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Abstract—Vehicular ad hoc networks (VANETs) repre-
sent a very promising research area because of their ever
increasing demand, especially for public safety applica-
tions. In VANETs vehicles communicate with each other to
exchange road maps and traffic information. In many ap-
plications, location-based services are the main service, and
localization accuracy is the main problem. VANETs also
require accurate vehicle location information in real time.
To fulfill this requirement, a number of algorithms have
been proposed; however, the location accuracy required
for public safety applications in VANETs has not been
achieved. In this paper, an improved subspace algorithm
is proposed for time of arrival (TOA) measurements in
VANETs localization. The proposed method gives a closed-
form solution and it is robust for large measurement noise,
as it is based on the eigen form of a scalar product and
dimensionality. Furthermore, we developed the Cramer-
Rao Lower Bound (CRLB) to evaluate the performance
of the proposed 3D VANETs localization method. The
performance of the proposed method was evaluated by
comparison with the CRLB and other localization al-
gorithms available in the literature through numerous
simulations. Simulation results show that the proposed 3D
VANETs localization method is better than the literature
methods especially for fewer anchors at road side units
and large noise variance.

Index Terms—Vehicular ad hoc networks (VANETs),
Localization, Time of arrival (TOA), Cramer-Rao lower
bound (CRLB)

I. INTRODUCTION

Vehicular ad-hoc networks (VANETs) has become a
remarkable research area for the automotive and com-
munication industry. The driving force behind the inno-
vations in VANETs is the advances in communication
and information technology. In the past two decades,
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wireless communications have influenced our lifestyles
such that everyone wants to be connected to the internet
at any time and anywhere. Recently the concept of
mobile connected vehicles is getting more attention,
which leads to enable new areas of applications such
as driver assistance, traffic flow, public safety, and info-
tainment [1]. Currently, most of the work on VANETs
is to make the vehicles and roads capable to carry out
secure transportation. The secure transportation means to
provide the information about accidents, road conditions,
weather conditions, traffic conditions and location-based
services to the user [2], [3]. VANETs should also provide
efficient transportation where efficient means short and
predictable transportation time, reducing congestion and
fuel saving [4], lower cost and better management of the
public transport network [5]. VANETs can also collect
and share the information about an area of interest
[6] in different applications such as pollution control,
public surveillance (photos taken of a violent act in
progress) and traffic planning. VANETs will provide
more enjoyable means to the user by giving access to
the Internet, on road social media, tourist information,
games and use of social applications [7].

VANETs is a special case of mobile ad-hoc network
where vehicles are equipped with the capabilities of
wireless communication and data processing. The direct
communication from one vehicle to the other vehicle
makes it possible to exchange information even with-
out the communication infrastructure. The advances in
wireless communications and user trends allow different
deployment strategies for VANETs in rural and urban
environments. The deployment of VANETs is to provide
communication between vehicles and with the roadside
units. There are three major possibilities for VANETs
architecture as shown in Fig. 1.

• Vehicle to Infrastructure (V2I): This infrastructure
allows the vehicle to communicate with the roadside
units for data exchange and location-based services.

• Vehicle to Vehicle (V2V): It allows the vehicles
to communicate directly with each other without
the communication infrastructure. V2V is deployed
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Fig. 1. Different deployment strategies for VANETs.

mainly for security and safety applications.
• Hybrid: It combines both V2V and V2I infrastruc-

ture to get benefit from both nearby vehicles and
roadside units. This strategy enables long distance
communication through multi-hop fashion.

In hybrid architecture of VANETs, vehicles can commu-
nicate with roadside units and with each other. VANETs
is an important tool in traffic management systems.
Recently, it has become the major element of intelligent
transport systems. The goal of such systems is to provide
a safe and pleasant journey to drivers and passengers.
Safety applications are essential to vehicular to vehicular
(V2V) communication as they can greatly reduce the
chance of an accident. Public safety applications need
real-time accurate vehicle position information. There-
fore, it is important to accurately locate vehicles in
VANETs.

