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Abstract

We present a novel, simple and systematic con-
vergence analysis of gradient descent for eigen-
vector computation. As a popular, practical, and
provable approach to numerous machine learning
problems, gradient descent has found successful
applications to eigenvector computation as well.
However, surprisingly, it lacks a thorough the-
oretical analysis for the underlying geodesically
non-convex problem. In this work, the conver-
gence of the gradient descent solver for the lead-
ing eigenvector computation is shown to be at a
global rate O(rnin{(g—,lp)2 log L, 1}), where A, =
Ap — Apy1 > O represents the generalized positive
eigengap and always exists without loss of general-
ity with A; being the i-th largest eigenvalue of the
given real symmetric matrix and p being the multi-
plicity of \;. The rate is linear at O((g—;)2 log 1)
if (2—;)2 = O(1), otherwise sub-linear at O(1).
We also show that the convergence only logarith-
mically instead of quadratically depends on the ini-
tial iterate. Particularly, this is the first time the lin-
ear convergence for the case that the conventionally
considered eigengap A; = A; — A2 = 0 but the
generalized eigengap A, satisfies ( 2—;)2 = 0O(1),
as well as the logarithmic dependence on the ini-
tial iterate are established for the gradient descent
solver. We are also the first to leverage for anal-
ysis the log principal angle between the iterate and
the space of globally optimal solutions. Theoretical
properties are verified in experiments.

1 Introduction

Eigenvector computation is a ubiquitous problem in data pro-
cessing nowadays, such as spectral clustering [Ng et al.,
2002; Xu and Ke, 2016al, pagerank computation, dimension-
ality reduction [Fan er al., 2018], and so on. Classic solvers
from numerical algebra are power methods and Lanczos al-
gorithms [Golub and Van Loan, 1996], based on which there
has been a recent surge of interest in developing varieties
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of solvers [Hardt and Price, 2014; Musco and Musco, 2015;
Garber et al., 2016; Balcan et al., 2016]. However, most of
them are purely theoretic. In this work, we focus on a gen-
eral and practical solver [Wen and Yin, 2013], namely gradi-
ent descent from the optimization perspective, for the leading
eigenvector computation:
min  f(x) = —x' Ax, (D)
x€ER™:||x[|2=1
where A € R™*"™ and AT = A. Gradient descent is the
most widely used method in optimization for machine learn-
ing [Sra et al., 2011], due to its effectiveness, simplicity, and
provable theoretical guarantees. It has also found successful
applications to eigenvector computation [Absil ef al., 2008;
Wen and Yin, 2013; Pitaval et al., 2015; Liu et al., 2016;
Zhang et al., 2016; Xu and Ke, 2016b]. In particular, it
was demonstrated to have comparable performance and bet-
ter robustness in comparison to Lanczos algorithms with ex-
tensive experimental studies [Wen and Yin, 2013]. Despite
being practical, however, its convergence analysis remains
unsatisfied thus far. Pitaval et al. proved its global conver-
gence but the rate was unknown [Pitaval et al., 2015]. Un-
der a large positive eigengap assumption a linear but local
rate was achieved in [Xu and Ke, 2016b; Liu et al., 2016;
Xu et al., 20171, while a gap-free rate O(%) was given by
[Arora et al., 2013; Shamir, 2016a]. Very recently, the rate
for the case of an arbitrary eigengap has been improved to
O(1) [Xu and Gao, 2018]. As shown in our experimental
study, however, certain cases of zero eigengap are signifi-
cantly underestimated and the quadratic dependence on the
initial iterate is not true.

