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Extreme Computing for Extreme Adaptive Optics:
the Key to Finding Life Outside our Solar System

ABSTRACT
The real-time correction of telescopic images in the search for exo-
planets is highly sensitive to atmospheric aberrations. The pseudo-
inverse algorithm is an efficient mathematical method to filter out
these turbulences. We introduce a new partial singular value decom-
position (SVD) algorithm based on QR-based Diagonally Weighted
Halley (QDWH) iteration for the pseudo-inverse method of adap-
tive optics. The QDWH partial SVD algorithm selectively calculates
the most significant singular values and their corresponding singu-
lar vectors. We develop a high performance implementation and
demonstrate the numerical robustness of the QDWH-based par-
tial SVD method. We also perform a benchmarking campaign on
various generations of GPU hardware accelerators and compare
against the state-of-the-art SVD implementation SGESDD from the
MAGMA library. Numerical accuracy and performance results are
reported using synthetic and real observational datasets from the
Subaru telescope. Our implementation outperforms SGESDD by up
to fivefold and fourfold performance speedups on ill-conditioned
synthetic matrices and real observational datasets, respectively. The
pseudo-inverse simulation code will be deployed on-sky for the
Subaru telescope during observation nights scheduled early 2018.

CCS CONCEPTS
• Mathematics of computing → Mathematical software per-
formance; • Computing methodologies → Massively paral-
lel algorithms; • Computer systems organization → Real-
time system architecture;
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1 INTRODUCTION
Over the last decade, astronomers have identified thousands of
exoplanets - planets orbiting stars other than our Sun. There is now
solid evidence that habitable planets (rocky planets with temperate
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surface temperature, able to hold liquid water) are abundant. Most
of the 200 billion stars in our galaxy may host such planets. While
current telescopes do not have the sensitivity to find evidence
of life on nearby habitable planets, the next generation of large
(∼30m diameter) telescopes is entering construction and will enter
operation during the 2020s decade. These larger telescopes will be
capable of detecting water, oxygen, and other gases indicative of
biological activity. Yet, a significant challenge remains to be solved:
Earth’s atmosphere blurs the image, rendering exoplanet imaging
extremely difficult.

1.1 Adaptive Optics
To deliver sharp images of the sky, ground-based astronomical tele-
scopes must overcome optical disturbances introduced by Earth’s at-
mosphere. Without active correction of such defects, images would
be blurred to approximately one arcsecond angle (1/3600 of a de-
gree), while in the absence of optical aberrations, a telescope of
diameter D imaging at wavelength λ should provide λ/D angular
resolution (≈ 0.04 arcsecond in the near-infrared with current 10-
m class telescopes). To recover this approximately 25-fold loss of
angular resolution, adaptive optics (AO) systems [8, 9, 18, 27, 29]
measure and correct for atmospheric turbulence. Any AO system
must include three key elements:

• One or severalwavefront sensor(s) (WFS) measure optical
aberrations in the incoming light beam. The light source for
the WFS must be located near the scene to be imaged, and
can be a natural star or an artificial laser guide star if no
bright star is near the area of interest. Multiple WFSs can
participate to the measurement to provide correction over a
wider field of view.
• One or several deformable mirror(s) (DM) perform the
optical correction. The DM(s) induce optical aberrations that
are opposite to the ones induced by atmospheric turbulence.
• A real-time controller (RTC) processes the WFS signals to
compute DM commands. The RTC must reliably compute
commands at 1-5 kHz frequency so that the AO system can
keep up with fast changes in atmospheric turbulence.

AO systems are in use on most current large telescopes, routinely
delivering images that are as sharp as allowed by the telescope
diffraction limit λ/D.

