
Cascading Generative Adversarial Networks for Targeted

Imagination

Thesis by

Abdullah Jamal Hamdi

In Partial Fulfillment of the Requirements

For the Degree of

Masters of Science

in Electrical Engineering

King Abdullah University of Science and Technology

Thuwal, Kingdom of Saudi Arabia

April,2018



2

EXAMINATION COMMITTEE PAGE

The thesis of Abdullah Jamal Hamdi is approved by the examination committee

Committee Chairperson: Dr. Bernard Ghanem

Committee Members: Dr. Wolfgang Heidrich, Dr. Peter Wonka



3

©April,2018

Abdullah Jamal Hamdi

All Rights Reserved



4

ABSTRACT

Cascading Generative Adversarial Networks for Targeted Imagination

Abdullah Jamal Hamdi

Abundance of labelled data played a crucial role in the recent developments in

computer vision, but that faces problems like scalability and transferability to the

wild. One alternative approach is to utilize the data without labels , i.e. unsupervised

learning , in learning valuable information and put it in use to tackle vision problems.

Generative Adversarial Networks (GANs) have gained momentum for their ability

to model image distributions in unsupervised manner. They learn to emulate the

training set and that enables sampling from that domain and using the knowledge

learned for useful applications. Several methods proposed enhancing GANs, including

regularizing the loss with some feature matching. We seek to push GANs beyond the

data in the training and try to explore unseen territory in the image manifold. We first

propose a new regularizer for GAN based on K-Nearest Neighbor (K-NN) selective

feature matching to a target set Y in high-level feature space, during the adversarial

training of GAN on the base set X, and we call this novel model K-GAN. We show

that minimizing the added term follows from cross-entropy minimization between

the distributions of GAN and set Y. Then, We introduce a cascaded framework for

GANs that try to address the task of imagining a new distribution that combines the

base set X and target set Y by cascading sampling GANs with translation GANs,

and we dub the cascade of such GANs as the Imaginative Adversarial Network (IAN).

Several cascades are trained on a collected dataset Zoo-Faces and generated innovative

samples are shown , including from K-GAN cascade. We conduct an objective and

subjective evaluation for different IAN setups in the addressed task of generating
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innovative samples and we show the effect of regularizing GAN on different scores.

We conclude with some useful applications for these IANs, like multi-domain manifold

traversing.
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Chapter 1

Introduction

Future AI agents will be interacting with humans and performing more advanced

tasks than just classification or detection. Among the qualities of such agents is to

push the boundary for human knowledge, using a unique capability that we humans

take for granted - namely - imagination. Imagination can be roughly defined as the

ability to envision what we have not seen based on what we have seen before. In this

work we introduce a cascaded framework of generative models we call the Imaginative

Adversarial Network (IAN) in which we try to try to model new imaginative image

distributions from base set X and target set Y.

1.1 Deep Learning and Labeled Data

Deep neural networks have shown great success in pushing the envelope with regards

to discriminative tasks, such as classification and detection [3, 4]. It is clear that large-

scale fully annotated datasets (e.g. ImageNet [5]) have played a crucial role in this

development. However, they are still influenced by biases, which limit their usefulness

in the wild [6]. The cost of laborious labeling of data (e.g. activity localization in

videos or pixel-level segmentation) leads us to look for alternative ways that can

enable further improvements in computer vision tasks. Learning from synthetic data

seams a promising direction to tackle this problem in which some notable success is

shown due to the fact that full knowledge about the simulated environment is taken
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for granted [7, 8, 9]. However , as pointed out by Roberto et al. [8] , learning on such

simulated data suffer from the domain adaptation problem when testing on real data.

1.2 Unsupervised Learning in Rescue

In a different direction , Generative Adversarial Networks (GANs) have emerged as

a promising family of unsupervised learning techniques that have recently shown

the ability to model simple natural images, including faces and flowers [10]. In the

last couple of years, this topic has gained a large amount of attention from the

community, and since its inception, many variations of GAN have been put for-

ward to overcome some of the impediments it faces (e.g. instability during training)

[11, 2, 12, 13, 14, 15, 16, 17]. Interestingly, GANs have proven useful in several

core image processing and computer vision tasks, including image inpainting [18],

style transfer [19], super-resolution [20, 21],manifold traversing [22], hand pose esti-

mation [23], and face recognition [24]. These success cases indicate that GANs have

the potential to learn (in an unsupervised way) important underlying natural image

properties that are exploited in turn to synthesize images.

However, one characteristic of the GAN is that it is bounded to the data that it

uses for training. In many cases, it might degenerate to simply memorizing training

data, thus, limiting its ability to discover new “territory” in the manifold of natural

images. The ability to discover unseen territory is crucial because it can help to

bypass the domain adaptation problem of classification [25]. Although some recent

work has been done to maximize innovation in synthesized GAN sample [26], it is

limited in scope to the specific domain of art and does not specify the direction of

innovation. Our proposed cascaded approach, IAN, goes beyond this limitation by

defining a generic base set X and target set Y.
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1.3 Advancing GANs

Our proposed regularized K-GAN is inspired by recent work on feature matching in

adversarial image generation [27, 19, 28, 29, 7, 16], which aims to match the generated

image to another set of images in high-dimensional feature space. However, Johnson

et al. [19] is optimizing for a single image not a distribution, while Warde-Farley and

Bengio [16] matching was bounded to denoising local features of GAN. We utilize

more general features of AlexNet [3] trained on ImageNet[5] object classification.

Unlike the common practice of modeling base class X and enforcing the generated

output to follow certain class label or features of class X [27, 28, 29], we aim to

push toward features of target set Y different from X while preserving the GAN

modelling of X. Furthermore, most of the methods relied on taking the features of

sampled data without validating their quality before matching to them.We propose to

follow K-nearest neighbor approach in the high-level feature space in the training of

GAN. Recently, CycleGAN [1] showed excellent results in image-to-image translation

from source domain X to target domain Y based on cycle consistency regularizer to

adversarial loss, but as pointed out in their paper, it fails to model transformation

when there are geometrical differences between objects in X and Y. We propose to

utilize CycleGAN as the translation GAN in our IAN framework in cascade with

different sampling GAN variations ( including our novel K-GAN ) to achieve the goal

of modeling new meaningful distribution between X and Y.

1.4 Objectives and Contributions

The contributions of this thesis folds in the following streams:

• We propose a new regularizer for GAN that uses K-NN selective feature matching

to target set Y in high-level feature space during the adversarial training of any GAN,

and we call this novel model K-GAN.
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• We show that minimizing the added term in K-GAN follows from cross entropy

minimization between Y and the GAN distribution.

• We present a cascade framework for GANs (IAN) to push their output samples

away from the base domain X to target Y, and we train and test different IANs

including K-GAN+CycleGAN.