In this paper, we try to present a systematic convergence
analysis of the gradient descent solver for Problem (1) to ad-
dress all the issues mentioned above, and make it from a view
of Riemannian optimization. The sphere constraint in (1) ac-
tually represents a Riemannian manifold, called the sphere
manifold, which is a special case of the Stiefel manifold de-
fined by the orthogonality constraint [Absil et al., 2008]. In
this sense, Problem (1) is geodesically non-convex. A gradi-
ent descent step in Riemannian optimization takes the follow-
ing form:

Xt+1 = R(Xt, _at+1vf(xt))7 )

where V f(x;) denotes the Riemannian gradient representing
the steepest ascent direction in the equidimensional Euclidean
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space tangent to the manifold at x¢, o441 > 0 represents the
step-size, and R(x;, -) represents the retraction map from the
tangent space at x; to the manifold. In particular, in order to
measure the progress of the iterate x; to one of globally opti-
mal solutions, we use for analysis a novel potential function
defined by the log principal angle between x; and, the space
of such solutions rather than only one of such solutions as in
previous work [Shamir, 2015]. Tt turns out that this poten-
tial function boasts the advantage of establishing the global
convergence and improving the dependence on the initial it-
erate. We present a novel general analysis that depends on
the generalized eigengap, A, = A, — A\p+1, where \; repre-
sents the i-th largest eigenvalue of the given matrix A and p
is the multiplicity of A\;. A, always remains positive without
loss of generality. This unifies all the cases of the conven-
tionally considered eigengap A; = A\ — Ag, ie, Ay > 0
and A; = 0. When A, is as small as the target precision
parameter e, the resulting theoretic complexity is high. How-
ever, another unified analysis regardless of the value of A,
we present subsequently shows that this can be significantly
reduced. Specifically, we make the following contributions:

e A global convergence rate O(min{({-)%log %, 1}) of
the Riemannian gradient descent solver is achieved for
Problem (1). The rate is linear at O((%Flog 1) if
(2-)? = O(1), otherwise sub-linear at O(L). This

shows that even if Ay = 0, it is possible as well to con-
verge linearly.

e The quadratic dependence of the convergence on the ini-
tial iterate is improved to the logarithmic one.

e Theoretical properties, especially those related to A; =
0, are empirically verified on synthetic or real data.

2 Related Work

Due to the space limit, we only discuss those gradient based
solvers and refer readers to the cited references for more
literature work. There are two categories of such solvers:
projected gradient descent and Riemannian gradient descent.
Arora et al. proposed the stochastic power method without
theoretical guarantees [Arora et al., 2012], which actually is
equivalent to the projected stochastic gradient descent for the
principal component analysis (PCA) problem. It was named
after the power method because the projected (determinis-
tic) gradient descent for PCA will degenerate to the power
method when the step-size goes to infinity. This method
was subsequently extended via convex relaxation and proved
to have a global, gap-free, and sub-linear convergence rate
O(%) [Arora er al., 2013]. Balsubramani et al. demonstrated
that Oja’s algorithm converges at a global, gap-dependent,
and sub-linear rate O(1) via the martingale analysis [Balsub-
ramani et al., 2013]. Note that the gap dependence refers to
the dependence on A; in most of existing analyses. More re-
cently, stochastic gradient descent (SGD) for PCA was shown
to converge either at a global, gap-dependent, and sub-linear
rate O( ) or at a global, gap-free, and sub-linear rate O(Z )
[Shamir, 2016al. Shamir proposed the projected SGD with
variance reduction for PCA, called VR-PCA, and proved its
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global or local, gap-dependent, and linear rate O(ﬁ log %)
1

[Shamir, 2015; 2016b].

More relevant to our work is an increasing body of Rieman-
nian gradient descent methods. It is worth noting that general
Riemannian optimization methods are applicable to Problem
(1), including Riemannian gradient descent [Edelman et al.,
1999; Absil et al., 2008; Wen and Yin, 2013], Riemannian
SGD [Bonnabel, 2013] and Riemannian SVRG [Zhang et
al., 2016]. Notably, Wen et al. demonstrated that curvilin-
ear search, which actually performs Riemannian gradient de-
scent with Cayley transformation based retraction, achieves
a comparable performance and is more robust compared to
Lanczos algorithms [Wen and Yin, 2013]. However, the anal-
ysis only, at most, achieves either a global, gap-free, and
sub-linear convergence to critical points [Absil et al., 2008;
Wen and Yin, 2013; Bonnabel, 2013; Zhang e al., 2016] or
a local, gap-dependent, and linear convergence to globally
optimal solutions [Absil er al., 2008], due to the geodesic
non-convexity. As we know, each eigenvector corresponds
to a critical point of the objective function in Problem (1)
and thus they fail to meet the global optimality in theory.
On the other hand, specifically, gradient descent for low-rank
approximation was proven to converge globally but without
any rate provided in [Pitaval ef al., 2015]. Xu et al. estab-
lished the local, gap-dependent, and linear rate O(Ai% log %)