1.2 Exoplanet Imaging, Search for
Extraterrestrial Life and Extreme AO

Astronomers have long suspected that exoplanets orbit many of
the stars visible in the night sky, by analogy to our solar system.
The term exoplanet is used here to distinguish them from the
planets in our solar system. While exoplanets are challenging to
observe due to their small mass and size in comparison with the
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stars they orbit, technological advances have recently enabled their
detection in large numbers. Several thousand exoplanets have now
been identified [1], and a significant fraction of stars (from 20% to
50%) is believed to host Earth-size rocky planets with temperate
surface where liquid water may exist; such planets are referred to
as habitable planets. Despite the large and growing number of
confirmed exoplanets, little is known about their potential to harbor
life: habitable planets can currently only be detected indirectly
from the gravitational pull they exert on their host star [6], or from
the transit events when the planet passes in front of the star [13].
Characterization of exoplanet atmospheres and search for signs of
biological activity will require their light to be isolated and analyzed
in a spectrograph so that molecular species such as oxygen and
water can be identified. Exoplanet imaging and spectroscopy are
the most challenging application for AO systems: exoplanets are
between five to ten orders of magnitude fainter than the stars
they orbit, and the angular separation between the two objects is
usually well below one arcsecond. AO systems optimized for this
task are referred to as Extreme AO systems (ExAO) due to the
extreme level of wavefront correction required. While conventional
AO systems aimed at reaching the telescope diffraction limit must
correct optical aberrations to a ≈ 1 radian phase residual error
(corresponding to ≈ 250nm in the near-infrared), ExAO systems
require nm-level exquisite wavefront correction of low and mid-
spatial frequencies. As shown in Figure 1, ExAO systems must also
employ optical coronagraphy to remove diffracted starlight, and
must further reduce wavefront errors to limit how much of the
bright starlight overlaps with the planet image [15]. The brightest,
largest and nearest exoplanets can be imaged with current large
telescopes and high performance AO systems [20, 24]: these gas
giant planets are several times more massive than Jupiter (which
itself is 317× Earthmass) and are seen in near-IR light owing to their
strong internal heat. While habitable exoplanet imaging is widely
considered out of reach of current telescopes, the next generation of
30m class telescopes, when equipped with high performance ExAO
systems, will have the sensitivity to image and study habitable
planets around dozens of nearby stars.

Due to the exquisite wavefront correction requirements of ExAO
systems and their large number of sensing and correcting elements,
the RTC is a significant challenge: every few hundred microseconds,
new input measurements must be processed to compute DM(s)
corrections. The computational requirements are significant due
to the size of the input and output spaces (each several tens of
thousands of variables), high speed (1-10 kHz) and the need for an
accurate solution to be produced.

1.3 Extreme Computing Needs
One of the major components of the AO framework consists in
computing the pseudo-inverse of the response matrix (RM), a linear
calibration generated during the observational data acquisition. The
pseudo-inverse algorithm is composed of dense linear algebra oper-
ations based on compute-intensive numerical kernels. This class of
algorithms usually maps well onto manycore architectures, such as
GPU hardware accelerators. The main idea consists in extracting
the most significant singular values with their associated singular
vectors and calculating the explicit pseudo-inverse of the matrix

from this subspectrum. The challenges for the pseudo-inverse are
twofold: numerical and computational. The numerical challenge
resides in dealing with the rectangular shape of the control ma-
trix (CM), which may engender numerical instabilities if a spectral
decomposition, i.e., symmetric eigensolver, is employed. On the
other hand, the computational challenge lies in the high algorithmic
complexity of the pseudo-inverse: although being not real-time, it
should still be able to keep up with the overall throughput of the
AO framework.

We propose a novel high performance implementation of the par-
tial SVD decomposition using an extension of the QR-based dynam-
ically weighted Halley algorithm (QDWH) [25]. This new algorithm
translates the original matrix problem into a reduced problem size
containing only the singular values/vectors of interest. The QDWH-
based partial SVD relies on GPU-friendly numerical kernels, which
expose more parallelism than the standard bidiagonal-based SVD
solver [14]. We benchmark our new pseudo-inverse implementa-
tion against the SVD routine with divide and conquer solver (i.e.,
SGESDD) from the MAGMA library [4] on various generations of GPU
hardware accelerators using synthetic (randomly generated matri-
ces) as well as matrices coming from real datasets generated from
the Subaru Telescope.

