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Abstract—In this paper, we are interested in determining the
cumulative distribution function of the sum of α − µ random
variables in the setting of rare event simulations. To this end,
we present an efficient importance sampling estimator. The main
result of this work is the bounded relative error property of the
proposed estimator. This result is used to accurately estimate the
outage probability of multibranch maximum ratio combining and
equal gain diversity receivers over α−µ fading channels. Selected
numerical simulations are discussed to show the robustness of our
estimator compared to naive Monte Carlo.

Index Terms—α − µ, importance sampling, Monte Carlo,
bounded relative error, outage probability, diversity techniques.

I. INTRODUCTION

The α − µ distribution [1] is a flexible distribution that
includes many popular fading models such as Weibull or
Nakagami-m as special cases. It has the same functional form
as the well-known generalized Gamma (GG) distribution [2].
According to [1], the α−µ distribution can be used to model
the small-scale variation of the fading signal in non-line-of
sight wireless radio-frequency channels. The reader is referred
to [1] for the physical interpretation of the α − µ fading
model and to [2] for the mathematical formulation of the GG
distribution.

Diversity techniques are often used to reduce the fading
caused by multipath transmission channel [3, Chap. 9]. They
rely on receiving multiple transmitted signal replicas affected
by independent fadings. When some of these techniques are
considered, one of the main challenges in evaluating the
system performance is that the sum of the fading envelopes or
powers is involved. Although the study of diversity receivers
for many important fading channels received a great deal
of attention, only few works investigated the performance of
diversity receivers over α− µ fading channels. This amounts
to finding the distribution of the sum of α− µ variates. Stacy
managed in his seminal work [2] to derive an infinite series
representation of the cumulative distribution function (CDF)
of the sum of GG variates. However, the author points out that
such representation presents certain computational challenges.
Most of the other attempts fail to provide a closed-form
expression for this cumbersome problem and only propose to
tackle it by deriving approximate solutions that usually involve
a truncation error. In [4], Piboongungon et al. investigated
the average symbol error rate (SER) performance of both

maximum ratio combining (MRC) and equal gain combining
(EGC) receivers over GG fading channels. The authors used
the moment generation function (MGF)-based approach [3]
in the case of MRC receivers and the characteristic function
(CHF)-based approach [5] for the EGC receivers. In [6], Sagias
et al. proposed an upper bound for the sum of GG random
variables (RVs) for the purpose of studying the performance
of EGC receivers. First, they derived the expression of the
CDF of the product of GG variates. Then, by exploiting the
well-known inequality between the arithmetic and geometric
means, the authors were able to provide an upper bound for
the problem of the sum. Later on, Da Costa et al. presented a
highly accurate closed-form approximations to the probability
density function (PDF) and CDF of the sum of independent
identically distributed (i.i.d.) α− µ variates [7]. In this work,
the authors approximate the sum of i.i.d α−µ RVs by one α−µ
RV. To determine the parameters α and µ of the approximate
distribution, a moment-based method was introduced. This
result was used to approximate the outage probability as
well as the average bit error probability for EGC and MRC
diversity techniques. Although numerical simulations show
a good agreement between the approximate and the exact
solution, the proposed approach is restricted to the i.i.d case.
Recently, closed-form expressions for the SER of EGC and
MRC receivers over α− µ fading were derived in [8]. Using
the Mellin transform, El Ayadi et al. expressed the SER in
terms of the Fox H-functions.

In summary, determining an exact expression for the outage
probability is a challenging task in many cases, and to the
best of our knowledge, no closed-form results for the outage
probability of multibranch diversity receivers operating over
α − µ fading channels were derived in the literature. In
this case, the only way to study the system performance is
by means of numerical simulations, e.g. using Monte Carlo
(MC) method. Due to the simplicity of its implementation,
MC can be seen as a powerful technique when the prob-
lem is too complex and difficult to be solved analytically.
However, it proves its inefficiency to estimate a rare event
probability, i.e. probability lower than 10−8, since too many
samples are needed to guarantee a good quality estimator.
To solve this problem, many accelerated simulation methods
have been proposed in the literature. Recently, some efforts
have been made to propose efficient estimators to evaluate