of the Riemannian SVRG solver [Xu and Ke, 2016b; Xu et
al., 2017]. By proving an explicit Lojasiewicz exponent at
% in [Liu ef al., 2016], Liu et al. demonstrated a local, gap-
dependent, and linear convergence of the Riemannian line-
search methods for the quadratic problem under the orthog-
onality constraint, which includes Problem (1) as a special
case. In addition, despite the motivation from optimization on
Riemannian quotient manifolds, alecton as a SGD solver for
streaming low-rank matrix approximation ends up with an up-
date like the stochastic power method, and achieves a global,
gap-dependent, and sub-linear rate O( <%~ ) via the martingale

AZe
analysis [Sa et al., 2015].

Although gradient based methods for Problem (1) work
well in practice [Arora et al., 2012; Wen and Yin, 2013], re-
lated theory is far behind. Despite great interest in develop-
ing stochastic solvers, surprisingly, there even does not exist a
thorough convergence analysis for the deterministic gradient
descent solver as is achieved in this work, which we believe
will be an important basis for developing stochastic versions
with better theoretical guarantees than the state-of-the-art.

3 Analysis of Gradient Descent

We now conduct the convergence analysis of the Riemannian
gradient descent solver for Problem (1), starting from intro-
ducing necessary notions and notations. Main results are then
stated in theorems and followed by a few important support-
ing lemmas. The section ends with the proofs of the theorem
and lemmas.

3.1 Notions and Notations

Recall that given a real symmetric matrix A € R™*"™, its i-th
largest eigenvalue is denoted as A;, i.e., Ay > -+ > A, and
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the corresponding eigenvector denoted as v;. Define eigen-
gap A; = \;— ;41 and let p be the multiplicity of A; with the
associated eigenspace denoted as V,, = [vq,---,Vp]. One
then should have A; = 0forj =1,--- ,p—1and A, >0
without loss of generality, i.e., p < n, because f(x) will be a
constant function if p = n.

Instead of focusing on a specific case of the eigengap like
A; > 0, we target a general framework admitting all the
cases of A;. To this end, we have to rely on A, and V,,
where we follow [Xu and Gao, 2018] to term A, as the gen-
eralized eigengap. That is, it suffices for us to show the con-
vergence to one of globally optimal solutions, i.e., a unit vec-
tor v € span(V,,), instead of a specific solution, e.g., vi. We
thus define the following potential function:

P(x¢) = —2log |V, X2, 3)

where actually ||V x,[|2 = cosf(x;, V},) representing the
cosine of the principal angle between the current iterate x;
and the space of globally optimal solutions. As HV; Xl <
1, it is easy to see that 1)(x;) > 0 and x; converges to a unit
vector in span(V,) when ¥ (x;) goes to 0.

In addition, we take the normalization retraction, i.e.,
R(x,&) = ﬁ Thus, the update in (2) can be explic-
itly written as

Xt — ozH_l@f(xt)
% — a1 VI (xe)ll2”

where the Riemannian gradient for Problem (1) is V f (x) =
—(I—-xx")Ax.

