
https://doi.org/10.1145/3183713.3196920
https://doi.org/10.1145/3183713.3196920

http://compbio.case.edu/omics/software/chopper/index.html
https://datalab.snu.ac.kr/bepi/
http://snap.stanford.edu/data/index.html
http://law.di.unimi.it/datasets.php

By forward search, π (s,v) = π f (s,v) +
∑
u ∈V r f (s,u)π (u,v), it

follows that

∑
u ∈V r f (s,u)π (u,v) ≤ π (s,v), and thus

E[X 2

i] ≤ 2r
f
sum

(
rbmax

)
2

∑
v ∈V

(
din (v)

π (s,v)
· π (s,v)

)
= 2r

f
sum

(
rbmax

)
2

∑
v ∈V

din (v) = 2r
f
sum

(
rbmax

)
2

·m.

Therefore, we have E[Y] ≤ 2mr
f
sum

(
rbmax

)
2

. Let z =
8

(
r fsum

)2

logn
nr ,

since each X 2

i ≤
(
r
f
sum

)
2

, by Chernoff inequality, the probability

that Y ≤ 2E[Y] + z ≤ 4mr
f
sum

(
rbmax

)
2

+
8

(
r fsum

)2

logn
nr is at most

exp

(
−nr (E[Y] + z)2

/ (
r
f
sum

)
2

·

(
8

3

E[Y] +
2

3

z
))

≤ exp

(
−

3

8

nr · (E[Y] + z)
/ (

r
f
sum

)
2

)
≤ exp

(
−

3nr logn

nr

)
≤

1

n3
,

and the lemma follows. □

Proof of Lemma 4.8. By Lemma 4.7, we need to show that if at

some iteration, the number of randomwalksnr =
cmr fsum

(
rbmax

)
2

дap2

ρ
logn

for constant c , we have β (s, t) ≤ дapρ/4 for any t ∈ C . Recall that

β (s, t) =

√
2σ̄ 2 (s, t) ln (3n3

log
2 nr)

nr
+

3r
f
sum ln (3n3

log
2 nr)

nr
. (3)

By the assumption that rbmax ≥

√
дapρ
m , we have

nr ≥
cmr

f
sum

(
rbmax

)
2

дap2

ρ
logn ≥

cmr
f
sum ·

дapρ
m

дap2

ρ
logn ≥

cr
f
sum logn

дapρ
,

and thus we can bound the the second term of equation (3) as

6r
f
sum ln (3n3

log
2 nr)

nr
≤ дapρ

6 log (3n3
log

2 nr)

c logn
≤ дapρ/8. (4)

For c sufficiently large. The last inequality is due to n ≥ log
m

дapρ .

To bound the first term of equation (3), we observe that by

Lemma 4.1, the empirical variance σ̄ 2 (s, t) ≤ 2mr
f
sum

(
rbmax

)
2

+

8

(
r fsum

)2

logn
nr with probability at least 1−1/n3

. If 2mr
f
sum

(
rbmax

)
2

≤

8

(
r fsum

)2

logn
nr , we have σ̄ 2 (s, t) ≤

16

(
r fsum

)2

logn
nr and the first term

of equation (3) can be bounded by

√
2σ̄ 2 (s, t) ln 3n3

log
2 nr

nr
≤

√√√√√
16

(
r fsum

)2

logn
nr ln 3n3

log
2 nr

nr
≤

1

8

дapρ .

The last inequality is due to inequality (4). On the other hand, if

2mr
f
sum

(
rbmax

)
2

≥
8

(
r fsum

)2

logn
nr , we have σ̄ 2 (s, t) ≤ 4mr

f
sum

(
rbmax

)
2

,

and thus√
2σ̄ 2 (s, t) ln (3n3

log
2 nr)

nr
≤

√√
8mr

f
sum

(
rbmax

)
2

ln (3n3
log

2 nr)

nr

=

√√√√√√√√√8mr
f
sum

(
rbmax

)
2

ln 3n3
log

2 nr

cmr fsum
(
rbmax

)
2

дap2

ρ
logn

≤ дapρ

√
24 logn lognr

c logn
≤

дapρ

8

for c sufficiently large. Thus we have β (s, t) ≤ дapρ/4 for c suffi-

ciently large, and the Lemma follows. □

C.8 Proof of Theorem 4.9 and Theorem 4.10
Proof. Recall that at the i-th iteration, we have r

f
max =

1

2
im

and rbmax = 1/2i
√
m and walk number nr = c2

in logn/|C |. The
total query cost is cost (f orward) + cost (backward) + cost (walk),
which can be bounded by