The paper is organized as follows. Section 2 outlines general back-
ground on ExAO framework to support current and next generation
of telescopes, and exposes the computational challenge to be ad-
dressed. Section 3 presents related work on the AO technique and
the computational framework. Section 4 highlights our contribu-
tions. Section 5 recalls algorithmic variants of the pseudo-inverse
method and introduces the new QDWH-based partial SVD algo-
rithm. The details of the various high performance implementations
are given in Section 6. Section 7 provides the performance results
of various pseudo-inverse approaches on GPUs and compares them
against existing state-of-the-art implementations. We conclude in
Section 8.

2 EXTREME AO’S EXTREME COMPUTING
CHALLENGE

The ExAO system must perform real-time computation of a DM
solution from WFS input data. As described in §2.1, this consists
of a matrix-vector multiplication (MVM), which is well within the
computing capabilities of modern manycore hardware: its optimiza-
tion is not discussed in this paper. Derivation of the control matrix
to perform this MVM operation, described in §2.2, is considerably
more challenging: this is the challenge we are addressing in this
paper. As shown in §2.3, it relies on computing the pseudo-inverse
of large matrices constructed from WFS measurements.

Current (2018) implementations of SGESDD deployed on off-the
shelf GPU hardware fall approximately one order of magnitude
short of full-scale derivation of predictive control and sensor fusion
control laws on ExAO systems deployed on current large telescope.
The controller optimization scope must therefore be reduced by,
for example, selecting a subset of the control modes, processing a
subset of the accumulated WFS data, or selecting a subset of the
available sensors. The performance gap is yet another of magnitude
wider for 30-m class telescopes.
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Figure 1: Image formation in an ExAO system optimized for exoplanet imaging. In this numerical simulation, a bright star
is imaged in near-infrared light (λ = 1.65µm with a 8-m diameter telescope). Without AO correction (left), Earth’s atmosphere
creates more than one µm of optical aberrations, and the corresponding image (labeled “No AO correction") is an approxi-
mately one arcsecond wide spot. With ExAO correction (center), the aberrations are reduced to 141 nm, and the image (labeled
“Extreme AO correction") shows that starlight is concentrated in a central diffraction-limited spot. Starlight due to diffraction
(components 2 and 3) can be suppressed optically with a coronagraph. Residual starlight in the final image (labeled “Extreme
AO + coronagraph") is entirely due to uncorrected optical aberrations (components 4, 5, and 6). The ExAO correction perfor-
mance defines the ability to image faint planets near the star.

2.1 Real-time computations
The conventional AO control scheme is to derive from each WFS
measurement the corresponding DM solution. The relationship
between WFS and DM is generally assumed to be linear, so this
step is a MVM. The input vector (WFS measurement) is multiplied
by the CM to estimate the output DM vector that would generate
the measured WFS signal. By sending a DM command opposite to
this output vector, the optical aberrations measured by the WFS
are canceled. Figure 2 shows two more advanced control schemes,
which are essential to ExAO systems performance.

2.1.1 Predictive Control. The conventional AO control scheme
suffers from time lag: corrections applied to the DM are slightly out-
dated due to hardware and software delays, including WFS camera
exposure, readout and data transfer time, computing time, and DM
response time. Together, these delays typically add to one millisec-
ond. In addition to hardware and software lag, conventional AO
controllers perform some time-averaging of WFS measurements
to reduce measurement noise due to shot noise and WFS readout
noise. The combined effect is a 1 to 5 ms effective time delay in
the correction, and a corresponding error in the AO correction.
In ExAO imaging, this error term needs to be reduced by use of
predictive control: the last N measurements should be optimally

used to estimate the optical aberrations at the time of correction.
As shown in Figure 2, predictive control can be implemented by
adopting the last N WFS measurements as the input to the correc-
tion. The corresponding control matrix is then N times larger than
in conventional AO control.