the outage probability with diversity techniques for wireless
communication systems. For instance, the authors in [9] have
addressed this problem using two unified importance sampling
(IS) schemes. However, the work was limited to the i.i.d
case. Later on, the authors proposed in [10] a mean-shift IS
scheme that evaluates the outage probability of multibranch
MRC diversity receivers over Gamma-Gamma fading channels
in both the i.i.d and independent not necessarily identically
distributed (i.n.i.d). While the approach proposed in [10] does
not necessarily work with all types of fading distributions, it
can work with the types of fading distributions for which one
can identify a parameter in the functional form of the PDF that
has an effect on the mean (by shifting it towards the origin) or
on the variance (by scaling it). For instance, we show in this
paper, how this approach can be used to estimate accurately
the left tail probability of sum of i.n.i.d α − µ variates, a
problem for which no exact solution has been proposed so
far to our best knowledge. Interestingly enough, we were also
able to prove that the bounded relative error property of the
IS estimator still holds in this kind of problem, resulting in a
significant reduction in terms of number of simulation runs.

The rest of this paper is organized as follows. First, we
describe the problem setting in Section II. Then, we give a
brief description of the IS method in Section III. In section
IV, we present our approach to estimate the outage probability
for diversity receivers over α−µ fading channels as well as the
main theorem proving the efficiency of the proposed method
in the i.n.i.d case. Prior to concluding, we show, in Section V,
some selected simulation results related to the evaluation of
the outage probability of multibranch diversity receivers over
α − µ fading channels. We also compare the computational
efficiency of our approach compared to naive MC.

II. SYSTEM MODEL

The instantaneous signal-to-noise ratio (SNR) expression at
the diversity receiver, is given by [11]

γend =
Es

N0

√
L1−p+q

(
L∑
`=1

Xp
`

)q
, (1)

where (p, q) = (1, 2) for the EGC case and (p, q) = (2, 1)
for the MRC case. The ratio Es

N0
is the SNR per symbol at

the transmitter, L is the number of diversity branches, and
{X`}L`=1 are the channel gains which are modeled as i.n.i.d
α−µ RVs with parameters (α`, µ`,Ω`), ` = 1, . . . , L, whose
PDFs are given by [1, Eq. (1)]

fX`(x) =
α`µ

µ`
` x

α`µ`−1

Ω`
µ`Γ(µ`)

exp

(
−µ`

Ω`
xα`
)
, x ≥ 0,

where α` and µ` are two positive real numbers that represent
the distribution shape parameters, Γ(·) is the Gamma function
[12, Sec. (8.31)], and Ω` is linked to the mean of X` as

E [X`] =

(
Ω`
µ`

) 1
α`

Γ
(
µ` + 1

α`

)
Γ(µ`)

, ` = 1, . . . , L. (2)

The α − µ (or GG) distribution is a generic model that
covers Weibull, Gamma, Nakagami-m and other distributions
as special cases. Table I summarizes these special cases when
one or more of the GG distribution parameters is set equal to
specific values.

TABLE I
SPECIAL CASES OF THE α− µ DISTRIBUTION.

Distribution α µ Ω

Chi-squared 1 ∈ N \ {0} 2m
Erlang 1 ∈ N \ {0} −
Exponential 1 1 −
Rayleigh 2 1 −
One-sided Gaussian 2 1

2
−

Gamma 1 − −
Nakagami-m 2 − −
Weibull − 1 −

The quality of a communication system can be evaluated
by computing the outage probability. This metric is a function
of the transmission technique used, but also the channel on
which the signal is transmitted. More specifically, for a given
threshold γth, the outage probability P is defined as the
probability that the instantaneous SNR drops below γth, i.e.

P = P(γend ≤ γth) = P

(
L∑
`=1

Xp
` ≤

(
N0

Es

√
L1−p+qγth

) 1
q

)
.

(3)

In the remainder of the paper, we will focus on the EGC case
and we will show how the approach can be easily extended
to the MRC case. Thereby, unless stated otherwise, P will be
given by

P = P

(
SL =

L∑
`=1

X` ≤ γ0 =

(
N0L

Es
γth

) 1
2

)
. (4)

We can see that our goal of estimating the outage probability
reduces to finding the CDF of the sum of α − µ RVs. In
particular, we are interested in the case where the outage
probability requirements are very low, i.e. in the range of
10−6 to 10−10. For instance, this is common in areas such
as wireless back-hauling using free space optics (FSO) [13]
and millimeter wave [14].