Many methods have been proposed to meet the re-
quirements of VANETs localization such as global posi-
tioning system (GPS) methods, geographical information
system methods, cellular phone technology, and dead
reckoning. However, these techniques have accuracy
and reliability problems and they are not cost-effective.
Besides cost, GPS signals are weak and can easily be
blocked by different obstacles such as forests, buildings,
etc. In the proposed method, the location of a vehicle is
estimated by using anchor vehicles (AVs), i.e., vehicles
which know their exact location. A few antennas are
installed on roadside units, which act as AVs, as shown
in Fig. 2. Location information can be updated regularly
by allowing vehicles to share messages. These messages
contain the time at which the message is sent, as this

information is necessary for the time of arrival (TOA)
method. The contributions of this paper are summarized
as follows:

1) We propose a novel three-dimensional (3D) local-
ization method for VANETs that allows us to ac-
curately estimate the positions of multiple vehicles.
The proposed method mainly relies on a subspace
principle, but the co-variance matrix does not re-
quire any decomposition. Thus, the requirement
of a pseudo-signal subspace vanishes, and we can
avoid the main problem of eigen decomposition
encountered in subspace methods.

2) The CRLB is analytically derived for the proposed
algorithm, which gives a lower bound on the vari-
ance of an unbiased estimator [8].

3) The theoretical minimum square logarithmic error
(MSLE) for the proposed algorithm is computed.
Numerical results show that the proposed method
outperforms several other popular localization algo-
rithms. The effects of different system parameters
such as measurement noise, density of AVs, and the
number of simulations were investigated to evaluate
the performance of the proposed algorithm.

Rest of the paper is organized as follows: Section II
consists of related work, section III describes the system
model. Proposed VANETs localization algorithm and its
numerical results are described in section IV and V
respectively. Finally the proposed work is concluded in
section VI.

II. RELATED WORK

Depending on the range measurement technique used,
localization techniques can be subdivided into two main
categories: the true range-based techniques and range-
free techniques. Range-based techniques use range mea-
surements calculated by each node to estimate location.
However, connectivity information is used instead of true
ranging for location estimation in range-free techniques.
Ranging for localization is performed using different
ranging techniques such as the received signal strength
indicator (RSSI), the time difference of arrival (TDOA),
the time of arrival (TOA) and the angle of arrival (AOA).
In range-free approaches, locations of sensor nodes are
estimated from simple connectivity information or the
number of hops between each pair of sensor nodes [9].
RSSI computes the strength of the received signal, and
the propagation loss is calculated based on RSSI. The
RSSI technique is a cost-efficient solution for ranging
as it does not require any extra hardware. However,
its performance is often not satisfactory compared to
other ranging techniques due to channel fading and
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Fig. 2. System model.

multipath problems [10]. TOA measurement considers
speed, wavelength and time for the radio signal to travel
between two nodes [11]. The TDOA technique considers
the time difference between two different kinds of signals
arriving at the receiver. In the TDOA approach, the nodes
need to be equipped with two kinds of extra devices,
which can detect both kinds of signals. A receiver
calculates the time difference between the two different
signals and the distance information is estimated from
the calculated time difference between the two nodes
[12]. AOA ranging measurements are based on the
angle of received signal at the receiver [13]. Usually
TOA, TDOA and AOA are suitable for applications that
require high accuracy, but they require more cost for the
measurements.

Range-free techniques are regarded as a cost and
energy efficient solution for locating nodes in wireless
sensor networks. To find the actual coordinates of nodes
without distance information, range-free techniques need
a proper scaling factor because it strongly depends on
hop count. Most of the range-free techniques compute
the scaling from the ratio of the distance to the hop count
[14] or based on the anchor locations [15]. Range-free
schemes are easy to implement with low cost but these
have the drawback of limited accuracy, particularly in
practical applications [16]–[18].

