Supporting Information for
“Current and Future Estimates of Wind Energy Potential over Saudi Arabia”

Wanfang Chen 1, Stefano Castruccio 2, Marc G. Genton 1, and Paola Crippa 3

1Statistics Program, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
2Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame IN 46556, USA
3Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame IN 46556, USA

Contents
1. Text S1
2. Figures S1 to S10

Text S1. Return level

The M-year return level of wind speeds is defined as an extreme event that occurs on average once every M years. Following the standard univariate extreme value theory [Davison and Smith, 1990], we can model the wind speed variable Y over a high threshold u by the Generalized Pareto Distribution $GPD(\tau, \xi)$:

\[
Y - u | Y > u \sim H(y) = \begin{cases}
1 - (1 + \xi \frac{y}{\tau})^{-1/\xi}, & \xi \neq 0, \\
1 - \exp(-\frac{y}{\xi}), & \xi = 0,
\end{cases} \tag{S1}
\]

where $(x)_+ = \max(x, 0)$, and ξ and $\tau > 0$ are shape and scale parameters, respectively. Hence, the distribution of Y is given by

\[
P(Y \leq y) = G(y) = \begin{cases}
1 - \zeta_u \left(1 + \xi \frac{y-u}{\tau}\right)^{-1/\xi}, & \xi \neq 0, \\
1 - \zeta_u \exp(-\frac{y-u}{\xi}), & \xi = 0,
\end{cases} \tag{S2}
\]

where $\zeta_u = \Pr(Y > u)$ is the probability of exceedance. The M-year return level $z_{1/M}$ (with return period M) of Y is simply

\[
z_{1/M} = G^{-1}(1 - 1/M). \tag{S3}
\]

Corresponding author: Paola Crippa, pcrippa@nd.edu
For dependent data (which is the case in our study where the temporal dependence of wind speeds in summer is found to be strong in some locations), one has

\[P(Y \leq y) \approx \{G(y)\}^{n_{\text{year}}\theta}, \quad y > u, \tag{S4} \]

where \(\theta \) is the extremal index that measures the degree of dependence in the data, and \(n_{\text{year}} \) is the number of observations per year. Hence, the \(M \)-year return level of wind speed is given by

\[
1 - \frac{1}{M} = \left\{1 - \zeta u \left(1 + \xi \frac{z_{1/M} - u}{\tau}\right)^{-1/\xi}\right\}^{n_{\text{year}}\theta} \approx \frac{1 - \zeta u \left(1 + \xi \frac{z_{1/M} - u}{\tau}\right)^{-1/\xi}}{\xi} \quad \text{for } \xi \neq 0.
\]

\[\Rightarrow \frac{z_{1/M}}{M} \approx \frac{1 - \zeta u}{\xi} \left\{(n_{\text{year}} M \theta \zeta u)^{\xi} - 1\right\}. \tag{S6} \]

References

Figure S1. Spatially averaged daily mean wind speed during 1980-2005 for MERRA, MERRA-2, ERA-Interim and the five CORDEX runs.
Figure S2. Mean wind speed (ms$^{-1}$) from MERRA-2 and the five CORDEX runs during 1980-2005.

Figure S3. Difference in standard deviations (SD) of wind speed (ms$^{-1}$) between MERRA-2 and each of the five CORDEX runs during 1980-2005. Cold and warm colors indicate a larger and a smaller SD in CORDEX relative to MERRA-2, respectively. The white corresponds to 0 difference in SD.
Figure S4. Taylor diagram of the spatial fields of (a) mean, (b) standard deviation, (c) median and (d) 95% quantile of wind speeds during 1980-2005 for each of the five CORDEX runs, using MERRA-2 as the reference.
Figure S5. Taylor diagram of the spatial fields of (a) 1-year, (b) 5-year, (c) 10-year and (d) 30-year wind speed return levels over the six selected regions (indicated as R1-R6) for the five CORDEX runs (depicted by different colors), using MERRA-2 as the reference.
Figure S6. Functional boxplots for the 26 times series of monthly mean wind speeds (ms$^{-1}$) during 1980-2005 from MERRA-2 (left), CORDEX-2 (center) and CORDEX-4 (right) for each of the six regions.
Figure S7. Mean, median, 95% quantile and standard deviation of the WPD (Wm$^{-2}$) at 80 m computed from MERRA-2 (left) and CORDEX-4 (right) using the power law method.
Figure S8. Functional boxplots for the 26 times series of monthly mean WPD (W m$^{-2}$) from MERRA-2 (left) and CORDEX-2 (center) in the current period 1980-2005. The right panel shows WPD from CORDEX-2 in the future period 2025-2050 for each of the six regions.
Figure S9. (a) Annual cycle of monthly mean wind speed from spatially averaged data for MERRA (black dotted line), ERA-interim (black dashed line), MERRA-2 (black solid line) and the CORDEX runs with spatial resolution $0.22^\circ \times 0.22^\circ$, (b) the CORDEX runs with spatial resolution $0.44^\circ \times 0.44^\circ$, (c) the CORDEX runs driven by ERAINT, (d) the CORDEX runs driven by EC-EARTH, and (e) the CORDEX runs driven by GFDL-ESM2M, temporally averaged during 1980-2005. (f) Inter- and intra-annual variabilities of wind speeds from all data sets during 1980-2005. The solid line, dashed line and dotted line represent metrics for MERRA-2, ERA-Interim and MERRA, respectively.
Figure S10. Percentage biases between the five CORDEX historical runs (indicated in different colors) and MERRA-2 in mean, standard deviation, median and 95% quantile of wind speeds during 1980-2005, averaged over each of the six selected regions (indicated by the symbols R1-R6). The dashed line indicates no bias and the dotted lines represent the 10% percentage bias band.