III. IMPORTANCE SAMPLING

The outage probability is given by P = E
[
1(SL≤γ0)

]
,

where E [·] is the expectation with respect to (w.r.t) the
probability measure under which the PDF of X` is fX`(·),
` = 1, 2, . . . , L. The naive MC estimator of (4) is thus

P̂MC =
1

N

N∑
i=1

1(SL(ωi)≤γ0), (5)

where N is the number of MC samples, 1(·) is the indicator
function, and {SL(ωi)}Ni=1 are i.i.d. realizations of the RV
SL. The sequence {X`(ωi)}L`=1 is sampled independently
according to the PDFs (2) for each realization of SL.



By introducing new biased densities {f∗X`(·)}
L
`=1, we can

re-write P = E∗
[
1(SL≤γ0)L(X1, . . . , XL)

]
where E∗ [·] de-

notes the expectation w.r.t the probability measure under which
the PDF of X` is f∗X`(·), ` = 1, 2, . . . , L.
The likelihood ratio L(X1, . . . , XL) is defined as

L(X1, . . . , XL) =

L∏
`=1

fX`(X`)

f∗X`(X`)
. (6)

In this case, the IS estimator of (4) is

P̂IS =
1

N∗

N∗∑
i=1

1(SL(ωi)≤γ0)L(X1(ωi), . . . , XL(ωi)), (7)

where for each realization i = 1, . . . , N , the sequence
{X`(ωi)}L`=1 are sampled independently according to the
biased PDFs {f∗` (·)}L`=1.

To assess the goodness of an IS approach, many criteria has
been introduced in previous works (see, for instance, [15] and
references therein) among them we find the bounded relative
error, one of the desirable properties in the field of rare events
algorithms.

IV. PROPOSED APPROACH

In this section, a clever choice of the biased PDF is
introduced. In fact, we propose to introduce the parameter
Ω∗` = Ω` − Ω0,` in the new biased PDF where Ω0,` satisfies
0 ≤ Ω0,` < Ω` and as γ0 → 0, it approaches Ω`, ` = 1, . . . , L.
This choice is justified by the fact that the biased PDF belongs
to the same family as the original PDF so the sampling from
it should be simple. In this case, the biased PDF is

f∗X`(x) =
α`µ

µ`
` x

α`µ`−1

(Ω` − Ω0,`)µ`Γ(µ`)
exp

(
− µ`x

α`

Ω` − Ω0,`

)
, x ≥ 0,

` = 1, . . . , L. (8)

For the selection of the parameters {Ω0,`}L`=1, we require that
the equation E∗[SL] = γ0 holds in order to encourage the
sampling from the region of interest {SL ≤ γ0}. Since this
equation has infinitely many solutions, we choose a particular
solution of the following form

Ω0,` = Ω` − β`γα`0 ,∀` = 1, . . . L, (9)

where β` =

[
µ`Γ(µ`)

Γ(µ`+
1
α`

)L

]α`
.

The following theorem characterizes the efficiency of our
proposed IS estimator.

Theorem 1. Let {X`}L`=1 be a sequence of i.n.i.d α−µ RVs
and f∗X`(·) be defined as in (8) where Ω0,` is given by (9).
Then, the IS estimator (7) has a bounded relative error, i.e.

lim sup
γ0→0

E∗
[
1(SL≤γ0)L2(X1, . . . , XL)

]
P 2

< +∞. (10)

provided that min
1≤`≤L

α` > 1.

Proof: See Appendix A.

Remark 1. To accurately estimate the probability P , naive
MC requires a number of samples of the order of O(P−1).
However, for the same accuracy requirement and when the IS
estimator is endowed with the bounded relative error property,
the number of simulation runs N required remains bounded
independently of how small the outage probability P is.

Remark 2. In this remark, we show briefly how our approach
is easily extendable to the MRC case. First, we recall the
expression of the outage probability in this case

P = P

(
L∑
`=1

X2
` ≤ η0 =

N0

Es
γth

)
. (11)

where X2
` is also a α− µ RV with parameters (α`2 , µ`,Ω`).

As we can see from (11), the problem is again reduced to
finding the CDF of the sum of α − µ variates. Using the
approach described in this section, we can easily evaluate the
outage probability given by (11) for the MRC scenario.

