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Researclb: Graph Data Managemen

By forward search, n(s,v) = 7l (5,0) + Suev (s, u)m(u,v), it
follows that Y, cy rf (s,u)m(u, v) < 7(s,v), and thus
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Therefore, we have E[Y] < 2mrsfum (rf’nax)z. Letz = M

n, >
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since each Xi2 < (rfu m) , by Chernoff inequality, the probability

s‘um 1
that Y < 2E[Y] +z < 4mrfum (r,’imx)2 (- %" is at most
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and the lemma follows. ]

PRrROOF OF LEMMA 4.8. By Lemma 4.7, we need to show that if at
Cm’{um(rfnax)z
gap?,
for constant ¢, we have f(s, t) < gap,/4 for any t € C. Recall that

some iteration, the number of random walks n, =

(3n3 log? ny)
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By the assumption that r,l; ax = g‘:f” , we have

2
cm'{um (rfnax) cm'{um )
gapj, gapy,

and thus we can bound the the second term of equation (3) as
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< gapp/8. (4)
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For c sufficiently large. The last inequality is due to n > log #.
To bound the first term of equation (3), we observe that by
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Lemma 4.1, the empirical variance 5% (s, ) < 2mrsfum (rf’nax) +

8(r£um)zlogn
n
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. with probability atleast 1-1/n>. If2mr£um (rgmx)
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8 ,f 1 16 ’{um 1
( ) ogn , we have 6%(s, t) < w and the first term

of equatlon (3) can be bounded by
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The last inequality is due to inequality (4). On the other hand, if
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for c sufficiently large. Thus we have f(s, t) < gap /4 for c suffi-

logn

ciently large, and the Lemma follows. O
C.8 Proof of Theorem 4.9 and Theorem 4.10
Proor. Recall that at the i-th iteration, we have r{nax = ﬁ

and r? . = 1/2!\/m and walk number n, = c2'nlogn/|C|. The
total query cost is cost(forward) + cost(backward) + cost(walk),
which can be bounded by

\m

o(r{n;)o( b
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>+nr|C| = O(Zim+c2inlogn). (5)

For worst-case graph, if we can prove that TopPPR stops before
iteration when 2’ = 1/, /gap , then the total query cost is bounded

m+nlogn
VIap,

have r/ max =

by O ( ) and Theorem 4.9 follows. More precisely, we

‘/gapp/m rmax =

|9ap,,/m. By Lemma 4.8 and
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Tmax = 4/94P,/m, we have n, > Il Jap, IC]
\C/l;a%. The last inequality uses the fact that |C|] < n. There-
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fore, we have r,j;ax (rmax) = —— 7 —and n, 2 N >
3
e ) el ()
m° logn > ————"%*/ logn. This proves that the
gap?, gap?,
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number of walks n, = Q % log n), and by Lemma 4.7,
P

the algorithm stops at this iteration.
Similarly, for power law graph, we can prove that TopPPR stops

before iteration when 2/ = \/ﬁ k1 4 , under Assumption 1. Thus
P n4

Theorem 4.10 follows from equation 5. O

C.9 Proof of Lemma 5.1

Proor. We define two types of random walks. A non-stop ran-
dom walk from s is a traversal of G that starts from s and, at each
step, proceeds to a randomly selected out-neighbor of the current
node. An (1 — a)-walk is a random walk in which at each step the
random walk proceeds to the next node with probability 1 — a and
terminates with probability a.

Let p; (s, t) denote the probability that a non-stop random walk
from s visits ¢ in the i step. We have 7 (s, t) = 372, a(1- a)ipi(s,t).
To see this, note that a(1—a)’p; (s, t) is the probability that a (1-a)-
walk starts at s and terminates at ¢ using i steps. Summing i over
0 to oo and the equation follows. For (V1 — a)-walk, recall that
(V1= a)’p;(s, t) is the probability that the V1 — a-walk visits t at
the i-th step, and (V1 — )’ is the value added to 7 (s, t), we have

E[#(s,1)] = ) a(V1=a)' - (V1= a)'pi(s,t) = (s, 1),
i=0
and the Lemma follows.
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