In [19] the authors proposed a landscape 3D local-
ization method with the help of mobile anchors. The
main drawback of [19] is that the accuracy of their pro-
posed method depends on the expensive mobile anchors.
Range-free localization algorithms 3D DVHOP [20], 3D
MDS-MAP [21] and 3D centroid are proposed in [22].
These range-free methods are complex as well as their
localization accuracy is comparatively low. However,
one method to increase the accuracy of 3D localization
algorithm is to convert the cost function into a optimiza-

tion problem. Particle swarm optimization algorithm,
intelligent optimization algorithms e.g genetic algorithm
and least squares support vector machine algorithm are
applied in 3D space localization [23]–[25].

A number of localization methods for VANETs are
introduced in [26] including cellular localization, im-
age processing, relative localization, map matching and
global positioning systems. In [27], the proposed local-
ization method measures the inter-user radio distances
using directional antennas, and then every user tries to
locate itself with respect to the anchor node. In [28],
the authors proposed a grid-based vehicle localization
algorithm, which tries to minimize propagation error in
the network by using the geometrical locations of the
vehicles. In [28], the authors proposed that the grid-
based schemes are less prone to error compared to
non-grid based schemes. In [29], the authors proposed
a VANETs localization scheme that strongly relies on
road-side units. Every vehicle passing in the range of
a road-side unit communicates with it through beacon
signals and its position is estimated using TOA or TDOA
measurements. In [30] and [31], the authors proposed co-
operative vehicle localization in which different types of
localization schemes were discussed for VANETs local-
ization. The weighted localization method for VANETs
was proposed in [32], where different weights have been
assigned to the measurements based on the signal to
interference noise ratio (SINR), where the closer vehicles
have a high SINR and larger weights, while far away ve-
hicles have a low SINR and smaller weights. In [33] the
authors assume that vehicles have IEEE.802.11p inter-
faces, and the localization performance can be improved
by combining vehicular communications and smartphone
sensors.

III. SYSTEM MODEL

A fully connected hybrid network is considered in our
work, as this is the most frequently used assumption [34],
[35]. To estimate the unknown vehicle (UV) position
ρ0 = [x0, y0, z0]

T using a TOA ranging technique, we
first assume that the AV’s coordinates are {ρk}Lk=1,
where L > 4 is the number of AVs in the VANETs.
However, to obtain the unique position of the UV, the
four AVs should not be coplanar with one another [36].
In [37], [38], mobility models for vehicles are classified
into two major categories macroscopic and microscopic.
Macroscopic models are based on fluid dynamics which
considers the density of vehicles average velocity and
vehicular traffic. Microscopic mobility models are more
precise which consider every vehicle as a separate entity
and modeling its nature. Microscopic models are more
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Fig. 3. An Overview of a Unidirectional Traffic Flow in VANETs

accurate but computationally more expensive. In this pa-
per we considered a unidirectional urban traffic scenario
where the vehicles are moving with low velocity. The
vehicles that are added to the network follows Poisson
Point Process (PPP) with intensity of λ, i.e. number of
vehicles entering the network at time T . After the arrival
of each vehicle i, it is assigned an independent uniformly
distributed speed Vi, with probability distribution func-
tion of

f(Vi/s) =
1

βm − βn
, βm > s > βn, (1)

where βm is the maximum velocity and βn is the
minimum velocity of vehicle i. In unidirectional traffic
flow where the vehicles coming into the range of AVs
are localized whether the traffic flow is in a single lane
or in two parallel lanes. Any vehicle i that is in the range
of four AVs, is localized. Initially, we do not consider
the direction of the vehicle at time instant T , but once
the network is re-localized at time T̂ , the direction of the
vehicle is also predicted. In order to clarify the scenario,
Fig. 3 shows an overview of unidirectional VANETs,
where the vehicles that come within the direct or multi-
hop range of AVs (blue) are localized. Vehicles that
are moving away from the transmission range of the
network, become independent and further do not take any
part in the formation of the network. In this paper, we
have considered unit disk model for ranging. According
to unit disk model, two vehicles can communicate with
each other directly if and only if their Euclidean distance
is less than their transmitting range. The actual distance
between the UV and the kth AV is represented by