To compare the efficiency of IS to naive MC, we need
to compare the number of simulation runs required by each
method to achieve the same accuracy requirement ε. To this
end, we introduce the relative error of naive MC simulation

ε =
C

P

√
P (1− P )

N
, (12)

where C = 1.96 which corresponds to a 95% confidence
interval. Similarly, we define the relative error of the IS method

ε∗ =
C

P

√
V∗[1(SL≤γ0)L(X1, . . . , XL)]

N
. (13)

Let ε0 be a fixed accuracy requirement. Using Eqs. (12) and
(13), we can determine the number of samples needed by naive
MC and IS simulations respectively

N = P (1− P )

(
C

Pε0

)2

, (14)

N∗ = V∗[1(SL≤γ0)L(X1, . . . , XL)]

(
C

Pε0

)2

. (15)

V. SIMULATION RESULTS

This section presents the numerical simulations regarding
the estimation of the outage probability using both naive
MC and our proposed IS method. The accuracy, as well as
the efficiency, of both methods is analyzed. Table II details
the fading parameters (α`, µ`) used in this section for two
scenarios L = 4 and L = 6. In Fig. 1, we plot the outage
probability P against the SNR threshold γth using naive MC
(blue curve) and our proposed IS approach (red curve). The
solid line represents the EGC scenario while the dashed line
is for the MRC case. Similar conclusions can be drawn for
both type of diversity. In fact, we notice that for the range of
probabilities between 10−1 and 10−4, both methods match for
the two cases. However, as the probability becomes smaller,
naive MC fails to estimate the outage probability with the
same accuracy as our method. In fact, we can see that for
L = 6, naive MC with N = 107 samples is unable to



estimate accurately the outage probabilities below 10−6 while
the proposed IS scheme can estimate P even with a small
number of samples N∗ = 104.

TABLE II
FADING PARAMETERS USED TO SIMULATE THE OUTAGE PROBABILITY OF
L-BRANCH DIVERSITY RECEIVERS OVER I.N.I.D α− µ FADING MODEL.

L Fading Parameters (α`, µ`)
4 (1.5, 2), (2, 2.5), (2.2, 3.2), (1.5, 3.5)
6 (1.5, 3), (1.8, 2.5), (2.5, 2.8), (2.2, 3), (1.5, 3.25), (1.2, 2.5)
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Fig. 1. Outage probability of L-branch diversity receivers over α−µ fading
model with Es/N0 = 10 dB and Ω = 10 dB. Number of samples N = 107

and N∗ = 104. EGC case: solid line and MRC case: dashed line.

The behavior of the number of required simulations runs by
both methods for a fixed accuracy requirement ε = ε∗ = 5%
is depicted in Fig. 2 for the EGC case. We can observe that,
for high outage probabilities, naive MC is sufficient for the
estimation of P since the number of simulation runs for both
methods is quite the same. Our method outperforms naive
MC in the region of rare events, i.e P < 10−6. In this
region, the number of samples N needed by MC to estimate
P up to 95% accuracy grows rapidly whereas N∗ remains
almost constant. This goes hand in hand with the bounded
relative error property of our IS estimator. To illustrate this
idea, the number of samples N∗ required by IS, for L = 4 is
approximately 2.45 × 103 (respectively 1.2 × 105) times less
than the number of samples used in MC simulations for γth
= 18 dB (respectively γth = 16 dB). Similar conclusions can
be drawn for the MRC scenario.

VI. CONCLUSION

In this paper, a novel approach for the efficient estimation
of the left tail of the sum of α − µ variates is presented.
We showed that our proposed estimator is endowed with the
bounded relative error criterion. We were able to efficiently
evaluate the outage probability of L-branch diversity receivers.
Simulation results show the accuracy, as well as the efficiency,
of our proposed IS estimator compared to the naive MC
estimator. The proposed approach can be extended to other
fading models, such as κ− µ and η − µ [16].
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Fig. 2. Number of required simulation runs for 5% relative error for L-
branch EGC diversity receivers over α− µ fading model with Es/N0 = 10
dB and Ω = 10 dB.

APPENDIX A
PROOF OF THEOREM 1

Proof: The likelihood ratio is given by

L(X1, . . . , XL) =

L∏
`=1

fX`(X`)

f∗X`(X`)

=

L∏
`=1

(
Ω` − Ω0,`

Ω`

)µ` L∏
`=1

exp

(
µ`

[
1

Ω` − Ω0,`
− 1

Ω`

]
xα``

)
.

