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and the lemma follows. □

Proof of Lemma 4.8. By Lemma 4.7, we need to show that if at

some iteration, the number of randomwalksnr =
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(
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ρ
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for constant c , we have β (s, t ) ≤ дapρ/4 for any t ∈ C . Recall that
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and thus we can bound the the second term of equation (3) as
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For c sufficiently large. The last inequality is due to n ≥ log
m
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To bound the first term of equation (3), we observe that by

Lemma 4.1, the empirical variance σ̄ 2 (s, t ) ≤ 2mr
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The last inequality is due to inequality (4). On the other hand, if
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for c sufficiently large. Thus we have β (s, t ) ≤ дapρ/4 for c suffi-

ciently large, and the Lemma follows. □

C.8 Proof of Theorem 4.9 and Theorem 4.10
Proof. Recall that at the i-th iteration, we have r

f
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2
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For worst-case graph, if we can prove that TopPPR stops before

iteration when 2
i = 1/

√
дapρ , then the total query cost is bounded

by O
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)
and Theorem 4.9 follows. More precisely, we
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,
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, and by Lemma 4.7,

the algorithm stops at this iteration.

Similarly, for power law graph, we can prove that TopPPR stops

before iteration when 2
i = 1√

дapρ
· k

1

4

n
1

4

, under Assumption 1. Thus

Theorem 4.10 follows from equation 5. □

C.9 Proof of Lemma 5.1
Proof. We define two types of random walks. A non-stop ran-

dom walk from s is a traversal of G that starts from s and, at each
step, proceeds to a randomly selected out-neighbor of the current

node. An (1 − α )-walk is a random walk in which at each step the

random walk proceeds to the next node with probability 1 − α and

terminates with probability α .
Let pi (s, t ) denote the probability that a non-stop random walk

from s visits t in the i step. We have π (s, t ) =
∑∞
i=0

α (1−α )ipi (s, t ).

To see this, note that α (1−α )ipi (s, t ) is the probability that a (1−α )-
walk starts at s and terminates at t using i steps. Summing i over

0 to ∞ and the equation follows. For (
√

1 − α )-walk, recall that

(
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√
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and the Lemma follows. □
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