matrix, n = 1
2
(ma −mb) and m = 1

2
(ma + mb)

are unit vectors in the direction of the Néel vector and the total magnetization,

respectively. τ̂ and σ̂ are the Pauli matrices of the sublattice and spin subspaces, re-

spectively. For a smooth and slowing varying n(r, t), the eigenvalues and eigenstates

corresponding to Eq. (1) are given by

εηs(k) = s
√
γ2
k + J2 (2)

and

Ψη,σ
s =

∑
η

s

√
1 + sησPk

2
|η〉 ⊗ |σ〉, (3)

respectively, where s = +1(−1) represents the doubly generate bands above (below)

the band gap and in the rest of this paper, wet set s = +1. Pk = J/
√
γ2
k + J2 is the

polarization of the local density of states projected on the η-sublattice and η = +(−)1

for the (a)b-sublattice [1, 2]. The third term on the right hand side of Eq. (1) can

be diagonalized via a unitary acting only on the spin-subspace, U = e−i
θ
2
σ̂·eφ , where

eφ = z× n/|z× n| [5–7], to obtain

H̃ ≈ 1

2m
(p̂ + eÂ)2τ̂x ⊗ Î2 − Jτ̂z ⊗ σ̂z − eÎ2 ⊗ Â0. (4)
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Â = −(~/2e)
(
[n× ∂in] · σ̂η

)
ei and Â0 = (~/2e)

(
[n× ∂tn] · σ̂η

)
z are the vector and

scalar potentials, respectively. σ̂η = 1
2
(Î2 + ητ̂z) ⊗ σ̂ is the spinor operator, with

expected value with respect to the eigenstates given in Eq. (3) given as

〈|σ̂η|〉 = σP η
σ , (5)

where P η
σ = 1

2
(1 + ησPk), σ = +(−)1 for ↑ (↓) spin. As a result, the spin-dependent

carriers feel an emerging electromagnetic field for the η-sublattice given by,

Eη,σ
em = (σ~/2e)P η

σNt,i(r)ei (6a)

Bη,σ
em = −(σ~/2e)P η

σNx,y(r)z (6b)

where Nµ,ν(r) = (∂µn× ∂νn) · n, with ν, µ ∈ (t, x, y). Observe that close to the van

Hove singularity or as J goes to infinity, Pk = 1, we have
(
P a
↑ = 1 , P a

↓ = 0
)

and
(

P b
↑ = 0 , P b

↓ = 1
)

i.e.

Ea,↑
em = (~/2e)Nt,i(r)ei , Ea,↓

em = 0 (7a)

Ba,↑
em = −(~/2e)Nx,y(r)z , Ba,↓

em = 0 (7b)

and

Eb,↑
em = 0 , Ea,↓

em = −(~/2e)Nt,i(r)ei (8a)

Bb,↑
em = 0 , Ba,↓

em = (~/2e)Nx,y(r)z, (8b)

respectively as two independent ferromagnets. Under the action of an external elec-

tric field applied along the x-axis (i.e. E = Ex), the resulting spin- and sub-lattice-

dependent local carrier current density is given by

jη,σcc = ση,σ0 E + ση,σ0 Eη,σ
em + ση,σH E×Bη,σ

em , (9)

where ση,σ0 and ση,σH are proportional to the σ-contribution to the normal and Hall

conductivity, respectively. Our considerations are based on an AFM-Sk with radius
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r0, embedded in a large system of radius R� r0 moving rigidly with velocity v (i.e.

∂tn = −(v ·∇)n). Without loss of generality, we chose the profile defined in spherical

coordinates as n = (cos Φ sin θ, sin Φ sin θ, cos θ), where cos θ = p(r2
0 − r2)/(r2

0 + r2)

and Φ = qArg(x+ iy) + cπ/2 are the polar and azimuthal angles, respectively. The

constants p, q and c which takes values ±1, defines the polarization, vorticity and

the chirality, respectively.

Before we proceed, we note that the spin transport in AFMs involves inter-sub-

lattice mixing, therefore, one is faced with the tedious task of keeping track of the

sub-lattice indices. However, for equivalent sub-lattices;

• σa0(H) = σb0(H) ≡
1
2
σ0(H) and

• Pa0(H) = −Pb0(H) ≡ P0(H) (i.e. the overall current polarization is zero),

where σ0(H) and P0(H) are the ordinary (Hall) conductivity and current polarization,

respectively while ση0(H) and Pη0(H) are their respective projections on the η-sub-lattice.

