
















Figure 6. Endogenous salicylic acid (SA) triggers
stomatal closure and immune defense in Atg3bp1
mutants.
(A) Expression of SA-biosynthesis–related genes in the
WT and Atg3bp1-1 14-d-old seedlings. Transcript levels
were determined by qRT-PCR relatively to Col-0 WT (set
at 1Q:10 ). UBQ10 and actin expression levels were used for
normalization. (B) Expression of SA-signaling–related
genes in the WT and Atg3bp1-1 14-d-old seedlings.
Transcript levels were determined by qRT-PCR relatively
to Col-0 WT (set at 1). UBQ10 and actin expression levels
were used for normalization. (C) Expression of SA-
accumulation–related genes in the WT and Atg3bp1-1
14-d-old seedlings. Transcript levels were determined
by qRT-PCR relatively to Col-0 WT (set at 1). UBQ10 and
actin expression levels were used for normalization. (D)
Endogenous SA levels in 14-d-old seedlings of WT and
Atg3bp1-1 mutant plants. Values represent SEM from
three independent experiments. (E) Stomatal aperture
in epidermal peels of 5-week-old WT and Atg3bp1-1
plants were floated in stomata buffer and treated 1 h
with 100 � M SA followed by inoculation with either Pst
or Pst COR−. Stomatal apertures were evaluated after 3
h. Values represent SEM from three independent
experiments. Asterisks indicate significant differences
from WT plants determined by a Mann–Whitney U two-
tailed test (P ≤ 0.01).
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transcription factors WRKY40 and AZI1 (azelaic acid induced-1) are
often used as markers for SA-dependent host defense responses
(Lamb et al, 1989; Baker et al, 1997). WRKY40 and AZI1 were also up-
regulated in Atg3bp1-1 compared withWT controls (Fig S3B). Overall,
the hyperinduction of SA defense-related genes correlates with the
resistance to Pst observed in the Atg3bp1 mutants.

AtG3BP1 regulates stomatal immunity via SA signaling

We showed that Arabidopsis G3BP1 is critical for stomatal immu-
nity and that AtG3BP1 is a negative regulator of SA biosynthesis
and signaling gene expression. Since SA is required for innate
immunity–mediated stomatal closure (Zeng et al, 2011b), we thus
quantified endogenous SA levels in Atg3bp1mutant lines and found
significant increase in SA levels in Atg3bp1-1 mutants compared
with WT seedlings (Fig 6D).

Because an increase in endogenous SA can trigger stomatal
closure, we hypothesized that an increase in the expression of SA-
related genes might trigger stomatal closure and in turn lead to
immune resistance in Atg3bp1 mutants. For this purpose, stomatal
apertures were assessed in WT and Atg3bp1-1 after a 1-h pre-
treatment of SA followed by inoculation with either Pst or Pst COR−.
The inoculation with Pst did not reopen the stomata in WT when
pretreated with SA. But in WT leaves that had not been treated with
SA, stomata completely reopened to normal sizes after 3 h of in-
oculation with Pst because of COR produced by the pathogen. In WT
leaves pretreated with SA followed by inoculation with Pst COR−, the
stomata remained closed because of the lack of COR. In contrast,
the stomata in Atg3bp1-1 leaves remained closed and the treatment
with either Pst or Pst COR− had no effect on the stomata (Fig 6E).
Collectively, these results confirm that AtG3BP1 functions in SA-
mediated stomatal closure and reopening in response to bacterial
pathogens.

Discussion

In this study, we report the identification of the Arabidopsis G3BP1
as an important player in SA-dependent stomatal immunity.
AtG3BP1 is a member of a family of eight proteins in Arabidopsis
that are orthologs to the human G3BP gene family. Mammalian
G3BP1 is an evolutionarily highly conserved RBP that was identi-
fied through its interaction with a Ras-GTPase–activating protein
(Tourriere et al, 2003). G3BPs have beenmainly studied in mammals
where they are involved in many processes, such as the formation
of SGs and the involvement in virus resistance (Tourriere et al, 2003;
Katsafanas &Moss, 2007; Panas et al, 2012). However, so far, no G3BP
has been functionally characterized in plant stomatal and apo-
plastic immunity. Expression profiles of the different members of
the family in Arabidopsis are subjected to changes according to
developmental stages, tissue specificity, and environmental per-
turbations. From these patterns, the genes might perform similar
biochemical functions in a tissue- and developmental-specific
manner and respond to different conditions (Fig S4). AtG3BP7
(At5g43960), formerly known as AtG3BP-like protein, was identified
as an Arabidopsis G3BP-like protein that localizes to plant SGs and

plays a role in the Arabidopsis virus resistance. It has been shown
that SG formation and function is conserved between mammalian
and plant cells during stress. Moreover, plant viruses have the
ability to bind to AtG3BP7, preventing the formation of SGs, as in
mammals (Krapp et al, 2017).

The enhanced disease resistance to Pst observed in two in-
dependent Atg3bp1 loss-of-function mutant lines indicates a role
for AtG3BP1 in plant innate immunity. Several lines of evidence also
showed that AtG3BP1 is involved in MTI. Atg3bp1 mutants have
reduced sensitivity to Pst hrcC−, a nonvirulent pathogen used to
study MTI. Atg3bp1 mutants also showed enhanced ROS accumu-
lation in response to flg22 and up-regulation of classical MTI marker
genes and stomatal innate immunity.

Atg3bp1-1 mutants showed the activation of defense responses
leading to constitutive stomatal closure. More importantly, the
striking insensitivity to COR-dependent stomatal reopening in
Atg3bp1 mutants explains the enhanced resistance phenotype of
Atg3bp1 mutants to Pst by spray inoculation. Moreover, in spite of
overcoming the stomatal barrier by infiltration of Pst, the Atg3bp1
mutants showed enhanced disease resistance. Taken together,
these data indicate that Arabidopsis G3BP1 is a regulator of sto-
matal and apoplastic immunity.