2.1.2 Sensor Fusion. ExAO’s need for high accuracy measure-
ment of optical aberrations requires multiple sensors to be deployed,
and their signals to be optimally combined. The multi-sensor ap-
proach canmeasure small wavelength-dependent changes in optical
aberrations, and reduces the null measurement space to the intersec-
tion of individual WFSs null spaces. Figure 2, bottom panel, shows a
control scheme combining prediction and sensor fusion, assuming
that each of the K sensors has the same number of elements n.
The control matrix size can be significantly larger than in the two
previous examples.

2.2 Inferring Control Matrices from
Measurements

In each of the cases presented, the CM computation is a non-real-
time task that must be performed before operating the AO system,
and may need to be updated while the system is running.
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Figure 2: Three possible AO control loop real-time imple-
mentations: conventional AO control (top), predictive con-
trol (center) and sensor fusion + predictive control (bottom).
Vector and matrix sizes are shown below names.

In conventional AO control, the CM is computed as the pseudo-
inverse of the system response matrix (RM) describing the linear
response between DM commands and WFS measurements. The
RM is acquired by issuing commands to the DM and measuring the
corresponding WFS signal changes. The pseudo-inverse is most
often computed using the SVD to allow control modes selection,
and reject modes for which the WFS response is weak.

In predictive control and sensor fusion, the linear relationships
between WFS measurements are usually poorly constrained, and
cannot be measured directly. For example, the linear relationship
between past and present optical aberrations is a function of wind
speed at multiple altitudes above the telescope and the contribution
of each atmosphere layer to the overall measured wavefront. This
information is generally not accessible in real-time, so the predictive
control matrix must be inferred from the WFS measurements.

The problem can be translated into a supervised machine
learning challenge operating in a continuum multi-dimensional
space where input vectors are WFS measurements (including his-
tory for predictive control and spanning multiple WFSs for sensor
fusion) and output vectors are the optical aberrations without time
lag. Both input and output vectors of the training set are acquired
by the WFS(s). We propose to investigate this problem using an ana-
lytical approach, although more sophisticated statistical approaches
(based on the maximum likelihood estimation) for the prediction
may be more suitable [3], thanks to the natural linear variation of
the atmospheric turbulence. This is beyond the scope of this paper
and will be reported in the future.

2.3 The SVD-Based Pseudo-Inverse Approach
Thanks to the high measurement cadence, a large training set can
be acquired on a timescale shorter than the temporal evolution

of underlying linear dependencies (e.g., a change in wind speed
and direction): at 2 kHz measurement cadence, l = 1.2 million
samples are collected in 10 min. In a typical ExAO system, upward
of n = 1, 000 modes are measured by the main WFS. The predictive
control challenge is a supervised machine learning problem, aimed
at finding the n-by-Nn prediction matrix X that maps input vectors
a containing the N last WFS measurements to them-sized output
space consisting of future value of the WFS coefficients. The input
vector a and output vector b are therefore of sizes Nn and m =
n respectively. The optimal prediction matrix X minimizes the
euclidian distance | |Xa − b | | across the training set consisting of l
pairs (a, b). By writing the l training pairs (a,b) as a Nn-by-l data
matrix A, and a n-by-l output matrix B, the problem requires
solving a linear system XA = B where the solution X , i.e., the
prediction matrix, is a (n ≈ 1000)-by-(Nn ≈ 20, 000) matrix. The
linear system must be solved in a few minutes to keep up with
incoming data rates. Computation requirements become even larger
with sensor fusion, as described in Section 2.1.2: the dimension of
the input space grows linearly with the number K of WFSs.