Therefore, to make our analysis trackable and easy to follow, we define effective

polarizations P̄ η
0(H) and P̃ η

0(H) which are odd and even under sub-lattice exchange,

given respectively as

P̄ η
0(H) = (Pη0(H) + ηPk)/2 = η(P0(H) + J/εF)/2 ≡ ηP̄0(H) (10a)

and

P̃ η
0(H) = (1 + ηPkPη0(H))/2 = (1 + P0(H)J/εF)/2 ≡ P̃0(H), (10b)

where εF is the Fermi energy. Putting all these together, the local charge and spin

current densities projected on the sub-lattices are calculated from Eq. (9) as jηe =(
jη,↑cc + jη,↓cc

)
and jηs = n⊗ ~

2e

(
jη,↑cc − jη,↓cc

)
, respectively to obtain

jηe =
1

2

(
σ0x + ησxy(r)y

)
E +

η~P̄0σ0

4
Nx,y(r)(v × z), (11a)

jηs = n⊗ 1

2

(
ηx− pqβT(r)y

)
bJ +

pq

2
αT(r)n⊗ (v × z), (11b)
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where bJ = γ~P0σ0E/2eMs, Ms being the saturation magnetization, σxy(r) =

(~/2e)P̄HσHNx,y(r) is the non-local steady state transverse conductivity while

αT(r) = pqλ2
ENx,y(r) and βT(r) = pqλ2

HNx,y(r) are dimensionless constants which

as we shall see later, are non-local contributions to the Gilbert damping and non-

adiabatic torque, respectively. Finally, the constants λ2
H = ~P̃HσH/(2eP0σ

η
0) and

λ2
E = γ~2P̃0σ0/(4e

2Ms) have dimensions of length squared are length scales associ-

ated with the emergent magnetic and electric fields, respectively [8]. The spin torque

corresponding to the spin current density in Eq. (11b) is computed using the relation

τ ηT = −∇ · jηs , (12)

to obtain

τ ηT = −η
2
bJ∂xn +

pq

2
βT(r)bJ∂yn−

pq

2
αT(r)

(
vy∂xn− vx∂yn

)
. (13)

Furthermore, using the fact that

∂yn = pqn× ∂xn and n× ∂tn = pq
(
vy∂xn− vx∂yn

)
, (14)

Eq. (15) can be re-written in the form

τ ηT = −η
2
bJ∂xn +

1

2
βT(r)bJn× ∂xn−

1

2
αT(r)n× ∂tn. (15)

Finally, the total spin transfer torque on the magnetization is calculated as the

algebraic sum of the sub-lattice resolved torques (i.e. τT = τ aT + τ bT) to obtain

τT = βT(r)bJn× ∂xn− αT(r)n× ∂tn. (16)

For a more general consideration, we include non-adiabatic effects arising from, for

example spin relaxation via a constant non-adiabaticity parameter β and the Gilbert

damping torque with constant damping constant α, such that the total spin transfer

torque is given as

τ = −τT − βbJn× ∂xn + αn× ∂tn (17)
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Or equivalently, we have

τ = αeff(r)n× ∂tn− βeff(r)bJn× ∂xn, (18)

where

βeff(r) = β + βT(r) (19a)

and

αeff(r) = α + αT(r). (19b)

To arrive at Eq. (18), we have used the fact that η change sign on different sub-

lattice and therefore, the adiabatic component of the torque in Eq. (15) vanishes

upon taking the summation on both sub-lattice. The effective damping and non-

adiabaticity parameters are calculated as

αeff(r) = α + pqλ2
ENx,y(r) (20a)

and

βeff(r) = β + pqλ2
HNx,y(r), (20b)

respectively.

To extract the scaling laws that governs the adiabatic and non-adiabatic spin

torque, we note that since the torque τ can always be decomposed into its adiabatic

τad and non-adiabatic τna components as

τ = τad∂xn + τnan× ∂xn, (21)

the projection of the Eq. (21) on ∂xn (n× ∂xn) and integrated over space yields the

adiabatic (non-adiabatic) component of the torque. In other words,

τad =

∫
V

(
τ · ∂xn

)
d3r∫

V

(
∂xn · ∂xn

)
d3r

(22a)
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and

τna =

∫
V

(
τ · (n× ∂xn)

)
d3r∫

V

(
(n× ∂xn) · (n× ∂xn)

)
d3r

. (22b)

Therefore, the adiabatic (τad) and non-adiabatic (τna) components of the torques can

be extracted at steady state (∂tn = 0) based on Eq. (22) to obtain

τad = 0 (23)

and

τna =
(
β +

4

3

λ2
H

r2
0

)
bJ. (24)