3.2 Main Results

Theorem 1. [f the initial xg = ﬁ where entries of y are

“

Xt+1 =

i.i.d. standard normal samples, i.e., y; ~ N(0,1), then the

Rimannian gradient descent solver for Problem (1) will con-

verge to certain unit vector v € span(Vy) at a global rate

O(rnin{(g—l)2 log %, % ) with high probability. Specifically,
D

forany e € (0, 1),

AP
2X7(1+ad,)
will converge, ie., W(xr) < € after T =
O((2—1)2 log @) iterations, with probability at least

»

1 —vP, where v =01if p =1 otherwise v € (0,1);

I) the solver with constant step-sizes o <

II) the solver with diminishing step-sizes oy = %th for suf-
ficiently large constants c¢,7 > 0 will converge, i.e.,
U(xr) < € after T = O(L) iterations, with proba-
bility at least 1 — vP, where v = 0 if p = 1 otherwise
v e (0,1).

As the convergence holds with high probability for any ran-
dom initial iterate, it is global by convention. Contrastingly,
the success probability given in [Shamir, 2016a] is Q(%) To
prove the theorem, we need a few important lemmas whose
proofs are deferred to after that of Theorem 1.

Lemma2. \; —x' Ax > A,sin®0(x,V,).

Lemma 3. ||x; — o, 1 Vf(x)|3 < 1+ o (A +
A2)sin? 0(x;, V).
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Lemmad. — 05 > lflogl(lfx) forany x € (0,1), and

T <log(l+ ) <z foranyxz > —1.

Lemma 5. ||V xqllo > 0 with probability 1 if p = 1, other-
wise with probability at least 1 — VP, where 0 < v < lisa
constant about V; y.

Proof of Theorem 1.
Proof. 1) We start from expanding ¥ (x;41) using (3)-(4):
(xep1) = —2log|[Vy xe2
= —2log ||V, (xt — i1 VF(x2)) |2
+2log [|x; — r 11V f(x1)]|2-
To proceed, we need the full eigen-decomposition of A, i.e.,
A =\V, V) +Vodiag(Apis, -, M) (V)T ()

where sz represents the orthogonal complement of V.
Plugging in this decomposition to V; A, one then gets

V) Vix) = V](I-xx/)Ax
VJAxt — (x:Axt)V;xt
= (M — x;rAxt)V;xt.
We now can write
Y(xig1) = () = 2log(l+ @ (M — x Axy))
+2log [x; — ar 1V f (1) 2,
where we have

—2log(1 + a1 (M — x; Axy))

< —2log(1+ ap14,sin? 0(x, V,))  (by Lemma 2)
2
< - 2at+1Apsm. g(xt,Vp) (by Lemma 4)
14+ a1, 8in® 0(x, V)
200410, . o
< ——————sin“ 0(x¢, V),
- 1+at+1Ap Hl (Xt p)
and

2log [[x; — a1 VF(xe)|2
log(1 + aj (A} + A3) sin® 0(x¢, V,,))(by Lemma 3)
af 1 (Af +A3)sin?0(x;, V,) (by Lemma 4)

207 1 AT sin® 0(x, V).

ININCIA

One thus can arrive at

2at+1A .
P(xer1) < Y(xe) — m sin® 0(x;, V)

+2a7, 1\ sin? 0(x;, V) (6)

24, 2
= —(—— -2 A
Y(x¢) (1 T ol Q41 A7)
sin 0(x;, V)
‘Oét-l,-lw . w(xt).
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Note that by Lemma 4,
sin? 0(x;, V) sin? 0(x;, V)
Y(xt) —log(1 —sin® 6(x, V)
1
1 —log(1 — sin? O(x;, V)
1
= — . 7
1+ 9(xy) @
f Hiﬁ — 20[154_1)\% > 0, i.e., Q41 < m,
then ¥ (x¢41) < ¥(x;) and
A Q41
< _ P
w(xt-‘rl) ~ T/}(Xt) 1 +at+1Ap 1 +w(xt)¢(xt)
A Q41
= 1— P X 8
( 1+at+1Ap1+¢(Xt) )7/)( t) ( )
A o
< (1- P , 9
>~ ( 1+06Ap 1+w<xo))w(xt) ( )
if ay4+1 = . We thus have
A, «
< 1— P t
A «
< —t P =S
= exp{ 1 + OéAp 1 + ¢(XO) }/(/)(X())
If=<eie,
¥(xg) < 400 (10)
and
7o (LEad) (Lt 0(x0)) | 0lox0)
al, €
we must have 1 (x7) < €. Plugging in o < % to T,
we can write
1 (o)
T = —— log ——= 11
O(aAp 8 € ) an
A X
= O((5)log L) (12)
» €

Finally note that (10) is equivalent to ||V} xql|2 > 0, which
occurs with probability 1 if p = 1, otherwise at least 1 — v/
for certain constant v € (0, 1), by Lemma 5.