ζ0k = ‖ρ0 − ρk‖, k = 1, 2, ..., L. (2)

The travel time by signal to move from the UV to the
kth AV (in the absence of measurement noise) is denoted
by t0k and is given by

t0k =
ζ0k
c
, k = 1, 2, ..., L. (3)

Here, c is a constant i.e., the speed of light. Then, the
TOA measurement can be written as [16]

χ0k = ζ0k + ω0k, k = 1, 2, ..., L, (4)

where ω0k is the additive zero mean white Gaussian
having a variance of σ20k, which is given by [39]

σ20k = ϕζν0k, (5)

where ϕ is a constant related to the AVs and ν is a path
loss exponent. (4) can be written in vector form as

χ = ζ + ω, (6)

where ζ = [ζ01, ..., ζ0L]T and ω = [ω01, ..., ω0L]T .

IV. PROPOSED ALGORITHM

First, we define a K × 3 matrix Λ i.e.,

Λ = [ρ1 − ρ0,ρ2 − ρ0, ...,ρL − ρ0]T , (7)

where K = 3 for 3D and Λ is parameterized by ρ0.
The multidimensional similarity matrix can be defined
as [40]

Υ = ΛΛT , (8)

which is a positive semi-definite matrix [41], (m,n) and
the value of Υ is

[Υ]mn =
(ζ20m − ζ2mn + ζ20n)

2
, (9)

where ζmn = ζnm = ‖ρm−ρn‖ is the estimated distance
between the mth UV and the nth AV. In fact, the exact
value of Υ is not available. But, at sufficiently low
noise conditions, we can consider its approximate value
represented by Υ̂, with the use of estimated {χ0m} and
actual {ζmn} ranging measurements [40].

[Υ̂]mn =
(χ2

0m − ζ2mn + χ2
0n)

2
. (10)

We decompose the symmetric matrix Υ̂ with the help of
eigen decomposition to obtain [42]

Υ̂ = ΓsΨsΓ
T
s + ΓnΨnΓTn , (11)

where Ψs=diag(λ1, λ2, λ3) � 0,
Ψn=diag(λ4, λ5, ..., λM ) with λ4 = λ5 = ... = λM = 0
are the Eigenvalues of Υ̂, and Γs and Γn are the
Eigenvectors. Ideally, rank(Υ) = 3, we have

Υ̂ = ΓsΨsΓ
T
s , (12)

which can also be re-written as

Λp = ΓsΨ
0.5
s . (13)
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The relationship between the principle axis result and
the actual global locations is

Λ = ΛpΩ, (14)

where Ω is an unknown transformation that needs to be
determined. The estimate of Ω in the least square sense
is [43]

Ω̂ = (ΛpTΛp)−1ΛpTΛ. (15)

However, it is not possible to calculate ρ0 from (14), as
ρ0 is unknown in Λ. Alternatively, (14) is simplified as

Λ = ΓsΓ
T
s Λ. (16)

by utilizing the property IL−ΓsΓ
T
s = ΓnΓTn [42], where

IL is the L× L identity matrix. Now (16) becomes

ΓnΓTnΛ = κ, (17)

where κ represents a matrix with all zeros in the L× 3
dimension. By re-arranging (17), we get

ΓnΓTn ςLρ
T
0 ≈ ΓnΓTnΘ, (18)

where Θ = [ρ1,ρ2, ...,ρL]T and ςL is a column unity
vector with a dimension of L × 1. The final location
estimation, i.e., the solution of (18), is given by

ρ̂0 =
ΘTΓnΓTn ςL

ςTLΓnΓTn ςL
. (19)

It is clear from (19)that the proposed solution does not
need an a priori initial location estimation of the UV’s,
thus the proposed algorithm provides improved accuracy
for UV localization in VANETs.