• We conduct objective and subjective evaluation for different IAN setups in the

addressed task and show some useful applications for these IANs , like multi-domain

manifold traversing.
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Chapter 2

Related Work

2.1 Generative Adversarial Network

Generative Adversarial Networks (GANs) [10] are generative models consisting of

a Discriminator DX and a Generator G that are adversarially trained in a similar

manner as a minimax game. The discriminator tries to determine if a given image is

real (from training) or fake (generated by G). The Generator on the other hand is

trying to change the generated samples to better fool DX . This can be formulated as

the following minimax game on the loss function LGAN(G,DX ,PX):

min
G

max
DX

LGAN(G,DX ,PX) =

Ex∼px(x)[log DX(x)] + Ez∼pz(z)[log(1−DX(G(z)))]

(2.1)

where PX is the distribution of images in domain X, z ∈ Rd is the latent uniformly

random vector. Fig Zhao et al. introduces energy-based loss for GANs [30], and

recent GANs uses the Wasserstein distance instead of K-L divergence as objective

[11, 2]. Both Energy Based GAN (EBGAN) [30] and Boundary Equilibrium GAN

(BEGAN) [2] uses auto-encoder Discriminator network with its loss defined as L2

pixel difference between input and output.
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Generator 
G

Discriminator 
DX

Random 
noise z

Fake/Real

Fake Images G(z)

Real Images X

Figure 2.1: GAN structure : DX tries to determine if a given image is real (from training)

or fake (generated by G). G) on the other hand is trying to change the generated samples

to better fool DX . z is used to sample images from G).

2.2 Feature Matching

The method of Warde-Farley and Bengio [16] uses Denoising Auto Encoder (DAE)

feature matching to enhance the training of the generator and to increase the di-

versity of the samples. The work of Dosovitskiy A. and Brox T. [27] shows that a

conditioning network C (also called Comparitor) can be incorporated in the GAN

loss by adding a discrepancy loss in deep feature space, which measures the difference

between the generated image and same class images in this feature space to increase

Perceptual similarity. A similar technique is used for style transfer and super reso-

lution by Johnson et al. [19]. They try to match covariance matrix of deep features

of some image (extracted from VGGNet [31])and match that to some target domain.

Shrivastava et al. [7] uses GAN loss to improve the quality of synthetic images and

used the deep features of a network trained on classifying eye gaze to maintain the

key elements of the synthetic data (e.g. the direction of gaze). Plug&Play [29] uses

DAE to model the FC7 and Conv5 layers of C network and shows that it can improve
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the quality of the generator network under some conditions.

2.3 Guiding the Generator to New Distributions

As pointed out by Elgammal et al. [26], GANs by nature emulate but do not inno-

vate, hence their work introduces the Creative Adversarial Network (CAN) to tackle

this issue. They add a loss to the traditional GAN loss to encourage the generator to

increase its entropy so as to fool the discriminator, leading the generator to produce

more innovative samples. We tackle the same problem but through a different ap-

proach. As compared to [26], we define a target set Y with distribution PY (different

from the data distribution PX) that guides the generator to new territory. In this

context, the work of LIU and Tuzel [25] introduces CoGAN to model the joint dis-

tribution by coupling two GANs in parallel with shared network weights. This aids

domain adaptation when simple distributions are available (e.g. MNIST [32]). How-

ever, it does not work well for more complex domains as compared to CycleGAN [1].

Unlike image manipulation [33], which manipulates individual image at a time, we

manipulate the entire distribution of G from which we can sample (given the model

trained properly).

2.4 Cycle-Consistent Adversarial Networks

Recently, Cycle-Consistent Adversarial Networks (CycleGAN) [1] has shown com-

pelling results in image translation by imposing cycle consistency between two gener-

ators (each takes images as input). It produces a sharp translation from one domain

X to another domain Y with no paired training. CycleGAN has the following loss on

the two distributions PX and PY :

LCycGAN(A,B,DX ,DY ) =

LGAN(A,DY ,PY ) + LGAN(B,DX ,PX) + λ Lco(A,B)

(2.2)
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Base Set Target Set
A

B

YX

DY

DX

update

update

A

Training Inference

Figure 2.2: CycleGAN [1] : generator A is conditioned on the set X as its input and is

encouraged to output images in the distribution PY , whereas generator B is conditioned on

the set Y as its input and is encouraged to output images in the distribution PX .DX ,DY

are discriminators on their respective domains X and Y

where A,B are the two generators, DX and DY are the discriminators for domains

X and Y respectively. Lco(A,B) is the cycle consistency loss of the CycleGAN that

encourages that B(A(x)) = x and is defined as:

Lco(A,B) = Ex∼px(x)[‖B(A(x))) − x‖1] + Ey∼py(y)[‖A(B(y))) − y‖1]] (2.3)

where λ is controls the consistency regularizer. The idea works as follows : generator

A is conditioned on the set X as its input and is encouraged by LGAN(A,DY ,PY )

to output images in the distribution PY , whereas generator B is conditioned on

the set Y as its input and is encouraged by LGAN(B,DX ,PX) to output images in

the distribution PX . The extra term Lco(A,B) insures that style transfer does not

collapse to a single image.

Although CycleGAN shows compelling results when the images translation occurs
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in texture or color, it shows less success when the translation requires geometric

changes. This is due to the limited features modeling CycleGAN performs. We

address this limitation in our proposed method by enforcing change in the object’s

deep features, which tend to go beyond mere texture representation. We do this by

introducing K-NN feature matching , which encourages the generated sample to be

close in deep feature space to its nearest neighbors in the target set. Interestingly,

we also see that this type of matching can also be viewed mathematically as a way

to reduce the cross-entropy between the target distribution PY and the distribution

of the generated images.
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Chapter 3

Methodology

We propose Imaginative Adversarial Network (IAN), a two-stage cascade imaginative

model that aims to generate samples that resemble base set X and target set Y. First,

we sample from a GAN by a latent vector z, then the second stage is a translation

GAN, that takes the samples from the first stage and translate them to a different

domain.In the first stage (sampling stage), we use the classical DCGAN[34] and recent

BEGAN[2], along with their K-NN regularized versions . We use the recent CycleGAN

[1] as a second stage with both stages trained on the same X and Y sets and cascaded

during the sampling to obtain an output that both have key properties of X and Y

as illustrated in the flowchart in Fig 3.2. For start , we develop the K-NN regularized

GAN in the following subsection.

sampling
GAN

Translation 
GAN

IAN
X

Base Set

Y

(X,Y) Imaginative 
Output set

Random 
latent vector

Target Set

Figure 3.1: Imaginative Adversarial Network (IAN): addressing the task of generating sam-

ples from a domain between base set X and target set Y. The first GAN generate samples

from learned distribution and the other GAN is conditioned on the output of the first GAN

to translate to Y. The final samples combine characteristics of both sets X and Y
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. . .

. . .

C(G(z))

Feature Set(ψ)
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Output of regularized 
K-GAN
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Figure 3.2: K-GAN as a flavoured sampling GAN : We propose K-NN regularizer for GAN
that models a set X to push it further toward target set Y. In red frame left is the stan-
dard GAN of Generator G, Discriminator D. We add regularizer (right) with deep features
extracted by conditioning network C on target Y and output of G. The target of regression
in deep feature space is selected based on K-NN search in the features set of Y. Samples of
K-GAN maintain X main appearance but obtain some Y properties (e.g. the pandas eyes
and nose above).