Computing the solution X = BA+ with a SVD-based pseudo-
inverse allows to filter out the noise from the empirical measure-
ment data structures A, by extracting the most significant singular
values and their corresponding singular vectors.

3 RELATEDWORK
Computing the pseudo-inverse is a critical computational phase
of the AO framework. There are several algorithmic variants to
calculate it, mostly based on two-sided transformations, i.e., the
symmetric eigensolver (SEVD) and the SVD. These two solvers rely
on block algorithms and use a one-stage approach, as implemented
in LAPACK [5]. They basically reduce the dense matrix into con-
densed structures, i.e., tridiagonal and bidiagonal forms, for the
SEVD and SVD solvers, respectively.

Both algorithms have been leveraged during the last two decades
by breaking the one-stage reduction into a two-stage approach,
which casts most of the computations in terms of compute-intensive
Level 3 BLAS. The dense matrix is first reduced to band tridiag-
onal/bidiagonal form. Then, the extra off-diagonal elements are
chased down at the bottom of the matrix during a bulge chasing
procedure, until the required condensed forms appear. The corre-
sponding solver carries on with the computation and extracts the
pairs of eigen/singular values/vectors from the condensed forms,
followed by successive back transformations generated during the
two-stage reduction, to get the final SEVD and SVD of the original
dense matrix.

The two-stage approach has been originally introduced in [10] on
shared-memory systems using multithreaded BLAS. The two-stage
approach for SEVD and SVD has been further optimized on multi-
core x86 architectures [16, 17, 22, 23], by relying on tile algorithms
using the PLASMA library [4], associated with a dynamic runtime
system to enable asynchronous fine-grained task executions. As
opposed to two-stage SVD algorithm, the two-stage SEVD method
has been eventually ported on distributed-memory systems and on
systems equipped with hardware accelerators, as implemented in
the ELPA library [7] and in the MAGMA library [4], respectively.
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Although the SEVD-based pseudo-inverse has demonstrated
significant performance in the context of AO simulation [2, 12],
there is a fundamental numerical bottleneck with this approach.
Indeed, the pseudo-inverse requires to make the outer product of
the original dense matrix with its transpose, from which the SEVD
solver can be applied. This outer product squares the condition num-
ber of the matrix and may create numerical instabilities. Another
statistical-based approach has been investigated recently [11, 21],
which consists into explicitly generating the covariance matrix of
the telemetry matrix and to take into account the noise from the
system. Although highly efficient, the covariance matrix generation
may be time-consuming, due to its expensive memory accesses.

Calculating the pseudo-inverse using the SVD has not been con-
sidered for AO in computational astronomy, due to its high algo-
rithmic complexity. Based on the QR-based dynamically weighted
Halley algorithm (QDWH), a novel algorithm for computing the
SVD has been introduced in [25]. Although highly parallel with
GPU-friendly numerical kernels [28], its number of floating-point
operations is even higher than the standard SVD algorithm. An
extension of the aforementioned QDWH-based SVD permits to
calculate only the most significant singular values and correspond-
ing singular vectors, reducing the overall algorithmic complexity,
while efficiently computing the pseudo-inverse. This QDWH-based
partial SVD represents the crux of the paper.

4 CONTRIBUTIONS
The paper contributions are threefold. First, we introduce a new
QDWH-based partial SVD algorithm for the pseudo-inversemethod,
which calculates the most significant singular values and their cor-
responding singular vectors. Second, we develop a high perfor-
mance implementation and present the numerical robustness of the
QDWH-based partial SVD method on synthetic and real datasets.
Last but not least, we perform a benchmarking campaign on various
generations of GPU hardware accelerators and compare against
the state-of-the-art MAGMA library [4]. The resulting pseudo-inverse
simulation code will be deployed on-sky for the Subaru Telescope
during the next observation night, scheduled early this year.

5 THE PSEUDO-INVERSE ALGORITHM
This section describes the various approaches for calculating the
pseudo-inverse of a general dense matrix and presents their algo-
rithmic complexities.