II) We now restart from (6). Plugging in (7) to (6), we can
write

20018y . o
X < X)) — ——————sin“ (x4, V
Y(xer1) < (xe) T+ arl, (x¢, Vp)
+2a7,  Af sin® 0(x¢, V)
20018, P(x4)
< Xy) — +2X3a2, ;.
w( t) 1+O[t+1A 1+77Z}(Xf) 1 tJrl
Let at41 = +t where ¢, 7 > 0 are constants. It is easy to

see that for sufficiently small c 1, equivalently, sufficiently
large 7, we have 1(x¢11) < ¥ (x¢). Thus, one gets
QOéH_l Ap 1

Ylxi) < (1= 777 SA, 1+ 1(x0)

Ji(xe) + 2>‘%04?+1-
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Denoting a = 71?5& e wl(x()) and b = 2¢2)\?, one can write
Y(xep1) < (1= = )(xe) + b
X — X .
e A CE

As long as 9)(x¢) < +o0 and a > 1, by Lemma D.1 in [Bal-
subramani et al., 2013], the recursion of the above inequality
will yield

20+1p 1
a—1t+7+1

We thus have ¢(x7) = O(7), i.e., T = O(2). The proof
completes by noting that w%xo < 400 occurs with high

probability similarly and @ > 1 can be guaranteed by choos-
ing sufficiently large constants c, 7. O

T+1

P(x) < (m

)9 (x0) +

Remark We make a few remarks on our proof. Equa-
tion (8) shows that the convergence is at least linear because
¥(x¢1+1) < 1(x¢) and thus the contraction factor keep de-
creasing for constant step-sizes. In Equation (9), o1 is not
necessarily constant. In fact, the results will hold for any step-

size scheme as long as a;411 < m. This pro-
vides theoretical support for us to flexibly choose step-size
schemes. Equation (11) shows that larger step-sizes in a safe
range will lead to faster convergence. Moreover, we can see
from Equation (12) that the convergence actually depends on
the relative generalized eigengap A— This seems to be ex-
plicitly shown for the first time for the considered solver. As
mentioned in Section 1, the proof provides two general anal-
ysis frameworks. The generality lies in that both rates hold
for any value of the positive A,. The combination of the re-
sults from two kinds of analysis comprehensively portrays the
convergence behaviors of the solver. For both kinds of analy-
sis, the convergence has only logarithmic dependence on the
initial iterate via 1(x) = —2log |V, Xol|2.

Proof of Lemma 2

Proof. Plugging in (5) to x ' Ax, we get
xAx

MV, x5+ %"V, diag(Aps, -
MV x5+ A Vi (V) Tx
A1 HV;XHS + )‘p-HXT (I- VpV;)X
MV I3+ Xpar (1= [V x13)

A1 cos? 0(x, V) + Ay sin? 0(x, V).

) (VE) Tx

A

Thus, one arrives at

A —xAx

A1 — Apcos? 0(x, V) — A\pp1sin? 0(x, V)
= (/\1 — )\p+1) sin2 Q(X, Vp)

v
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Proof of Lemma 3

Proof.
e — a1V f (x0)]13
= (x¢ — a1 VI(x)) T (%6 — a1 VF(x2))
= 1+ai,|Vix)l3,
where, plugging in the following form of A’s full eigen-

decomposition,
A = \vv! + v diag(hg, -
for any unit vector v € span(V,), we get
N T
IVfx)3 = lIx1Ax]3

[Mix]vv'x+ x| v, diag(\g, - -

a)‘n)VIa

7>‘n)VIXH§

2l vv x| + 2Ty ding(an - AV T2
T T T T

207 [Ix [ v[3lv T x5 + 223 x v [5]v x5

223 |x [ vI[3 + 223 ]| v [ x|[3

ININCIA

)\ v XJ_XJ_V—|—2)\2X VJ_VJ_X
= )\1 (I — )v + 2)\2
= 2\ + /\g)(l — (vTx)?).