3.1 K-GAN

K-GAN adds to the traditional GAN loss in Eq (2.1) a term that encourages the

generator distribution Pg towards a target distribution PY through cross entropy

minimization. The similarity of Pg to PX is also encouraged through the traditional

GAN loss. The K-GAN loss is defined as follows:

LKGAN(G,DX ,PX ,PY ) = LGAN(G,DX ,PX) + µ Ez∼pz(z)[H(G(z),PY )] (3.1)

where the added term is the cross entropy between the image distribution of our

generator Pg and the image distribution of the target PY , and µ is a regularizing

hyperparameter. We replace the cross entropy H(G(z),PY ) with the following K-
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NN regularizer:

LKNN(G,PY ) = Ez∼pz(z)

k∑
n=1

‖C(G(z))− rn (C (G (z))) ‖22 (3.2)

This is the distance between a generated sample from G by a latent vector z and

its K-NN samples of the target distribution PY from the total M samples available

from PY . This distance in not pixels, but in high-level feature space defined by the

Comparitor network C(b) ∈ Rs which takes an image b ∈ Rh×w as input and outputs

feature vector (in our case it was FC7 and FC6 of AlexNet [3] trained on ImageNet

[5]). Refer to Fig 3.2 for visualization. rn(c) is the K’th NN function, a parametric

(with parameter n) order selection function that selects an element yi from a set of

M − n + 1 elements based on how close it is to input vector c. It can be described

by the following:

rn(c) = arg min
yi∈ψn

‖c− yi‖2, (3.3)

where ψn is the set of deep features of M − n + 1 images representing the target

distribution PY . The optimization in (3.3) is discrete and the resulting function

rk(c) is complicated and indifferentiable but fixing it to current estimate of G solve

the problem. See Sec.4.2 for training details.

3.1.1 Deriving Eq (3.2)

To show how we get Eq.(3.2), first we look at PY . Since acquiring a full description

of PY in deep feature space is infeasible in most cases, we settle to approximate it

using M target samples. We can get a proxy distribution of PY by using Kernel

Density Estimation (KDE) on the deep features extracted by deep network C(x)

from those M samples in PY . By picking Gaussian kernel for the KDE, the proxy

distribution estimator P̂Y,proxy is defined by a Bayesian non-parametric way at any

point C(b) ∈ Rs for b ∈ Rh×w as follows:
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P̂Y,proxy(b) =
1

Mσ
√

2π

M∑
i=1

exp

(
−‖C(b)−C(yi)‖22

σ2

)
(3.4)

yi is the ith sample describing PY and σ2 is the Gaussian kernel variance. For far im-

ages from the M samples of P̂Y,proxy the probability becomes exponentially negligible.

Hence, we we can investigate the effect of a subset of K points (out of the M points

C(yi)) that are closest to C(b) to compute (3.4). We replace M by K in (3.4), and

then use Jansen inequality on that modified KDE to get a bound on the expression.

By replacing b by G(z) and taking logarithm of expectation of both sides, we obtain

upper bound on the cross entropy Ez∼pz(z)[H(G(z),PY )]. The bound found is the one

in (3.2), and by minimizing that bound we minimize the cross entropy in Eq.(3.1).

For a detailed derivation, please see Appendix A.

The K-GAN objective is therefore defined as follows:

min
G

max
DX

LGAN(G,DX ,PX) + µ LKNN(G,PY ), (3.5)

where the two terms follow from (2.1) and (3.2) respectively.

3.1.2 Reasons behind K-NN Feature Matching?

The goal of employing K-NN feature matching in our loss is to utilize the distribution

obtained by deep features of some set Y to guide the generation of the GAN. If GAN

generated samples are close to all samples of target set Y in deep features, we become

more confident about the ”objectiveness” of our samples. However, measuring the

distance to all samples features in a set is computationally expensive, especially in an

iterative optimization like what is in GAN training. Hence, following the neighbors

to guide the generation seems a viable alternative to the expensive global judgment

of all samples.

Using K-features rather than a single feature at each training iteration will further
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improve the robustness. This is due to the fact that features at layers (i.e. FC6

and FC7) of AlexNet are prone to small imperceptible noise. To demonstrate this,

we add uniform noise with a maximum pixel corruption of 4% to 10000 randomly

selected images from the ImageNet validation set. This resulted in a relative change

in intensity values as high as 20%. This shows that the high-level feature space is prone

to noise and depending on that solely can lead us astray from the objective we seek.

That is why many previous works [29, 16] adapted the DAE in their architectures to

mitigate the volatility of deep features. So, using the K-nearest neighbor goes along

the same direction with smoothing parameter K.

3.2 IAN Cascade

As described in Sec.1, an IAN model consists of a sampling GAN and a translation

GAN to generate samples that capture the properties of two sets X and Y. We utilize

our K-GAN model developed in Sec.3.1,along with other Vanilla GANs, and cascade

them with the recently developed cycleGAN [1] after training each separately with

some fine-tuning (see Sec.4.2 for training details). The goal is to utilize the ability of

CycleGAN to transfer appearance for our sake to generate natural looking samples

that capture key properties and appearance of both X and Y. By using K-GAN as

input to the CycleGAN, the later gains the following advantages:

3.2.1 Sampling

z vector sampling is a property of GAN to sample from the modeled distribution.

However, CycleGAN is conditioned on input images. Hence, we use the sampling in

K-GAN and transform the output with CycleGAN. While this can be done by any

GAN, we show in Sec.5.1,5.2 how regularized cascades outperform others in many

metrics .
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3.2.2 Object geometry

As pointed out by its authors, CycleGAN is limited to the appearance transfer when

it comes to cross-class translation (e.g. transforming cat to dog) [1]. We try to tackle

this by enforcing feature matching to the target set, which results in geometric change

that is appended by the appearance transfer of CycleGAN.

3.2.3 Regularization.

While the CycleGAN is trained on natural images, it is used here to translate syn-

thetic images produced by other GANs. This poses the risk of amplifying the imper-

fections produced by the first GAN. We show in Sec.5.1 that regularizing the GAN

(as in K-GAN) limits the possible outputs which helps in mitigating this effect of

error amplification when CycleGAN is fine tuned to the regularized samples. The

diversity of the final samples is achieved by the cascade effect with CycleGAN.
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Chapter 4

Experiments

4.1 Implementation Details

For the K-GAN part, we use the basic network implemented in Deep Convolutional

GAN (DCGAN) [34] and the more advanced architecture in BEGAN[2]. The KNN-

FM term makes use of deep features extracted from the FC6 and FC7 layers of

AlexNet [3] pre-trained on ImageNet[5]. AlexNet was favored over deeper networks

because at each iteration of training K-GAN, feature extraction, multiple forward

passes, and backpropagations are required for updating G. We used FC7 because it

showed the ability to represent images in many image tasks, including classification

[35]. We used FC6 because it helped in transferring the key properties of the object

along with FC7. We use the same CycleGAN network as proposed in [1], in which

they used the PatchGAN discriminator implemented in [20] and U-Net Generators.

The image output samples in all our cascasdes have 227×227 pixel resolution.