The analysis of the SA-deficient nahG mutant and SA-
biosynthetic sid2/eds16 mutant revealed that SA biosynthesis is
required for MAMP-induced stomatal closure (Melotto et al, 2006;
Zeng et al, 2010). Atg3bp1mutant plants showed up-regulation of SA
biosynthesis and signaling marker genes and accumulated SA. It
was also shown that SA induces stomatal closure by peroxidase-
mediated extracellular ROS production (Mori et al, 2001; Khokon
et al, 2011). Consistent with a role of AtG3BP1 in SA-induced ROS
production, Atg3bp1 mutants showed constitutive up-regulation of
genes related to ROS production and enhanced DAB and NBT
staining for hydrogen peroxide and superoxide, respectively. The
SA-dependent pathway is also critical in mediating Pst resistance
in the COR-insensitive coi-20 mutants (Kloek et al, 2001). Thus, SA
signaling pathway is required for stomatal immunity and apoplastic
defenses against Pst (Kloek et al, 2001; Melotto et al, 2006; Zeng et al,
2010, 2011a). Our data support the idea that Atg3bp1 immunity
against Pst including stomatal defense is correlated with the ac-
tivation of SA signaling.

Recently, COR was found to induce the NAC transcription factors
(petunia NAM and Arabidopsis ATAF1, ATAF2, and CUC2) ANAC019,
ANAC055, and ANAC07 to repress ICS1 and induce BSMT1 to inhibit SA
accumulation, thusmediating reopening of the stomata to facilitate
bacterial entry (Zheng et al, 2012). Interestingly, in Atg3bp1-1 mu-
tants, two of these NAC TFs (ANAC019 and ANAC055) were up-
regulated in untreated plants (Fig S5) but nonetheless result in
accumulation of SA, requiring another explanation for the in-
sensitive phenotype to COR-induced stomatal reopening.

RBPs, especially those involved in response to stress, have
been shown to regulate gene expression at different stages, from
transcription to posttranslational levels (Mastrangelo et al, 2012).
Posttranscriptional regulations are important processes in eu-
karyotes that enable them to adapt to changes in their environ-
ment. Human G3BP1 is located in SGs, which are sites of mRNA
storage during stress responses that are involved in regulating
mRNA stability and translatability (Anderson & Kedersha, 2008). In
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humans, SGs are highly dynamic entities that recruit many signaling
proteins in a transient manner until the cells adapt to stress or die.
Hence, beyond their role as mRNA triage centers, SGs are proposed
to constitute RNA-centric signaling hubs analogous to classical
multiprotein signaling domains such as transmembrane receptor
complexes which communicate a “state of emergency” (Kedersha
et al, 2013). A good example for this as a signaling hub is the one
shown by HsG3BP1 which functions in regulating double-stranded
RNA-dependent protein kinase activation (Reineke et al, 2015).
Given the highly conserved nature of eukaryotic G3BPs, it is
tempting to speculate that plant G3BP1 might function in an
analogous fashion during stress. This might also explain the fact
that Atg3bp1 mutants showed enhanced ROS accumulation in
response to flg22, which would suggest that AtG3BP1 functions
upstream of ROS production. In this context, it should also be noted
that ROS production does not only act as an antimicrobial agent in
MTI, but also as a secondary messenger that triggers downstream
defense responses, including stomatal closure and up-regulation of
MTImarker genes (Melotto et al, 2006; Kadota et al, 2014; Yu et al, 2017).

Interestingly, whereas we identified eight G3BPs in Arabidopsis,
the human genome only encodes for two HsG3BPs. Expression
analysis of the Arabidopsis genes shows, however, that these
AtG3BPs are expressed in a highly tissue- and developmental-
specific fashion (Fig S4), suggesting that the different genes
might perform similar functions in different cellular contexts.

Collectively, this work reveals that plants and mammals possess
a set of highly conserved G3BP proteins with a role in immunity and
further investigations are warranted to unravel the roles of G3BPs in
plants.

Materials and Methods

Biological materials and growth conditions

Arabidopsis ecotype Columbia-0 plants were used as WT in all
experiments. Two T-DNA mutant lines Atg3bp1-1 (SAIL_1153_H01)
and Atg3bp1-2 (SALK_027468) were obtained from the National
Arabidopsis Stock Center (NASC) and genotyped by PCR amplifi-
cation of insertion-specific or WT-specific fragments with primers
listed in Table S1. Plants were grown on soil at 21°C with a 12-h
photoperiod or as seedlings on sterile one-half–strength Mura-
shige and Skoog (MS) mediumwith a 16- or 8-h photoperiod for 14 d.

Bacterial strains P. syringae pv. tomato Pst DC3000, Pst DC3000
hrcC, and Pst DC3000 COR− were cultured at 28°C from glycerol stock
on NYGA agar plate (5 g/liter bactopeptone, 3 g/liter yeast extract,
20ml/liter glycerol, and 15 g/liter agar) containing 50mg/ml rifampicin.

Cloning and generation of overexpressor plants

All the details are described in the Materials and Methods section
of the Supplemental Information.

Various treatments, pathogen infection, and MTI assays

MAMP and hormone treatments, bacterial pathogen infection as-
says, stomatal aperture assay, oxidative burst assay, superoxide

radical and hydrogen peroxide staining, and SA quantification are
described in detail in the Materials and Methods section of the
Supplemental Information.

RNA extraction, RNA-seq, data analysis, and gene expression
analysis

The experimental details and the relevant methods are described in
the Materials andMethods section of the Supplementary Information.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
201800046.
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