From the perspective of dynamics, we follow standard theoretical scheme to study

the dynamics of antiferromagnetic textures, we obtain the equation of motion of the

Néel order parameter as

1

āγ̃
∂2
t n + αeff(r)∂tn = γfn + βeff(r)bJ∂xn, (25)

where γ̃ = γ/(1 + α2), fn represents an effective field derived from the magnetic

energy E =
∫
dr
[
ā
2
m2 + A

2
(∇n)2 −H ·m

]
as fn = −δnE, where H is an external

magnetic field, ā and A are the homogeneous and inhomogeneous exchange constants,

respectively [9]. The steady state solution in the absence of external magnetic field

is given as

vy = 0 and vx = (βeff/αeff)bJ. (26)

II. EFFECT OF NON-MAGNETIC IMPURITY SCATTERING ON TSHE.

An interesting aspect of antiferromagnets is that even in the adiabatic limit of

smooth and slowly varying order parameter n(r, t), electrons are subjected to inter-

sublattice dynamics which induces spin mistracking that can give rise to exotic spin

transport with no connection to non-adiabatic processes. For example, this internal
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FIG. 1. Schematic illustration of the effect of (a) SS and (b) AS non-magnetic impurity

scattering within an antiferromagnetic unit cell. For SS scattering, an interstitial defect

in the unit cell introduces a symmetric (represented by the same color shield around the

atoms) shift to the onsite energy while as AS defect result to an asymmetric (represented

by different color shields around the atoms) within the unit cell.

dynamics have been shown to produce a spin-dependent renormalization of the elec-

tron’s group velocity [2] equivalent to a texture-induced intrinsic spin-orbit coupling

[3, 4]. Therefore, it is crucial to investigate effects that can influence the coherence of

these inter-sub-lattice transitions such as impurity scattering that are omnipresent in

real materials. We consider two classes of non-magnetic impurities defects: (i) one

that preserves the coherence between the sublattices within the antiferromagnetic

unit cell, referred to as symmetric scattering (SS), and (ii) disorder that induces

decoherence within the unit cell referred to as asymmetric scattering (AS), as il-

lustrated in Figure 1. In our model, impurities are incorporated via randomized

onsite energies εi = Vi ∈
(
−W

2 , W2
)
, where W defines the strength of the disorder,

and average over 104 configurations to ensure convergence. First, we consider an

AFM-Sk with a strong exchange energy J = 5t, and investigate the dependence of

its Hall transport properties by means of a four-terminal system [10] on the type and

strength of impurity scattering and compare with an equivalent FM-Sk. Notice that
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FIG. 2. Comparing the impact of impurity scattering in FM-Sks (black curve) and AFM-

Sks (red and blue curves). Impurities progressively reduces the (a) longitudinal conduc-

tance in FM-Sks and AFM-SKs and hence (b) λmfp of the system.

from Eq. (2), the band width depends on the exchange strength, therefore, to avoid

ambiguity associated to the position of the band gap, we place the Fermi energy at

the middle of the top band i.e. εF = 1
2

(√
J2 + 16 + J

)
= 5.7t. Our numerical results

as depicted in Figure 2, allows us to identify two transport regimes based on how the

mean-free path of the system (λmfp) compares to the system size (L). As shown in

Figure 2 (b), in Region I, λmfp > L while in Region II, λmfp < L. Region I represents

a regime in which the internal (within the unit cell) dynamics of electron remains

coherent. The transition from Region I into Region II represents the onset of deco-

herence that progressively destroys this coherent internal dynamics of electron as the

impurity strength increases. Notice a close correspondence between this transition

and the dependence of the spin Hall conductance on the impurity strength. Indeed,

Figure 3 (c) shows that as long as the internal dynamics of electrons remains coher-

ent, the spin Hall conductance and hence TSHE increases with increases in impurity
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strength. At the onset of decoherence, the impurities destroy the coherence and the

coupled sub-lattices start behaving as two independent ferromagnets resulting in a

decrease in spin Hall conductance as the impurity strength increases [10]. It is wor-

thy to note here that the enhancement of spin Hall angle (i.e. TSHE efficiency) in

Figure 2 (d) as the impurity strength increases is not due to an increase in TSHE

itself but due mainly to the extensive reduction in the longitudinal conductance.