4.2 Training

4.2.1 Training Data

We used CelebA [36] as our base set X and we used 10 different animal classes from

ImageNet [5] as our target set Y. The Y dataset was manually filtered to be suitable

for the task of imagining humanoid animals by ensuring that the face of the animal

appears in the image. Each of the Y target classes contains 100 to 500 images. The

Y classes are gorillas, chow chow dog, Egyptian cat, koala ,lion, Norwegian-elkhound
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dog, panda, Samoyed-dog, spider, and tiger. They were used because of their dis-

tinctive features, the abundance of facial data, and range of difficulty. We call this

filtered dataset Zoo-Faces, and it will be made publicly available with the code. Re-

fer to for some qualitative examples from this dataset. We tried to use ImageNet [5]

without filtering, and that did not help to achieve the objective, and therefore we had

to use filtered data collected from the internet. See Sec.5.3 for more details. Before

training, we take the Zoo-Faces dataeset and extract the FC7 and FC6 features by

the Comparitor C (AlexNet) to obtain 20 different feature matrices of FC7 and FC6

for the 10 classes. These feature sets are then passed to the K-GAN to be used in

training.

4.2.2 Training Procedure

Since we are running a gradient descent based algorithm (Adam optimizer [37]), by

fixing the argument of rk(.) in Eq.(3.3) to the current estimate of the generator Gt

at time step t, the term rn(C(Gt(z))) is just a constant dn,t at that iteration. For

step t and parameter n = K, we use the ball-tree algorithm [38] to search for K-NN

features in the previously obtained set ψn that are close to the current sample from

Gt(z). The term in Eq.(3.2) becomes the familiar `2 regularizer:

Ez∼pz(z)

k∑
n=1

‖C(G(z))− dn,t‖22 (4.1)

For practical reasons, we minimize the distance between C(G(z)) and the average of

the K neighbors instead of the distances to all of them independently. This is justified

and can be seen by expanding the norms and looking at the argument minimizer

to realize it is the same in both cases. please refer to Appendix B for detailed

mathematical justification. We trained each GAN on CelebA and then used the



33

pretrained model to fine tune the K-GAN according to KNN-FM on CelebA and

each class from Zoo-faces as target Y. At each iteration, we search the KNN features

of FC7 and FC6 in ΨFC7,ΨFC6, which are the sets of features of class Y and pick the

mean of the two K features as two regularization targets for the GAN. Because of

the use of the ball-tree search [38] and SciPy library [39], the search is done real-time

and delay of the training time of K-GAN is only 70% more compared to GAN with

similar structure and for small target class Y of 100-500 instances. In general, the

time complexity of the tree search is approximately O(s logM), where s is the feature

dimensionality, and M is the number of features in Ψ. The CycleGAN was trained

independently on a subset of CelebA and each one of the 10 classes of Y and then

fine tuned with samples of the casaded GANs .This procedure was followed to obtain

10 K-DCGAN , 10 K-BEGAN , and 10 different CycleGANs corresponding to the 10

classes in Zoo-Faces. In the following section we look at the procedure to obtain the

hyper-parameters and their values .

4.2.3 Selecting the Parameter K and µ for Training K-GAN

To study the effect of changing the K parameter of nearest neighbor search, we look

at the cardinality of the set χ (a subset of the set Ψ of a high level feature of the

target Y ). χ contains different features from class Y that have been selected during

the KNN search in K-GAN training. A bigger χ cardinality is an indication of a

better hyper-parameter selection, which means we have more effectively utilized the

set Ψ and the KNN search did not pick one feature several times during the training.

We use this number as a validation metric to assess the quality of the training. We

picked K = 4 because it compromises both the utilization of Ψ and the stability of

the training. The value of µ hyperparameter (coefficient of the KNN regularizer) was

picked to be 0.001 for FC7 and 0.0001 for FC6. For χ the subset of features picked

by KNN search during the training of K-GAN out of M features, the following Fig
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K-GAN model K µFC7 µFC6

Apes 8 0.012 0.001
egyptian-cat 8 0.010 0.001
Chowchow 8 0.012 0.001

koala 4 0.010 0.001
Lion 8 0.010 0.001

Norwegian elkhound 4 0.012 0.001
panda 4 0.010 0.001

samoyed dog 4 0.010 0.001
spider 8 0.010 0.001
tiger 4 0.010 0.001

Table 4.1: The values of parameter K and coefficients of regularizer used in training different

K-GAN models.

D.10 shows percentage of card(χ) to M for different choice of target class Y and

different values of hyper-parameter K. We used this percentage as quick validation

metric to assess the quality of the training. We picked K such that we covers large

percentage of the target set while preserving the uniqueness of each image feature.

Also , since we are taking the mean of the KNN features , larger K is less prone to

noise especially if there is an image in the training that is very unique from others

and can be picked by the KNN search several times.

The µFC7, µFC7 (the coefficients of FC7 and FC6 regularizers of K-GAN ) were picked

to insure that the key properties were indeed transferred from Y to X, at the same

time not over-regularizing the model which can lead to the collapse of the K-GAN

model and producing only a single image. Table 4.1 shows the values of K and

µFC7, µFC7 picked to train the final 10 K-BEGAN models that we reported its samples

and did all the tests on for the 10 different Zoo-Faces dataset classes.
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4.3 Sampling

After training, the models are cascaded, and sampling takes place in which we sample

latent random vector z ∈ [−1, 1]d, d = 100 and pass it as input to the GANs and K-

GANs similarly (No feature search happens at this stage). The image samples are

then passed as input to the CycleGAN trained on the same X and Y sets that K-

GAN was trained on. We obtain the output of an IAN model as in Fig 4.2 for

K-BEGAN+CycleGAN. We show the closest training example next to some samples,

as advised by [40]. More samples from the different models are provided in Appendix

E
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Figure 4.2: Samples from K-BEGAN and its corresponding IAN: green-framed columns are
K-BEGAN samples, orange-framed columns are full-IAN samples, each row is one X-Y IAN
model where X:faces and Y is a class in Zoo-Faces. The far left and far right blue framed
columns are the closest training examples to the neighboring K-BEGAN and IAN samples
respectively.
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Chapter 5

Results

5.1 Objective Evaluation

5.1.1 Baselines

Ultimately, we want our generated samples to be indistinguishable from real samples;

hence, we include the training images from X and Y as a reference for GAN model

evaluation. We include the following GAN models (along with their cascade with

CycleGAN) as baselines for fair comparison with our K-GAN and its cascade.

DCGAN , BEGAN: Vanilla DCGAN [34] and BEGAN[2] trained on CelebA.

mxGAN: naive approach of combining X, and one class of Y by mixing the two sets

as one training set of the DCGAN.

PerceptualGAN: feature matching GAN without the use of KNN search (random

K selection), similar to [27].

rand+Cyc: random noise translated with trained CycleGAN.