5.1 The Pseudo-Inverse Based on the
Symmetric Eigenvalue Decomposition

The pseudo-inverse of a general dense matrix A using the SEVD
can be described as in Algorithm 1. The general matrix is first sym-
metrized by multiplying it by its transpose. The eigenvalue decom-
position of the resulting symmetric matrix is then performed, from
which only the eigenpairs above a certain threshold are saved. The
pseudo-inverse can then be computed by forming the diagonal and
the orthogonal matrices containing the selected eigenvalues and
eigenvectors, respectively. The pseudo-inverse is finally obtained
by effectively multiplying both matrices, while taking advantage of
their nice numerical properties, e.g., the inverse of an orthogonal
matrix is equal to its transpose.

Algorithm 1 Pseudo-Inverse using the spectral decomposition.
1: Compute S = ATA
2: Solve Sx = λx
3: Extract the eigenpairs for which λ > threshold
4: Calculate the pseudo-inverse S+ = XT Λ−1X

The main challenge with this approach is its numerical robust-
ness. Indeed, the condition number of the symmetric matrix S is
equal to the square of the condition number of the original matrixA.
Although some applications may be resilient to it, this approach is
usually not pursued as numerical instabilities may emerge and even-
tually disturb the eigensolver employed during the diagonalization
procedure.

From an algorithmic complexity perspective, the bulk of the
computation occurs at the symmetric eigenvalue decomposition.
As indicated in Section 3, one-stage or two-stage tridiagonal reduc-
tions correspond to the first computational phase for the symmet-
ric eigenvalue decomposition, regardless if a single or a subset of
eigenpairs is needed. This reduction phase may typically account
up to 50% of the total elapsed time, when all eigenpairs are needed.
Once the condensed form has been achieved, there exist then sym-
metric eigensolvers (e.g., based on the multiple relatively robust
representations), which are capable of extracting only the eigen-
pairs of interests within a user-defined range or interval. The back
transformation has still to be carried on to retrieve the spectral
decomposition of the original dense matrix.

5.2 The Pseudo-Inverse Based on the standard
SVD

The pseudo-inverse of a general dense matrix A using the SVD
can be described as in Algorithm 2. This approach does not suffer
from numerical sensitivity but may be time-consuming, due to the
high number of operations. In case the matrix is rectangular, an
initial QR or LQ factorization is applied to annihilate the extra rows
and columns, respectively. The first computational phase, which
reduces the dense matrix into bidiagonal form, may cost twice
as much as the tridiagonal reduction. Moreover, similarly to the
symmetric eigensolver for the pseudo-inverse in Section 5.1, this
reduction to condensed form is required, regardless of how many
singular values/vectors are needed. In fact, the SVD solver based
on the QR algorithm or the divide-and-conquer method cannot cal-
culate a subset of the singular values/vectors. Therefore, the whole
spectrum of the singular values/vectors has first to be determined
and later filtered out using the threshold parameter, set by the ap-
plication. The back transformation is then necessary to compute
the singular values/vectors of the original matrix A, and here again,
this expensive computational stage is mandatory, regardless if a
single or several singular values/vectors have been requested.

Algorithm 2 Pseudo-Inverse using the standard SVD.
1: Compute A = U ΣV T

2: Extract the singular values/vectors for which σ > threshold
3: Calculate the pseudo-inverse A+ = Ṽ Σ̃−1Ũ T
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5.3 The Pseudo-Inverse Based on the
QDWH-based partial SVD