Since the above inequality holds for any unit vector v €
span(V,), we have

[V f(xe)][3 < 2(A\] +A3) min

min
[[vll2=1véEspan(Vy)

TI—-vvhx

(1—(vTx)?).

By the definition of principal angles [Golub and Van Loan,
19961,

1=V, (1— (v x)?).

x||? = min min
[[v]l2=1vespan(Vy)

One thus has

IV f(xe)]3 < 2007 + A2) sin® 0(x, V).

Proof of Lemma 4

Proof. 1) For any z, it holds that 1 + = < e”. Then for any
x> —1,

log(l+z) < z.
Ifoneletsy = 1+ z in the above 1nequa11ty, then 10
y — 1. Further letting y = ; yields log z > —; +1=
Last, setting z = 1 + x gives us

log(1 > .
og(l+w) 2 ;- —
2) Note that log(1 + @) = Y7 (—1)" 7 for [z| < 1. One
then can write for z € (0, 1) that
x B T
— _ - o i (—m)itt
log(1 =) —y22 (-1
B 1 1
Z;}io ij-zl 1+ Zl 1 L+1
1 1
>

1+Zz 1 K3 - 17
= 1/(1 -1log(1 — x)).

S (i e
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Proof of Lemma 5

Proof. Let opmin(+) and opax () be the smallest and largest
singular value of a matrix, respectively. We then have

||VTX o = ||V;TYH2 _ Umin(V;}’)
0l12 — - )
P lyll2 Tmax(Y)

where omax(y) > 0 almost surely. Since entries of y are
i.i.d. samples from N (0, 1) and V,, is orthonormal, entries of
V;,r y are i.i.d. standard normal samples as well. By Equation

(3.2) in [Rudelson and Vershynin, 2010, opmin(V{y) > 0
almost surely (i.e., with probability 1). By Theorem 3.3 in
[Rudelson and Vershynin, 2010], we have amin(V; y) >0
with probability at least 1 —27, where 0 < v < 1is a constant
about V 'y, O

4 Experiments

Theoretical properties of the considered solver were already
observed and verified empirically in, e.g., [Wen and Yin,
2013; Liu et al., 2016], albeit without thorough theoretical
support. For the sake of completeness, we reproduce a few
experiments on both synthetic and real data here, with new
testing on matrices of zero eigengap. All the ground truth in-
formation, e.g., vy or V,,, is obtained by matlab’s eigs func-
tion for the purpose of benchmarking.

The advantage of using synthetic data mainly lies in the
control of the eigengap. We set n = 1000 and follow
[Shamir, 2015] to generate data using the full eigenvalue
decomposition A = UXUT. U is an orthogonal matrix
and is set the same way as xo. X = diag(X;,Xs), where

3 = dlag(lq“ e @) with g; ~ N(0,1) and r being
the order of 21 In addition, the following two settings are
considered:

e p =1 3% = diag(l,1 —n,1—-11n1—- 1291 —
1.3n,1 — 1.4n), and then ﬁ—f

{0.2,0.5,0.8}.
o p=3:X; =diag(1,1,1), and then

=17 > 0, where n €

‘gl‘ > O.

For the conventionally considered case that A; > 0, two
types of convergence curves, in terms of the relative function

% and the commonly used potential function

sin? (x;, v1), respectively, are shown in Figure 2 for differ-
ent eigengap values. Global linear convergence of the solver
is observed, and a larger eigengap yields faster convergence.
It agrees with the theory. The convergence trends remain
greatly consistent for the two types, which holds in the rest
of experiments as well.