5.1.2 Evaluation Metrics

As indicated by Theis et al. [40], evaluating the generative models based on log like-

lihood’s approximations (e.g. Parzen window) should be avoided, and the models

should be evaluated in the application they are being used in. To evaluate the imag-

ination capability of our IAN model, we use the idea of inception score proposed by

Salimans et al. [14] on the target class Y. However, since we are developing different

models for each class and the goal is not to model the data but to imagine new distri-



39

score(.) err(.)
model X Y avg X Y avg

real(X) 100 0.03 50.01 0.00 70.12 35.06
real(Y) 10.05 100 55.03 55.87 0.00 27.93

real(X)+Cyc 14.03 66.68 40.35 48.57 56.99 52.78

DCGAN[34] 95.90 0.05 47.97 47.11 67.18 57.14
mxGAN 88.15 0.05 44.10 48.03 67.86 57.95

BEGAN[2] 87.88 0.03 43.95 45.66 60.27 52.97
P.GAN [27] 99.76 0.06 49.91 46.51 67.22 56.86
K-DCGAN 98.55 0.05 49.30 47.27 66.77 57.02
K-BEGAN 97.29 0.36 48.83 44.43 58.10 51.27

rand+Cyc 1.56 0.09 0.83 49.69 54.87 52.28
DCGAN+Cyc 11.76 57.70 34.73 49.46 55.77 52.62
mxGAN+Cyc 10.19 52.15 31.17 49.54 55.98 52.76
P.GAN+Cyc 7.90 61.33 34.62 49.25 55.00 52.12
BEGAN+Cyc 30.05 68.08 49.07 49.04 52.03 50.53

K-DCGAN+Cyc 13.14 61.44 37.29 49.25 55.00 52.12
K-BEGAN+Cyc 22.95 78.09 50.52 49.67 52.80 51.23

Table 5.1: Objective Evaluation :The percentage scores (more is better) and normalized

pixel-error percentage (less is better) for base set X, and target set Y. bold is best and

underlined is second best. First three rows are actual data put for reference.The following

six rows are different GANs, the last seven rows are cascaded GANs.Scores are averaged

over the 10 different Y sets See Sec.5.1 for details

butions between X and Y, we adopt the score for that purpose. We use the inception

network[41] softmax probability of the modeled class directly (averaged over all sam-

ples), and then average the score over all models learned on the different classes and

finally normalize the score by the score of real(Y), and we call this score(Y). For

base class assessment (the face), we use face detector accuracy as a metric. We used

OpenCV [42] implementation of the famous Viola-Jones detector [43] to measure how

our transformed faces retained the properties of the face. The face score(X) in table

5.1 is defined as the percentage of images which the detector triggered a face. We

use an extra evaluation criterion followed by [27] and [22] by taking the normalized

pixel-wise error defined as follows: err(x) = ‖NN(x)‖2
J

where NN(x) is the pixel-wise

nearest neighbor to x in the training, J is the average distance between uniform ran-
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dom noise in the training data. An err(x) = 1 means our samples are no better than

random noise, and a err(x) = 0 indicates we generated a sample from training. For

sampling, we follow a similar procedure to [14] by using 1000 samples from different

setups. We calculate the scores and error for both X and Y and the average of both

on all the samples of each model for all ten classes of Y and the base class X. Table

5.1 summarizes the results.

5.2 Subjective Evaluation

The nature of the task we are addressing, i.e. imagination , is subjective and in-

volves human judgment. Therefore , we did extensive human experiments using

Amazon Mechanical Turk online tool. We designed two experiments to evaluate the

quality and the information conveyed by the samples from the different IAN models

respectively.

5.2.1 Quality Pair-wise Comparison

In this experiment , the human subjects were shown human faces and a class from

Zoo-Faces and then shown a pair of samples from two different setups . The task

was to pick the one which was better looking and represent both the human face and

the given class. A total of 15,000 pairs were shown to more than 150 unique human

annotators to compare the quality of the generated samples from 6 different setups( 4

IANs and 2 GANs) with a total of 15 combinations .The percentages shown in table

5.2 represent the frequency of human subjects picking that model against its rival ,

averaged over the 10 different classes of Zoo-faces. The higher the percentage of a

model the better humans view the samples of that model.
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model (id#) (1) (2) (3) (4) (5) (6) avg HCA

BEGAN (1) N/A 25.70 34.50 47.30 34.90 31.80 34.84 N/A
K-BEGAN (2) 74.30 N/A 38.80 38.80 36.90 47.00 47.16 15.35

DCGAN+Cyc (3) 65.50 61.20 N/A 71.60 35.90 32.70 53.38 64.34
K-DCGAN+Cyc (4) 52.70 47.50 28.40 N/A 24.80 20.70 34.82 68.28

BEGAN+Cyc (5) 65.10 63.10 64.10 75.20 N/A 54.40 64.38 57.98
K-BEGAN+Cyc (6) 68.20 53.00 67.30 79.30 45.60 N/A 62.68 63.94

Table 5.2: Human Subjective Evaluation :Pair-wise quality comparison and Human Clas-

sification Accuracy (HCA) for six different IANs, and GANs . The Pair-wise percentages

represent the frequency that a certain model’s samples were preferred against their rival’s

model samples by human subjects .HCA is for a classification task given for the subjects

that were asked to classify the samples from different IANs. The higher the HCA the more

easily identifiable are the IAN samples. See Sec.5.2 for more details

5.2.2 Human Subjective Classification Experiment

In this experiment , the human subjects were asked to classify the samples generated

from each IAN setup .Five setups were trained on 10 different Y target classes from

the Zoo-Faces dataset to give a total of 50 IAN models .A hundred samples ( like the

ones in Fig. 4.2) were drawn from each model to give a total of 5K images as a testing

set for the annotators to classify. A total of 25 unique human participants classified

the samples to the closest animal from Zoo-Faces classes. The Human Classification

Accuracy (HCA) is shown in table 5.2 . The HCA indicates how easily identifiable

are these generated samples. Please refer to Fig 5.1 for the Human Confusion Matrix

of the K-BEGAN+Cyc setup and Appendix C for other setups.

5.3 Ablation Study

5.3.1 Changing the Training Data

We tried different data other than faces, and by using target class Y that are not

animals and very far from the faces. We found that the more significant the difference
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is between X and Y the harder it becomes to produce meaningful results from the IAN

structure. We show some cases of hard imagination (e.g. tiger to flower and shoe to

tiger) in Fig 5.2(a) with success (maintaining some key X properties after translation

to Y) and failure (losing all X properties after translation). We reason that the

further the classes in feature space, the possibility for the network to converge to a

local minimum increases and hence not reaching to the target distribution.

5.3.2 Abandoning the Search

Picking a random image in the target set and using its features as the target of the

regularizer seems to be a valid simpler option. However, randomly picking features
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(c)(a) (d)(b)

Figure 5.2: Ablation study: (a) Hard Imagination, trying to translate images from
set X (e.g. tiger) to very different set Y (e.g. flower) using CycleGAN. (b-d)studying
the effect of altering parts of the model on the GAN output and its corresponding cas-
caded sample with CycleGAN (b)abandoning the K-NN search produce high frequency
artifacts. (c)abandoning the K-NN feature matching leads to amplifying blurriness after
cascade.(d)BEGAN vs DCGAN as base model . in all part red is failure and green is
success.

can cause a rapid change in the objective of the GAN and hence introduce high-

frequency artifacts as in Fig 5.2(b). These artifacts amplify when the samples pass

by CycleGAN, and as results in table 5.1 suggest. Picking KNN features ensures

stability in the objective and hence produce better samples.

