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Plasmonic nanospherical dimers for
color pixels
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Abstract
Display technologies are evolving more toward higher resolution and miniaturization. Plasmonic color pixels can offer
solutions to realize such technologies due to their sharp resonances and selective scattering and absorption at particular
wavelengths. Metal nanosphere dimers are capable of supporting plasmon resonances that can be tuned to span the entire
visible spectrum. In this article, we demonstrate numerically bright color pixels that are highly polarized and broadly tuned
using periodic arrays of metal nanosphere dimers on a glass substrate. We show that it is possible to obtain RGB pixels in
the reflection mode. The longitudinal plasmon resonance of nanosphere dimers along the axis of the dimer is the main
contributor to the color of the pixel, while far-field diffractive coupling further enhances and tunes the plasmon resonance.
The computational method used is the finite-difference time-domain method. The advantages of this approach include
simplicity of the design, bright coloration, and highly polarized function. In addition, we show that it is possible to obtain
different colors by varying the angle of incidence, the periodicity, the size of the dimer, the gap, and the substrate thickness.

Keywords
Color pixels, metamaterials, subwavelength optics, metasurfaces, plasmonics, display technology, displays, nanoparticles,
nanophotonics

Date received: 24 October 2017; accepted: 19 March 2018

Topic: Nanophotonics
Topic Editor: Paola Prete

Introduction

Metal nanoparticles support collective electron oscillations

known as surface plasmons. Such oscillations result in the

localization of the fields beyond the diffraction limit and to

its enhancement relative to the incident fields. This is in

addition to the strong scattering and absorption of light at

the resonance wavelength of the metal nanoparticle. These

features are used in many devices including biosensors, solar

cells, light-emitting devices, waveguides, and high-

resolution imaging.1–4 Among such applications are display

technologies, which are evolving more toward higher reso-

lution and miniaturization. Plasmonic color pixels can offer

solutions to realize such technologies due to their sharp

resonances and selective scattering and absorption at partic-

ular wavelengths and due to their size, allowing it to perform

at resolutions beyond the diffraction limit. Examples of plas-

monic color-generation devices include color filters,5–15

high-resolution color pixels,16–21 plasmonics combined with

liquid crystals,22 image printing beyond the diffraction

limit,23–26 transparent display,27 and color holograms.28–30

In this article, we demonstrate bright color pixels that are

broadly tuned and highly polarized using periodic arrays of

different metal nanosphere dimers on a glass substrate. Far-

field diffractive coupling further enhances and tunes the

resonance, narrowing its linewidth, which results in purer

colors. The computational method used is the finite-

difference time-domain method (FDTD) using the commer-

cial software FDTD Lumerical Solutions v8.9.
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Display technologies including plasma displays,

liquid crystal displays, and light-emitting diode displays

use different color-producing media to produce color

pixels such as the standard RGB color scheme pixel

made up of the primary colors (blue, green, and red)

under the illumination of a light source or through uti-

lizing an electric voltage. These technologies are evol-

ving toward more flexible displays, higher resolution,

and higher energy efficiency.16,26,27 Plasmonic color

pixels offer the advantage of increased resolution and

a wide range of color tunability by changing the dimen-

sions or the geometry of the structure, the surrounding

environment index, the polarization, or the angle of inci-

dence of the exciting light. In addition, the ultrathin

thickness of the structure supporting the plasmonic ele-

ments makes it suitable for integration in miniaturized

devices. The periodicity is also comparable to the wave-

length, which makes it possible to produce pixels that

are smaller than conventional methods. Further, because

plasmonic resonators are made of metals, they are more

stable than chemical pigments and can endure higher

temperatures and ultraviolet radiation.5,10,11

In this article, we show that periodic arrays of dif-

ferent metal nanosphere dimers on a glass substrate can

produce bright color pixels that are broadly tuned and

highly polarized. This is based on the fact that plasmo-

nic nanoparticles show resonant selective scattering at

particular wavelengths, while being almost transparent

to other wavelengths. To produce the color pixels,

nanosphere dimers made of aluminum (Al), silver

(Ag), and gold (Au) are used for the blue, green, and

red pixels, respectively. Al and Ag are more suitable

than Au for shorter wavelengths, as Au nanoparticle

resonances below 520 nm are quenched due to inter-

band transitions.16 In the case of the nanospherical

dimer, we found that the longitudinal plasmon reso-

nance along the axis of the dimer is the main contribu-

tor to the resonance and, therefore, to the color of the

pixel. Far-field diffractive coupling enhances the scat-

tering intensity and reduces the plasmon linewidth of

the array.31–38 Note that the glass substrate has the

effect of redshifting the resonance and making the far-

field diffractive coupling less efficient due to the inho-

mogeneous environment around the dimers.39–43

However, it was shown that for large particles, diffrac-

tive coupling could still occur.36,43,44 In addition, the

glass substrate can result in additional peaks appearing

at the blue side of the original resonance.45–47 For

appropriate periodicities, additional resonances can be

suppressed to produce purer colors pixels. The advan-

tage of using a dimer instead of a monomer is that it is

polarization sensitive, which is consistent with display

technologies, and it has the ability to enhance the

far-field scattering intensity as the gap gets smaller.48

Although it is hard to fabricate dimers relative to

monomers, recent improvements in the fabrication tech-

niques have been made.49,50

Structure and design

For the numerical optimization of the design, we tune the

color of each pixel by changing the material and diameters

of spheres, while keeping the gap fixed. This small gap

also allows for a higher far-field scattering intensity48 (see

Online Supplementary Figure S1). In addition, we use far-

field diffractive coupling to further enhance, tune, and

narrow the plasmon linewidth by changing the periodici-

ties of the array, Dx, and Dy, (dimer center to center dis-

tance in the x and y directions, respectively). The

advantages of this approach include simplicity of the

design, bright coloration, and highly polarized function.