For the case that A; = 0 and a1 = T%rt (see Remark),
different pairs of step-size parameters are tested in Figure
1. As described by Theorem 1, the convergence reported
in Figures 1(a)-1(b) is global linear, rather than sub-linear
by [Xu and Gao, 2018], and large step-sizes result in faster
convergence as well. As it is unknown which leading eigen-
vector x; will converge to finally, it is necessary for us to
change the potential from the commonly used sin? 6(x;, v1)
tosin? 0(x;, V p) in this case. As demonstrated in Figure 1(c),

=1-

€rror
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synthetic: A,=0

——c=12.87, 7=10
c=14.48, 7=10
—~-c=16.09, 7=10

)- 1)) /f(v,)

018 . . . . .
0 5 10 15 20 25 30
# iterations

(a) Relative function error

synthetic: A, =0

—+-c=12.87, 7=10
c=14.48, 7=10
—-c=16.09, =10

0 5 10 15 20 25 30
# iterations

(b) Potential sin® 0(x, V)
Figure 1: Synthetic data: Ay =0

synthetic: A,=0

—+—c=12.87, 7=10
c=14.48, 7=10
—-c=16.09, 7=10

10 15 20 25 30
# iterations

(¢) Improper potential sin” 6(x;, v1)

synthetic: A,>0

T

~

B

- A=0.20, a;=4.96
A=0.50, =141
o £=080, a=115| T

s o = » P 3‘0
# iterations
(a) Relative function error

synthetic: A,>0
B

102 \
\\
o ——A=0.20, =196

e
A=0.50, =141 \\

—-A=0.80, a=1.15

s 10 15 2 2 30
# iterations

(b) Potential sin? 6(x;, v1)

Figure 2: Synthetic data: Ay > 0

sin? @(x;, v1) is unable to converge, which implies that x,
has converged to another leading eigenvector in span(V).

We run two implementations of the solver on a real sym-
metric matrix A, named Schenk', which is of size 10, 728 x
10, 728 with 85, 000 nonzero entries. The implementation is
characterized by the combination of the retraction and step-
size scheme used. Curvilinear search was proposed in [Wen
and Yin, 2013] which uses “Cayley transform + Barzilai-
Borwein step-size”. The other implementation uses “normal-
ization + constant step-size”. They were fed with the same
random initial iterate. The results are reported in Figure 3,
which reflect the global linear convergence as well and mean-
while shows that different step-size schemes matter in prac-
tice.

'www.cise.ufl.edu/research/sparse/matrices/

real: Schenk

\ —+Cayley + Barzilai-Borwein
2 W
10 \\Y normalization + constant

s m " ) P ©
# iterations
(a) Relative function error

real: Schenk

X —+—Cayley + Barzilai-Borwein
102 X normalization + constant

# iterations
(b) Potential sin® 0(x, v1)

Figure 3: Real data.

5 Conclusion

We presented a simple yet comprehensive convergence anal-
ysis of the Riemannian gradient descent solver for the lead-
ing eigenvector computation. Two kinds of general analysis
jointly established the true global rate of convergence to one
of the leading eigenvectors. The generalized eigengap A,
eliminates the limitation of the commonly considered eigen-
gap A;. When A, is large, the convergence is linear, which
is described by the first general analysis. If it is as small as e,
the second general analysis shows that it is sub-linear O(%)

rather than O(e%) It was also shown that the convergence
only logarithmically depends on the initial iterate. The key to
these breakthroughs made for the considered solver is to use
for analysis the log principal angle between iterates and the
space of the leading eigenvectors. Along this work, there are
a few interesting future research directions. For example, it is

unknown if the results can be extended to £ > 1 for the top-
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k eigenspace computation without deflation. In particular, it
would be more attractive to practitioners if the analysis can be
translated to the case of the stochastic gradient descent solver,
which is well worth further investigation. Also, although the
rate is optimal for the considered solver, it would be of great
interest to develop faster solvers of this type to match the op-
timal rate for the problem, e.g., those of Lanczos algorithms.
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