We confirm the correspondence between the coherent internal dynamics of elec-

trons and the strength of SS disorder by performing additional Hall transport cal-

culations for different exchange strengths as a function of impurity strength and

examine the relation between λmfp and the spin Hall conductance. Our results as

shown in Figure 3 reveals that for J = 0.1t (green curve) and J = 0.5t (black curve),

and for all impurity strengths considered, the disorder preserves the coherent dy-

namics of electrons λmfp > L [Figure 3 (b)]. The TSHE increases with increase in

impurity strength and is accompanied by a corresponding increase in both in spin

Hall conductivity and topological spin Hall angle as shown in Figures 3 (c) and (d),

respectively. For J = 5.0t and J = 10t, Figure 3 (b) shows that impurity eventu-

ally drives the system from Region I into Region II as the strength of the impurity

increases, with the crossover occurring around an impurity strength of 0.4t and 0.2t

[blue and red curves of Figure 3 (b)], respectively . In both cases, the spin Hall

conductivity and hence the TSHE increases (decreases) as the impurity strength

increases below (above) the crosover [blue and red curves of Figure 3(c)].

III. MAGNETIZATION PROFILE AND USEFUL INTEGRALS

We consider an antiferromagnetic skyrmion with spin texture described by the

Néel order parameter n given in spherical coordinates as n = (cos Φ sin θ, sin Φ sin θ, cos θ),
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FIG. 3. Dependence of transport properties of a single AFM-Sk embedded in a system of

size on the strength of SS impurity scattering for different exchange energies measure at the

centre of the bottom band. (a) Longitudinal conductance and (b) λmfp decreases while (c)

TSHE increases (for λmfp > L) with increase in impurity strength. For impurity strength

corresponding to λmfp < L, the TSHE decreases as the impurity strength increases. (d)

The efficiency of the TSHE shows enhancement with increases in impurity strength.

such that

cos θ = p
r2

0 − r2

r2
0 + r2

, sin θ = p
2r0r

r2
0 + r2

and Φ = qArg(x, y) + c
π

2
. (27)

r0 is the radius of the skyrmion, while p, q, and c which take values ±1 define the

polarity (skyrmion core), vorticity, and the chirality of the structure, respectively.

Using this profile one can straightforwardly deduce the following useful expressions:

∂xn = c
sin θ

r
(p sin Φeθ + cos ΦeΦ) (28a)

n× ∂xn = pq∂yn = c
sin θ

r
(p sin ΦeΦ − cos Φeθ) (28b)

Nx,y(r) = n ·
(
∂xn× ∂yn

)
= pq

sin2 θ

r2
, (28c)
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where eθ = (cos Φ cos θ, sin Φ cos θ,− sin θ) and eΦ = (− sin Φ, cos Φ, 0). For a finite

system defined by a radius R, such that R � r0, we computed the following useful

integrals ∫
A

(
n× ∂xn

)
·
(
n× ∂xn

)
d2r = 4π

(
1− S

)
≈ 4π, (29a)∫

A

pqNx,y(r)
(
n× ∂xn

)
·
(
n× ∂xn

)
d2r = 4π

(
1− S

)4S2

3r2
0

≈ 16π

3r2
0

, (29b)

where

S =
r2

0

r2
0 +R2

for R� r0 , S → 0 (30)

and

S2 = 1 + S + S2 → 1. (31)

IV. SPIN TRANSFER TORQUE CALCULATION

We present a numerical scheme to calculate the adiabatic and non-adiabatic spin

transfer torque components based on tight-binding model. We consider a large sys-

tem of 302× 302a2
0 containing an isolated AFM-Sk to ensure smooth magnetization

variation from system to leads for all skyrmion sizes considered. This is essential

as it removes unrealistic quantum oscillations of local quantities such as the non-

equilibrium spin densities associated to smaller system sizes. The system is subjected

to an electrical bias of eV = 0.2t, where t = 1. The local spin density at site n for

electrons from the α-lead Sαn is computed as

Sαn =
∑
ν

Ψα
n,ν
†σ̂Ψα

n,ν , (32)

where Ψα
n,ν is the ν-mode of wave function of electrons from the α-lead at site n. From

this the quantum mechanical average non-equilibrium is calculated by performing

energy integration within the window εF − eV
2

to εF + eV
2

as

δSn =
∑
α

∫
dε

2π
Sαnfα, (33)
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where εF is the Fermi energy and fα is the Fermi-Dirac function for α-lead. From

this, the local torque of the n-site Tn is straightforwardly calculated as

Tn = (2J/~)δSn ×mn, (34)

where mn magnetization of the n-site. From the torque the adiabatic and non-

adiabatic components of the torques can be extracted by projecting on ∂xn and

n× ∂xn respectively, and integrating over space.
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