A. Analysis

The probability density function for χ0k, conditioned
on ρ0 and ρk can be written as

f(χ0k|ρ0,ρk) =
1√

2πσ20k

e

(
− 1

2σ2
0k

(χ0k−ζ0k)2
)
. (20)

The likelihood ratio of (20) is then given by

lij = −0.5

{
log 2πϕ+ 0.5ν log(‖ρ0 − ρk‖2)

+
1

ϕ

(χ0k − ‖ρ0 − ρk‖)2

(‖ρ0 − ρk‖2)ν/2

}
,

(21)

and the joint log-likelihood is

Φ0k =
∑
k∈L

log f(χ0k|ρ0,ρk. (22)

Now, putting (21) in (22), we get

Φ0k = −0.5
∑
k∈L

{
log 2πϕ+ 0.5ν log(‖ρ0 − ρk‖2)

+
1

ϕ

(χ0k − ‖ρ0 − ρk‖)2

(‖ρ0 − ρk‖2)ν/2

}
.

(23)

The CRLB sets a lower bound on the variance of any
unbiased estimator. CRLB for ρ0 can be developed from
a Fisher information matrix (FIM), Ξ(ρ0), [8], which is
defined as

Ξ(ρ0) = E[−4ρ0,ρ0
Φ0k]. (24)

Here, E and 4ρ0,ρ0
, OTρ0,ρ0

are the expected value
and the second order derivative operators, respectively.
Ξ(ρ0) in the form of submatrices can be written as

Ξ(ρ0) =

Ξxx Ξxy Ξxz
ΞTxy Ξyy Ξyz
ΞTxz ΞTyz Ξzz

 , (25)

where subscripts xx, yy and zz in (25) indicate the
diagonal elements, while, xy, xz and yz show the non-
diagonal elements of Ξ(ρ0). Each element of Ξ(ρ0) is
given by

Ξxx =
∑
k∈L

1

σ20k

ϑ0k(x0 − xk)2

‖ρ0 − ρk‖2
, (26a)

Ξxy =
∑
k∈L

1

σ20k

ϑ0k(x0 − xk)(y0 − yk)
‖ρ0 − ρk‖2

, (26b)

Ξxz =
∑
k∈L

1

σ20k

ϑ0k(x0 − xk)(z0 − zk)
‖ρ0 − ρk‖2

, (26c)

Ξyy =
∑
k∈L

1

σ20k

ϑ0k(y0 − yk)2

‖ρ0 − ρk‖2
, (26d)

Ξyz =
∑
k∈L

1

σ20k

ϑ0k(y0 − yk)(z0 − zk)
‖ρ0 − ρk‖2

, (26e)

Ξzz =
∑
k∈L

1

σ20k

ϑ0k(z0 − zk)2

‖ρ0 − ρk‖2
, (26f)

where ϑ0k = 1+0.5ν2ϕζν−20k is the scaling factor, which
depends on distance . The CRLB(ρ0) is given by [8]

CLB(ρ0) = [Ξ−1(ρ0)]1,1 + [Ξ−1(ρ0)]2,2

+[Ξ−1(ρ0)]3,3. (27)
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Fig. 4. Localization of UVs in 3D with 20 UVs.
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Fig. 5. Localization of UVs in 3D with 25 UVs.

Finally, the CRLB for the proposed algorithm is
√

Π ≥ CRLB, (28)

where MSLE (Π) is

Π = E[(ρ̂0 − ρ0)T (ρ̂0 − ρ0)], (29)

ρ0 and ρ̂0 are the actual and estimated positions of UV,
respectively.

V. NUMERICAL EXAMPLES

A. Simulation Setup

Numerous simulations were performed to analyze the
proposed localization algorithm performance by compar-
ing it with the existing literature [18], [26], [28] and
CRLB. The following parameters are taken for simula-
tion purposes. A 30×30×30 m3 volume was assumed.

TABLE I
SIMULATION PARAMETERS

Parameter Values

Volume 30× 30 × 30 m3

Number of UVs 20-25
Number of AVs 4-9

Variance 10-50
Velocity 5 m/s

20 UVs were generated randomly moving with velocity
of 5 m/s and 4 AVs at [30; 0; 0]T , [0; 30; 0]T , [0; 0; 30]T

and [30; 30; 30]T locations were considered. The ranging
error ω0K was a zero-mean white Gaussian process
having a variance of σ20K . The simulation parameters
are given in Table I.