5.3.3 Abandoning the Regularizer

Using GAN to produce samples of the modeled data X then passing those samples

to a trained cycleGAN to transform them and give the final samples seems intuitive.

However, as we argued in section 3.2, and as can be seen in Fig 5.2(c), using un-

regularized GAN and building on top that can lead to systemic failure in which the

error can amplify.

5.3.4 Different GAN structures

using the advanced BEGAN[2] instead of DCGAN[34] as base model produced better

results from resulting K-GANs and IANs. 5.2(d)
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5.4 Discussion

Investigating the results in Fig 4.2 and tables 5.1 and 5.2 , we see that cascading

any GAN model by CycleGAN increase the realism of target class Y by 40% in the

inception accuracy and be very close from the inception of an actual image .Also, it

increases its likeability score in table 5.2 by about 15%. However, it deteriorates the

realism of the base class (the human face in our case). adding the K-NN regulizer

made it easier for both Inception Network Softmax and humans HCA. The human

likeability tends to favour unregularized IAN over regularized IAN , but K-GAN still

outperforms GANs.
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Chapter 6

Applications

6.1 Multi-Domain Image Manifold Traversing

We follow the standard practice of utilizing the modeled distribution in manifold

traversing [22]. But since we have trained different IANs on the same X and different

Y, we can do multi-domain traversing for different manifolds with only two images.

First, we pick two training samples from X, e.g. xR1 ,x
R
2 . Then, we utilize the auto-

encoder architecture of the discriminator of the trained BEGAN to encode the two

samples and obtain their latent vectorsz∗1, z
∗
2 as follows: z∗ = Dencoder(x

R) Then, by

taking N convex points between these two latent vectors, we obtain zi, i ∈ [1, · · · , N ]

and find the corresponding decoded images as Ddecoder(zi). By translating these

samples by CycleGAN, we can traverse different Y manifolds with only two samples

from X as in Fig 6.1. More qualitative results of this application are provided in

Appendix E.

6.2 Celebrity Zoo

Imagine going to a zoo full of hybrid human-animals. We try doing this by using the

IAN models trained in Sec.4.2. We take a collection of celebrities from CelebA and

encode them using the BEGAN Discriminator auto-encoder as in Sec.6.1, and pass-

ing teh decodes to the CycleGAN for different animals from the Zoo-Faces dataset,

obtaining animal (and insect) counterpart for each celebrity in Fig 6.2.
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Figure 6.1: Multi-domain image manifold traversing: moving from one point to another in

different Y classes using the same pair in base set X . The top row is the actual traversing

by convexing the codes obtained by the auto-encoder of BEGAN [2] and then decoding

the convex codes .The rest of the rows are translations of the first row bu using different

CycleGANs.

Celebrity gorilla cat lion koala
Norwegian 

dog panda Samoyed spider tiger

Figure 6.2: Celebrity-Zoo: seeing how celebrities look in the animal kingdom by using

different IAN models trained in Sec.4.2.
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Chapter 7

Concluding Remarks

7.1 Summary

Deep neural networks, cheap parallel computing , and abundance of labelled data

shaped the new wave of AI in the recent years and helped advancing the fields of

computer vision -and to lesser extent- natural language processing. The availability

of abundant densely labelled low-noise data and transferability of learned models

to the wild remain unsolved problems. One approach is to use synthetic data and

simulations to learn models that will eventually be used in the real world , but domain

adaptation is substantial obstacle to this approach. Another direction is to utilize the

data without labels , i.e. unsupervised learning , in learning valuable information and

put it in use to develop different applications. GAN is one unsupervised approach

that attracts the attention of the AI community for its abilities to model image

distributions and generate sharp images, along with its uses in many image processing

and vision applications.

In this work , a new regularizer is proposed for GANs based on K-NN feature

matching in GAN setup with two different sets (base X, target Y) and it was shown

how that helps in obtaining key properties of Y while keeping the GAN modeling

of X. The added regularizer follows mathematically from the cross entropy distance

between the distributions of Y and the GAN distribution.

Also, a framework for cascading GANs (i.e. IAN) is presented to address the

task of imagining new distributions that combine base set X and target set Y. We
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experiment with different IAN setups and show samples of one such setup that uses

K-GAN and CycleGAN in which a filtered dataset was collected for the training. A

series of objective and subjective evaluations were conducted on different IANs and

bench-marked against baselines. From the results, we note that cascading any GAN

model by CycleGAN increase the realism of target class Y by 40% in the inception

accuracy and by about 15% in the likeability average score in the subjective evalua-

tion. Furthermore, while the regularized IAN comprising of K-GAN and CycleGAN

was easily identifiable by Inception networks and humans , humans favoured Vanilla

IAN in pair-wise comparison. We conclude our work by showing some applications

for the IAN framework, like multi-domain manifold traversing and Celebrity-ZOO.

7.2 Future Research Work

Extending the IAN for more than two two sets , rather a pool of different sets, follow

directly from our work. A potential use is to utilize IAN in zero-shot learning in

which we learn from the generated samples based on some priors about the new class

of unseen samples.

A more interesting direction that can be discovered is to use the innovative ad-

versarial generation as part of training another task , e.g. imitation learning or

segmentation , in which the performances of both generative and discriminative sys-

tems are increasing with time and both systems are optimized to beat each other .

If the systems were differentiable , then gradient descent optimization is to be fol-

lowed . If there is a non-differentiable part of the system ,two approaches can be

followed. Montecarlo search for each update of that non-differentiable subpart , or

adding another differentiable abstracting system. The goal of the abstracting system

is to simplify the output of the generating system and bypass any non-differentiable

part and to be optimized to reduce the loss of both discriminating and generating

systems.
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[22] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros, “Generative visual

manipulation on the natural image manifold,” in Proceedings of European Con-

ference on Computer Vision (ECCV), 2016.

[23] C. Wan, T. Probst, L. Van Gool, and A. Yao, “Crossing nets: Combining gans

and vaes with a shared latent space for hand pose estimation,” in The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

[24] L. Tran, X. Yin, and X. Liu, “Disentangled representation learning gan for pose-

invariant face recognition,” in The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), July 2017.

[25] M. Liu and O. Tuzel, “Coupled generative adversarial networks,” CoRR, vol.

abs/1606.07536, 2016.

[26] A. M. Elgammal, B. Liu, M. Elhoseiny, and M. Mazzone, “CAN: creative ad-

versarial networks, generating ”art” by learning about styles and deviating from

style norms,” CoRR, vol. abs/1706.07068, 2017.

[27] A. Dosovitskiy and T. Brox, “Generating images with perceptual similarity met-

rics based on deep networks,” in Advances in Neural Information Processing Sys-

tems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,

Eds. Curran Associates, Inc., 2016, pp. 658–666.

[28] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune, “Synthesizing the

preferred inputs for neurons in neural networks via deep generator networks,” in

Advances in Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama,

U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Curran Associates, Inc., 2016,

pp. 3387–3395.