In addition, we show that it is possible to obtain different

colors by varying the angle of incidence. Our design can

also be used for transparent displays by projecting mono-

chromatic light at the resonance wavelength. A schematic

diagram of the array is shown in Figure 1.We use FDTD

commercial software Lumerical to perform the numerical

optimizations and calculate the reflection spectra. We use

p-polarized white light (400–750 nm) to excite the arrays

at normal incidence. This results in the excitation of the

longitudinal plasmon resonance along the axis of the

dimer, which is the main contributor resonance that pro-

duces the color of the pixel. This makes the array polar-

ization selective that is compatible with display

technologies. Each pixel consists of an array of identical

nanosphere dimers with the same edge-to-edge spacing.

We also numerically calculate the scattering and absorp-

tion cross-section efficiencies for the individual dimers to

show diffractive coupling effects on the spectral peaks

and linshapes.

In general, as the length of the dimer increases, its reso-

nance redshifts; however, this is accompanied by a broader

resonance due to an increase in radiative damping. This

effect can be minimized using diffractive coupling to

Figure 1. Schematic diagram of the plasmonic color pixel array of
periodic metal nanosphere dimers on a glass substrate of thick-
ness h. Polarized white light interacts with the dimers and selec-
tively scatters back certain wavelengths. The gap distance
between the spheres is g and the periodicity in x and y is Dx and Dy,
respectively.
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achieve strong higher intensity and narrower peaks suit-

able for color displays. We choose Dx in all of the three

arrays to be much smaller than the wavelength used,

while Dy is varied to tune the resonance. This is because

for a rectangular array, as our case, the periodicity per-

pendicular to the polarization vector is more important

in determining the spectral shift and width of the reso-

nance than the periodicity that is parallel to the polar-

ization vector.34 We designed RGB pixels in the

reflection mode with their spectral peak positions corre-

sponding to the wavelengths of blue (453 nm), green

(520 nm), and red (637 nm). Table 1 lists the parameters

used for each pixel array. The thickness of the glass

substrate is 140 nm for all of the arrays. The gap size

between the spheres is 3 nm for all of the dimers used.

The complex refractive index for Ag, Al, and silicon

dioxide is taken from the data of Palik51 (wavelength

range 0–2 mm), while for Au it is taken from Johnson

and Christy.52 For our application, we mainly consider

the reflection spectra of each array. To measure the

reflected spectra from the arrays, a 2D z-normal (in the

x–y plane) frequency-domain power monitor is placed at

a distance of 500 nm above the array. The colors shown

in the figures are obtained by converting the reflection

spectra into the International Commission on Illumina-

tion (CIE) chromaticity diagram. A unit cell of one

dimer was used. The boundary conditions in the x and

y directions are periodic to simulate an infinite array of

nanosphere dimers. Perfectly matched layer boundary

conditions were used in the z-direction to eliminate scat-

tered waves at the boundaries of the simulation region.

A mesh override region of a size of 1 nm in all three

directions is used around the dimer. For the scattering

and absorption cross-sections of the dimer alone, we use

a total-field/scattered-field (TFSF) plane-wave source

around the dimer together with two power monitor

boxes, one in the scattered field region and the other

in the total field region. A mesh override region of 1

nm is used around the dimer throughout the TFSF

source region. For the oblique angle of incidence plots

in Figure 5, the broadband fixed-angle source technique

(BFAST) is used, and the mesh override region around

the dimer is set to 2 nm. To find the polarization of the

reflected light, a polar ellipse analysis object is placed at

a distance of 510 nm above the array.

Results and analysis

Figure 2(a) to (c) shows the scattering and absorption cross-

sections of the dimer alone without the array for the Al

(radius 35 nm), Ag (radius 40 nm), and Au (radius 50 nm)

dimers used for the blue, green, and red pixels, respectively.

The gap size in all the dimers is 3 nm. The results show that

at resonance, the scattering is significantly higher than the

absorption for the three dimers, which is good for this appli-

cation. The scattering peak is at the wavelength of 341 nm,

513 nm, and 619 nm for each of the Al, Ag, and Au dimers,

respectively. Placing the dimer in an array will further shift,

enhance, and narrow the resonance peak, as is shown below.

Figure 3 shows the reflection spectra of dimer arrays on a

glass substrate for the three configurations used for blue,

green, and red obtained under p-polarized light at normal

Table 1. Parameters used for the RGB pixel arrays.