B. Monte Carlo Simulations

The following four different setups were simulated to
evaluate the performance of the method.
• Setup 1: This is the same setup as described in

Section V-A, such that the locations of the AVs form
a convex hull around 20 UVs at time instant t = t1.
Fig. 4 illustrates this setup for the given simulation
scenario, where the circles show the actual location
of UVs, stars represent the estimated locations and
squares show the location of AVs. We assumed that
all UVs are moving at constant speed i.e, 5 m/s.
After a certain time, i.e., at time instant t = t2, 5
more UVs join the network as shown in Fig. 5. As
the number of UVs is increased from 20 to 25 the
MSLE of the network also increases because the 5
new UVs have extra localization error.

• Setup 2a: In this setup, the impact of fewer Monte
Carlo simulations on MSLE was studied. However,
the UV and AV configurations are the same as
discussed in Setup 1. The range error variance was
kept in the range of 10− 50 dBm2. It is clear from
Fig. 6 that the proposed technique outperforms the
literature, but there are some fluctuations in the
MSLE due to a smaller number of Monte Carlo
simulations. Noted that for the proposed localiza-
tion method each simulation generates independent
and identically distributed results. Therefore the
variance of MSLE is modeled as Bernoulli trail
p(1− p)/n ≤ 1/4n, where p is the true probability
and n is the number of Monte Carlo simulations.
The variance of the simulation results shrinks with
an increase in the number of simulations. Generally,
in order to investigate the properties of a localiza-
tion estimator, the number of simulations is chosen
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to achieve a certain accuracy. It is shown in Fig.
6 that for a small value of n there is large error
variance in the results. In the next setup, we show
that increasing the value of n improves the results
by reducing the fluctuations.

• Setup 2b: In this scenario, the number of Monte
Carlo simulations n is increased from 20 to 5000.
However, vehicle geometries (i.e., AVs and UVs)
are the same as in Setup 1. It is clear from Fig. 7 that
the proposed algorithm is less sensitive to noise than
the literature for a high ranging error. Specifically,
the proposed algorithm achieves about 30.76%-
79.67% improvement in terms of MSLE. Moreover,
Fig. 7 shows that the proposed method can reach
the CRLB with a low range error variance. Fur-
thermore, the irregularity that was present in Fig.
6 was also removed by increasing the number of
Monte Carlo simulations.

• Setup 3: In this setup, the geometry of vehicles in
a network (i.e., AVs and UVs) remained the same
as discussed in Setup 1. The effect of additional
AVs on the performance of the proposed algorithm
is shown in Fig. 8. Here range error variance is
assumed to be 20 dBm2. As the number of AVs
increased in the network, the localization error was
reduced. Due to the fact that in this case, each UV
has the reference information from more AVs. It is
also shown in Fig. 8 that the performance of each
algorithm is improved when AVs are increased from
4 to 9, but increasing the AVs further from 9 does
not improve the localization performance because
the network is saturated with anchors. Thus, from
Fig. 8 the optimal number of AVs can be chosen
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for a specific scenario.

VI. CONCLUSION

In this paper, we proposed an accurate localization
algorithm for public safety applications for vehicular
ad-hoc networks (VANETs) with time of arrival (TOA)
measurements. Cramer Rao lower bound (CRLB) is also
derived for the proposed VANETs localization algorithm
because CRLB is the benchmark to evaluate the per-
formance of any localization algorithm. Furthermore,
numerous simulations are conducted to investigate the
performance of the proposed algorithm. The simulations
showed that the performance of the proposed algorithm
is better than those in the literature especially for fewer
anchor vehicles (AVs) and at a high noise variance.
Future work will focus on improving the mean square
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localization error (MSLE) of the proposed method by
changing the value of ζ0k, although values of σ20k remain
the same in a rank reduction method or by obtaining
a better estimate of Λ from Υ̂ by utilizing a proper
weighting matrix.
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