[29] A. Nguyen, J. Yosinski, Y. Bengio, A. Dosovitskiy, and J. Clune, “Plug & play

generative networks: Conditional iterative generation of images in latent space,”

CoRR, vol. abs/1612.00005, 2016.

[30] J. J. Zhao, M. Mathieu, and Y. LeCun, “Energy-based generative adversarial

network,” CoRR, vol. abs/1609.03126, 2016.

[31] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[32] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning ap-

plied to document recognition,” in Intelligent Signal Processing. IEEE Press,

2001, pp. 306–351.



52

[33] J. Lu, K. Sunkavalli, N. Carr, S. Hadap, and D. A. Forsyth, “A visual represen-

tation for editing face images,” CoRR, vol. abs/1612.00522, 2016.

[34] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-

ing with deep convolutional generative adversarial networks,” CoRR, vol.

abs/1511.06434, 2015.

[35] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN features off-

the-shelf: an astounding baseline for recognition,” CoRR, vol. abs/1403.6382,

2014.

[36] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the

wild,” in Proceedings of International Conference on Computer Vision (ICCV),

2015.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,

vol. abs/1412.6980, 2014.

[38] T. Liu, A. W. Moore, and A. Gray, “New algorithms for efficient high-

dimensional nonparametric classification,” Journal of Machine Learning Re-

search, vol. 7 (2006) 11351158, 2006.

[39] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific

tools for Python,” 2001–, [Online; accessed ¡today¿]. [Online]. Available:

http://www.scipy.org/

[40] L. Theis, A. van den Oord, and M. Bethge, “A note on the evaluation of gener-

ative models,” in ICLR, 2016.

[41] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Com-

puter Vision and Pattern Recognition (CVPR), 2015.

[42] Itseez, “Open source computer vision library,” https://github.com/itseez/

opencv, 2015.

[43] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple

features,” in CVPR, 2001.

[44] C. Z., “Convexity, jensens inequality,” 2012, in: Inequalities. Springer, Berlin,

Heidelberg.

http://www.scipy.org/
https://github.com/itseez/opencv
https://github.com/itseez/opencv


53

APPENDICES
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A Deriving the K-NN Loss in Chapter 3

A.1 Deriving the K-NN Loss

We would like to show how to reach our final objective in (A.1) from the initial

expression in (A.2)

min
G

max
DX

LGAN(G,DX ,PX) + µ LKNN(G,PY ), (A.1)

min
G

max
DX

LGAN(G,DX ,PX) + µ Ez∼pz(z)[H(G(z),PY )] (A.2)

for Generator G and discriminator DX of modeled base set X with distribution PX

and latent vector z ∈ Rd,the GAN loss LGAN(G,DX ,PX) is given by

LGAN(G,DX ,PX) = Ex∼px(x)[log DX(x)] + Ez∼pz(z)[log(1−DX(G(z)))] (A.3)

For Target set Y with distribution PY , the K-nearest neighbor loss LKNN(G,PY ) is

defined as follows:

LKNN(G,PY ) = Ez∼pz(z)

k∑
n=1

‖C(G(z))− rn (C (G (z))) ‖22 (A.4)

This is the distance between a generated sample from G by a latent vector z and

its K nearest neighbors samples of the target distribution PY . This distance in not

pixels, but in high-level feature space defined by the Comparitor network C(b) ∈ Rs

which takes an image b ∈ Rh×w as input and outputs feature vector . rn(c) is the
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K-nearest neighbor function, a parametric order selection function that selects an

element yi from a set of M − n+ 1 elements based on how close it is to input vector

c. It can be described by the following:

rn(c) = arg min
yi∈ψn

‖c− yi‖2, (A.5)

where ψn is the set of deep features of M − n + 1 images representing the target

distribution PY . The total number of samples features we have for PY is M , where

the function rn(c) selects the nearest nth feature out of the remaining furthest M-n+1

features after removing the nearest n-1 from the global set of all features 	.

For the Cross-entropy in (A.2) , we use the following definition of cross entropy H

between two distributions p, q as follows :

H(p, q) = Ep[− log q] (A.6)

To show the derivation , we first look into PY . Since acquiring a full description

of PY in deep feature space is infeasible in most cases, we settle to approximate it

using M target samples. We can get a proxy distribution of PY by using Kernel

Density Estimation (KDE) on the deep features extracted by deep network C(x)

from those M samples in PY . By picking Gaussian kernel for the KDE, the proxy

distribution estimator P̂Y,proxy is defined by a Bayesian non-parametric way at any

point C(b) ∈ Rs for b ∈ Rh×w as follows:

P̂Y,proxy(b) =
1

Mσ
√

2π

M∑
i=1

exp

(
−‖C(b)−C(yi)‖22

σ2

)
(A.7)

yi is the ith sample describing PY and σ2 is the Gaussian kernel variance. For far

images from the M samples of P̂Y,proxy the probability becomes exponentially neg-

ligible. Hence, we we can investigate the effect of a subset of K points (out of the
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M points C(yi)) that are closest to C(b) to compute (A.7). We replace M by K in

(A.7), and pick σ = 1 for simplicity to get the following :

P̂Y,proxy(b) ≈ 1

M
√

2π

K∑
i=1

exp
(
−‖C(b)− ri(C(b))‖22

)
(A.8)

where ri is described in (A.5). We use a finite discrete special form of the Jansen

inequality described by Theorem 7.3 of ([44]) as follows

f(
n∑
i=1

uiλi) ≤
n∑
i=1

f(ui)λi (A.9)

where f is convex function for any ui , λi are set of n weights with
∑n

i=1 λi = 1 .

By Picking f(x) = exp(−x) a convex function defined in[0,∞)d, and picking ui(b) =

‖C(b) − ri(C(b))‖22 for b ∈ Rh×w, ri is just like in (A.5) and C is like in (A.4), and

picking λi = 1
K

,and n = K inequality (A.9) becomes :

exp(− 1

K

K∑
i=1

‖C(b)− ri(C(b))‖22) ≤
1

K

K∑
i=1

exp(−‖C(b)− ri(C(b))‖22) (A.10)

Noting that the right-hand side of (A.10) is scaled version of the proxy distribution

approximate P̂Y,proxy(b) described in (A.8), we reach to the following inequality

exp(− 1

K

K∑
i=1

‖C(b)− ri(C(yi))‖22) ≤
M
√

2π

K
P̂Y,proxy(b) (A.11)

Taking the natural logarithm ( a monotonically non-decreasing function) of both

sides of (A.11) and then negating both sides results in the following inequality :
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− log

(
M
√

2π

K
P̂Y,proxy(b)

)
≤ 1

K

K∑
i=1

‖C(b)− ri(C(yi)‖22) (A.12)

Rearranging (A.12) to get the following:

− log P̂Y,proxy(b) ≤ log
M
√

2π

K
+

1

K

K∑
i=1

‖C(b)− ri(C(yi)‖22) (A.13)

By replacing the b by the output of the generator G(z) sampled from latent vector

z and taking the expectation, we get the following expected upper bound

Ez∼pz(z)[− log P̂Y,proxy(G(z))]

≤ log
M
√

2π

K
+ Ez∼pz(z)[

1

K

K∑
i=1

‖C(G(z))− ri(C(yi)‖22)]
(A.14)

We note that the left side is the cross entropy between G,PY , and the second term

in the right hand side is scaled version of the KNN loss LKNN(G,PY ) in (A.4),to get

:

Ez∼pz(z)[H(G(z),PY )] ≤ log
M
√

2π

K
+
M
√

2π

K
LKNN(G,PY ) (A.15)

The expression in (A.15) gives upper bound for the cross entropy using the KNN loss.