Color Material

Array’s resonance
reflection peak

wavelength (nm)

Sphere
radius
(nm) Dx (nm) Dy (nm)

Blue Al 453 35 160 335
Green Ag 520 40 245 360
Red Au 637 50 380 480

RGB: Al: aluminum; Ag: silver; Au: gold.

Figure 2. Scattering and absorption cross-sections for the dimer
alone without the array for the (a) Al dimer with a sphere radius
of 35 nm. A scattering peak is observed at a wavelength of 341 nm.
(b) Ag dimer with a sphere radius of 40 nm. The scattering peak
wavelength is at 513 nm. (c) Au dimer with a sphere radius of 50
nm, where the scattering peak wavelength is at 619.2 nm. The gap
size is 3 nm in all of the dimers. Al: aluminum; Ag: silver; Au: gold.
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incidence with a wavelength ranging from 400 nm to 750

nm. Note that in the case of the red array, the increased

radiative damping broadens the resonance; these additional

wavelengths modify the perceived color into a pastel red.

The CIE chromaticity diagram coordinates for each color are

X¼ 13.0485, Y¼ 5.5355, Z¼ 66.9152, x¼ 0.1526, and y¼
0.0647 for the blue; X¼ 7.4466, Y¼ 19.5526, Z¼ 7.3495, x

¼ 0.2167, and y¼ 0.5692 for the green; and X¼ 16.0995, Y

¼ 9.3116, Z ¼ 3.7168, x ¼ 0.5527, and y ¼ 0.3196 for the

red, as shown in Figure 4.

Figure 5 shows the reflection spectra of the array used for

the green pixel, where Dy is varied from 240 nm to 440 nm in

steps of 40 nm, while Dx is kept fixed at 240 nm. As Dy

increases, the collective resonance of the array is enhanced,

redshifted, and narrowed as compared to the isolated Ag

dimer in Figure 2(b), which is useful for producing purer

colors. Similar results are found for the other arrays. This

result is in agreement with the sharpening and narrowing of

the array resonance as the period is approaching the diffrac-

tion edge as was shown in the study by Zou and Schatz.34

Figure 6 shows the polarization state of the reflected

light for the array used in the green pixel. Similar results

are found for the other arrays. The reflected light is

p-polarized as expected, because the longitudinal plasmon

resonance along the axis of the dimer is the main contri-

butor to resonance and, therefore, to the color of the pixel.

Finally, we show that it is possible to obtain different colors

by varying the angle of incidence. Figure 7(a) to (c) shows

the reflection spectrum for each array as the angle of inci-

dence is changed from 0� to 60� and the corresponding

color for each angle. In addition, we show in the Online

supplementary material how the far-field scattering cross-

section increases as the gap size is decreased, and the

different colors obtained when changing each of the peri-

odicities in y (Dy), the size of the dimer, or the substrate

thickness.

Figure 3. The reflection spectra of dimer arrays on a glass sub-
strate for the three configurations used for blue, green, and red,
respectively, obtained under p-polarized light at normal incidence
with a wavelength ranging from 400 nm to 750 nm. The spectral
peak positions correspond to the wavelengths of blue (453 nm),
green (520 nm), and red (637 nm).

Figure 4. The International Commission on Illumination (CIE)
chromaticity diagram coordinates for each color are X¼ 13.0485,
Y ¼ 5.5355, Z ¼ 66.9152, x¼ 0.1526, and y¼ 0.0647 for the blue;
X ¼ 7.4466, Y ¼ 19.5526, Z ¼ 7.3495, x¼ 0.2167, and y ¼ 0.5692
for the green; and X ¼ 16.0995, Y ¼ 9.3116, Z ¼ 3.7168, x ¼
0.5527, and y ¼ 0.3196 for the red.

Figure 6. The polarization state of the reflected light. The figure
shows that it is p-polarized as expected, since the longitudinal
plasmon resonance along the axis of the dimer is the main con-
tributor to the resonance and therefore to the color of the pixel.

Figure 5. Shows the reflection spectra of the array used for the
green pixel where Dy is varied from 240 nm to 400 nm in steps of
40 nm, while Dx is kept fixed at 240 nm. As Dy increases, the
collective resonance of the array redshifts and its linewidth nar-
rows which is useful for producing purer colors.
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Conclusion

We have demonstrated numerically that highly polarized

bright plasmonic color pixels enabled by the selective scat-

tering of Al, Ag, and Au nanosphere dimers arranged in

periodic arrays on a glass substrate. We showed that it is

possible to obtain RGB pixels in the reflection mode. Far-

field diffraction coupling further shifts and enhances the

scattering intensity, narrowing the plasmon linewidth for

brighter and more vivid colors. The longitudinal plasmon

resonance along the axis of the dimer is the main contri-

butor to resonance, and the colors are tuned using a com-

bination of the dimer length and the inter-dimer spacing in

the array Dx and Dy. We further showed that it is possible to

obtain different colors by varying the angle of incidence.

The advantages of this approach include simplicity of the

design, bright coloration, and highly polarized function.

Our design can also be used for transparent displays by

projecting monochromatic light at the resonant wavelength.
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