O *
,

1

r
f
max

+
-
+O *

,

√
m

rbmax

+
-
+ nr |C | = O

(
2
im + c2

in logn
)
. (5)

For worst-case graph, if we can prove that TopPPR stops before

iteration when 2
i = 1/

√
дapρ , then the total query cost is bounded

by O

(
m+n logn
√
дapρ

)
and Theorem 4.9 follows. More precisely, we

have r
f
max =

√
дapρ/m, rbmax =

√
дapρ/m. By Lemma 4.8 and

rbmax =
√
дapρ/m, we have nr ≥

c2
in logn
|C | ≥

cn logn
√
дapρ · |C |

≥

c logn
√
дapρ

. The last inequality uses the fact that |C | ≤ n. There-

fore, we have r
f
max

(
rbmax

)
2

=

(√
дapρ

)
3

m2
and nr ≥

c logn
√
дapρ

≥

cm2

(√
дapρ

)
3

m2

дap2

ρ
logn ≥

cmr fsum
(
rbmax

)
2

дap2

ρ
logn. This proves that the

number of walks nr = Ω *
,

cmr fsum
(
rbmax

)
2

дap2

ρ
logn+

-
, and by Lemma 4.7,

the algorithm stops at this iteration.

Similarly, for power law graph, we can prove that TopPPR stops

before iteration when 2
i = 1√

дapρ
· k

1

4

n
1

4

, under Assumption 1. Thus

Theorem 4.10 follows from equation 5. □

C.9 Proof of Lemma 5.1
Proof. We define two types of random walks. A non-stop ran-

dom walk from s is a traversal of G that starts from s and, at each
step, proceeds to a randomly selected out-neighbor of the current

node. An (1 − α)-walk is a random walk in which at each step the

random walk proceeds to the next node with probability 1 − α and

terminates with probability α .
Let pi (s, t) denote the probability that a non-stop random walk

from s visits t in the i step. We have π (s, t) =
∑∞
i=0

α (1−α)ipi (s, t).

To see this, note that α (1−α)ipi (s, t) is the probability that a (1−α)-
walk starts at s and terminates at t using i steps. Summing i over

0 to ∞ and the equation follows. For (
√

1 − α)-walk, recall that

(
√

1 − α)ipi (s, t) is the probability that the

√
1 − α-walk visits t at

the i-th step, and (
√

1 − α)i is the value added to π̂ (s, t), we have

E[π̂ (s, t)] =
∞∑
i=0

α (
√

1 − α)i · (
√

1 − α)ipi (s, t) = π (s, t),

and the Lemma follows. □

Research 5: Graph Data Management SIGMOD’18, June 10-15, 2018, Houston, TX, USA

456

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 Basic Techniques and State of the Art

	3 TopPPR Algorithm
	3.1 Challenges and Main Ideas
	3.2 Techniques
	3.3 Main Algorithm

	4 Analysis
	4.1 Correctness
	4.2 Time Complexity

	5 (1-)-Walks
	6 Other Related Work
	7 Experiments
	7.1 Experimental Settings
	7.2 Exact Top-k PPR Queries
	7.3 Approximate Top-k PPR Queries
	7.4 Exact Top-k PPR by Approximate Methods
	7.5 Absolute Error Analysis
	7.6 Effects of parameter
	7.7 Preprocessing Time and Space Overhead.

	8 Conclusions
	9 ACKNOWLEDGEMENTS
	References
	A Chernoff Bound
	B Walker's Alias Method
	C Proofs
	C.1 Proof of Lemma 4.1
	C.2 Proof of Lemma 4.2
	C.3 Proof of Lemma 4.4
	C.4 Proof of Lemma 4.5
	C.5 Proof of Lemma 4.6
	C.6 Proof of Lemma 4.7
	C.7 Proof of Lemma 4.8
	C.8 Proof of Theorem 4.9 and Theorem 4.10
	C.9 Proof of Lemma 5.1