By minimizing the KNN loss for parameters of G as in (A.1) we insure minimizing

the cross entropy Ez∼pz(z)[H(G(z),PY )] as in (A.2) and hence establish mathematical

justification for using KNN loss instead of cross entropy.
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B Justifying Regressing to the Mean of the K-features

Instead of Each Independently During the Training of

K-GAN in Chapter 4

B.1 Justifying Regressing to the Mean of the K-features

We would like to show that the equivalence of :

arg min
w

Ez∼pz(z)

k∑
i=1

‖C(G(z,w))− di‖22 (B.1)

arg min
w

Ez∼pz(z)

∥∥∥∥∥C(G(z,w))− 1

k

k∑
i=1

di

∥∥∥∥∥
2

2

(B.2)

where C is the feature extraction network ,G(z,w) is the Generator network with

parameters w and random sampling latent vector z sampled from uniform distribu-

tion, and di’s are the K chosen features in the time step t.

By starting from Eq.(B.1) and using the notation f(w) instead of C(G(z,w)),and d̄
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as the mean 1
k

∑k
i=1 di, Eq.(B.1) can be expanded as the following

arg min
w

k∑
i=1

‖f(w)− di‖22

= arg min
w

1

k

k∑
i=1

‖f(w)− di‖22

= arg min
w

1

k

k∑
i=1

〈f(w), f(w)〉 − 2

k

k∑
i=1

〈f(w),di〉+
1

k

k∑
i=1

〈di,di〉

= arg min
w

〈f(w), f(w)〉 − 2
〈
f(w), d̄

〉
+

1

k

k∑
i=1

〈di,di〉

= arg min
w

〈f(w), f(w)〉 − 2
〈
f(w), d̄

〉

(B.3)

where 〈., .〉 is the inner product and after utilizing the property
∑

i 〈a,di〉 = 〈a,
∑

i di〉.

On the other hand, Eq.(B.2) can be expanded ( with the new notation ) as the fol-

lowing

arg min
w

‖f(w)− d̄‖22

= arg min
w

〈f(w), f(w)〉 − 2
〈
f(w), d̄

〉
+
〈
d̄, d̄

〉
= arg min

w
〈f(w), f(w)〉 − 2

〈
f(w), d̄

〉 (B.4)

We can see that the final expressions in Eq.(B.3) and Eq.(B.4) are equivalent.

Hence , the equivalence between Eq.(B.1) and Eq.(B.2) is established , and picking

the mean of the K-NN features at each iteration is mathematically justified , while

improving the speed of the training of the K-GAN.
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C Confusion Matrices for Human Classification Experiment

C.1 Confusion Matrices for Human classification experiment
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Figure C.3: Confusion Matrix for K-DCGAN + CycleGAN
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Figure C.4: Confusion Matrix for BEGAN + CycleGAN
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Figure C.5: Confusion Matrix for K-BEGAN + CycleGAN
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D Samples of the Zoo-Faces Dataset used in the Training

D.1 Zoo-Faces Dataset used in the Training

Figure D.1: Samples of class apes the Zoo-Faces dataset
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Figure D.2: Samples of class chowchow in the Zoo-Faces dataset

Figure D.3: Samples of class egyptian-cat in the Zoo-Faces dataset
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Figure D.4: Samples of class lions in the Zoo-Faces dataset

Figure D.5: Samples of class koalas in the Zoo-Faces dataset
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Figure D.6: Samples of class norwegian elkhound in the Zoo-Faces dataset

Figure D.7: Samples of class pandas in the Zoo-Faces dataset
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Figure D.8: Samples of class samoyed dog in the Zoo-Faces dataset

Figure D.9: Samples of class spiders in the Zoo-Faces dataset
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Figure D.10: Samples of class tigers in the Zoo-Faces dataset
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E More Qualitative Results

E.1 Samples of the K-BEGAN, K-BEGAN+CycleGAN Mod-

els

Figure E.1: Samples of K-BEGAN model trained on Apes and faces
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Figure E.2: Samples of K-BEGAN+CycleGAN model trained on Apes and faces

Figure E.3: Samples of K-BEGAN model trained on egyptian-cat and faces



71

Figure E.4: Samples of K-BEGAN+CycleGAN model trained on egyptian-cat and faces

Figure E.5: Samples of K-BEGAN model trained on chowchow and faces
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Figure E.6: Samples of K-BEGAN+CycleGAN model trained on chowchow and faces

Figure E.7: Samples of K-BEGAN model trained on koalas and faces
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Figure E.8: Samples of K-BEGAN+CycleGAN model trained on koalas and faces

Figure E.9: Samples of K-BEGAN model trained on lions and faces
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Figure E.10: Samples of K-BEGAN+CycleGAN model trained on lions and faces

Figure E.11: Samples of K-BEGAN model trained on norwegian elkhoundand faces
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Figure E.12: Samples of K-BEGAN+CycleGAN model trained on norwegian elkhoundand

and faces

Figure E.13: Samples of K-BEGAN model trained on pandas and faces
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Figure E.14: Samples of K-BEGAN+CycleGAN model trained on pandas and faces

Figure E.15: Samples of K-BEGAN model trained on samoyed dog and faces
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Figure E.16: Samples of K-BEGAN+CycleGAN model trained on samoyed dog and faces

Figure E.17: Samples of K-BEGAN model trained on spiders and faces
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Figure E.18: Samples of K-BEGAN+CycleGAN model trained on spiders and faces

Figure E.19: Samples of K-BEGAN model trained on tigers and faces
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Figure E.20: Samples of K-BEGAN+CycleGAN model trained on tigers and faces
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E.2 Full Celebrity Zoo

We show more examples of celebrity zoo in the following page.

Celebrity gorilla cat lionkoala Norwegian
dog

panda Samoyed spider tigerChowchow

Figure E.21: More Celebrity-Zoo: seeing how celebrities look in the animal kingdom by

using different IAN models trained in Sec.4.2.
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E.3 image Manifold Traversing

We do image manifold traversing for more classes.

Figure E.22: multi-domain image manifold traversing 1: moving from one point to another

in different Y classes using the same pair in base set X
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Figure E.23: multi-domain image manifold traversing 2: moving from one point to another

in different Y classes using the same pair in base set X

Figure E.24: multi-domain image manifold traversing 3: moving from one point to another

in different Y classes using the same pair in base set X
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Figure E.25: multi-domain image manifold traversing 4: moving from one point to another

in different Y classes using the same pair in base set X

Figure E.26: multi-domain image manifold traversing 5: moving from one point to another

in different Y classes using the same pair in base set X
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