(A.1)

Replacing the expression of Ω0,` in (8), we get

L(X1, . . . , XL) =

L∏
`=1

(
β`γ

α`
0

Ω`

)µ`
× exp

(
L∑
`=1

µ`

[
1

β`γ
α`
0

− 1

Ω`

]
xα``

)
. (A.2)

Thereby, the likelihood can be bounded by

L(X1, . . . , XL) ≤
L∏
`=1

(
β`
Ω`

)µ`
γ

L∑̀
=1

µ`α`

0

× exp

(
L∑
`=1

µ`
β`

(
x`
γ0

)α`)
. (A.3)

Let η0 = max
1≤`≤L

µ`
β`

, αmax = max
1≤`≤L

α`, and αmin = min
1≤`≤L

α`.

We define the two sets

I ,

{
x`
γ0

:
x`
γ0

< 1

}
and J ,

{
x`
γ0

:
x`
γ0
≥ 1

}
. (A.4)

We can write
L∑
`=1

(
x`
γ0

)α`
=
∑
`∈I

(
x`
γ0

)α`
+
∑
`∈J

(
x`
γ0

)α`
≤
∑
`∈I

(
x`
γ0

)αmin
+
∑
`∈J

(
x`
γ0

)αmax
. (A.5)



Using the embedding inequality of L1 into Lα for α ≥ 1 [17],
we can write, for any positive real numbers {v`}L`=1

L∑
`=1

vα` ≤

(
L∑
`=1

v`

)α
. (A.6)

Since min
1≤`≤L

α` > 1, we use this inequality for v` = x`
γ0

, to get

L∑
`=1

(
x`
γ0

)α`
≤

(∑
`∈I

x`
γ0

)αmin
+

(∑
`∈J

x`
γ0

)αmax

≤

(
L∑
`=1

x`
γ0

)αmin
+

(
L∑
`=1

x`
γ0

)αmax
. (A.7)

Thus, we can write

L(X1, . . . , XL) ≤
L∏
`=1

(
β`
Ω`

)µ`
γ

L∑̀
=1

µ`α`

0 ×

exp

(
η0

[
1

γαmin0

(
L∑
`=1

x`

)αmin
+

1

γαmax0

(
L∑
`=1

x`

)αmax])
.

(A.8)

Therefore, we obtain the following upper bound

E∗
[
1{SL≤γ0}L

2(X1, . . . , XL)
]
≤

L∏
`=1

(
β`
Ω`

)2µ`

γ
2
L∑̀
=1

µ`α`

0

× exp(4η0). (A.9)

On the other hand, we have that

L⋂
`=1

{X` ≤
γ0

L
} ⊂ {

L∑
`=1

X` ≤ γ0}. (A.10)

In the i.n.i.d scenario, this leads to

P ≥
L∏
`=1

P
(
X` ≤

γ0

L

)
=

L∏
`=1

FX`

(γ0

L

)
. (A.11)

We recall that the CDF of a GG RV is given by [2]

FX`(x) =
γ
(
µ`,

µ`
Ω`
xα`
)

Γ(µ`)
, (A.12)

where γ(·, ·) is the lower incomplete Gamma defined in [12,
Eq. (8.350.1)]. Since we have γ(s, z) ∼

z→0

zs

s [18, Eq. (2.272)],
then we can write the following asymptotic expansion

FX`

(γ0

L

)
∼

γ0→0

µµ`−1
` γα`µ`0

Ωµ`` L
α`µ`Γ(µ`)

(A.13)

Thus, we get as γ0 → 0

1

P 2
≤

L∏
`=1

[
Ωµ`` L

α`µ`Γ(µ`)

µµ`−1
`

]2

γ
−2

L∑̀
=1

α`µ`

0 . (A.14)

Combining (A.9) and (A.14), we obtain

lim sup
γ0→0

E∗
[
1{SL≤γ0}L2(X1, . . . , XL)

]
P 2

≤
L∏
`=1

[
[Γ(µ`)]

1+µ`α`µα`µ`−µ`+1
`

[Γ(µ` + 1
α`

)]µ`α`

]2

exp (4η0) . (A.15)

and hence the proof is concluded.
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