We herein present an approach, which combines the numerical ro-
bustness and the low arithmetic complexity to calculate the pseudo-
inverse of a dense matrixA. By extending the QR-based dynamically
weighted Halley algorithm (QDWH) [25] for the SVD, this new
SVD-based pseudo-inverse inherently provides the flexibility to cal-
culate only a subset of the singular values/vectors spectrum, while
ensuring backward numerical stability. To our knowledge, this is
perhaps the only dense SVD solver, which provides this versatility
toward computing only a partial SVD within a user-defined range
or interval. This QDWH-based partial SVD algorithm permits to
project the original matrix spectrum into a reduced matrix problem
containing only the desired singular values/vectors. Therefore, it
allows to remove all together the incompressible costs required by
the two aforementioned methods during the reduction phase to
condensed form. In case the original matrix problem is rectangular,
similarly to the pseudo-inverse based on the standard SVD, an ini-
tial QR or LQ factorization is applied to annihilate the extra rows
and columns, respectively.

Algorithm 3 presents the pseudo-inverse method for a general
dense matrix A using the QDWH-based partial SVD. The iterative
QDWH procedure used in the partial SVD calculation is a light-
weight variant of the original QDWH method, i.e., performing less
iterations and without estimations of the matrix condition number
and second norm, to calculate the polar decomposition A = UpH .
It requires only a few Cholesky or QR-based iterations to get the
polar factor Up containing the desired singular values/vectors. In
fact, QDWH enables to isolate the subspectrum of interest from
the overall spectrum. This is done through a tunable numerical
user-defined threshold. The threshold is an application-dependent
parameter, which physically corresponds to the lower bound of
the wanted singular values. In fact, it is a tunable parameter in
the sense that it infers the actual number of wanted singular val-
ues. Therefore, there is a direct link between the percentage of the
wanted singular values and the threshold Li. A QR factorization
is then applied on Up + Id to reveal the index of the first diago-
nal elements of R in absolute value, which is below the threshold,
also referred to as the null space. This index then determines the
orthogonal vectors to extract from Q , from which the projected
size of the reduced matrix problem is calculated. Once the smaller
matrix problem is generated, a standard SVD solver can be applied
to get the full set of singular values/vectors. This full set of singular
values/vectors of the reduced matrix problem relates to the subset
of desired singular values/vectors from the original matrix problem.
The desired singular values and left singular vectors are identical
for both matrix problems, while the desired right singular vectors
of the original matrix problem needs to accumulate Q̃ with the
right singular vectors of the reduced matrix problem. This pseudo-
inverse approach presents many advantages. It relies on one-sided
transformations, i.e., Cholesky and QR factorizations, which expose
much more parallelism than the previous two pseudo-inverse meth-
ods based on two-sided transformations. It also focusses the com-
putational power only on the desired spectrum, without wasting
resources by over-solving for the whole spectrum. Under extremely
ill-conditioned matrices, the method may however raise numerical

issues, in case a larger spectrum of the singular values/vectors are
needed. These issues may be fixed by enforcing QR-based QDWH
iterations (instead of Cholesky), at the expense of increasing the
algorithmic complexity, and therefore, the overall elapsed time.

Algorithm 3 Pseudo-Inverse using the QDWH-Based Partial SVD.
1: Compute the polar decomposition A = UpH using QDWH
2: Calculate [Q R] = QR (Up + Id )
3: Find the index ind =min (f ind (abs (diaд (R )) < threshold ))
4: Extract Q̃ = Q (:, ind : end )
5: Reduce the original matrix problem Ã = A × Q̃
6: Compute the SVD of the reduced matrix problem Ã = U ΣṼ T

7: Compute the right singular vectors V = Q̃T × Ṽ
8: Calculate the pseudo-inverse A+ = V Σ−1U T

5.4 Algorithmic Complexity
Without loss of generality, Table 1 reports the algorithmic complex-
ity for square matrices of sizeNn (i.e., the number of predictive filter
steps times the number of modes measured by the WFS) based on
the three pseudo-inverse approaches discussed in this section. The
pseudo-inverse based on the SEVD is cheaper than the SVD-based
but may encounter numerical issues, especially for ill-conditioned
matrices. The algorithmic complexity of the pseudo-inverse based
on the QDWH-based partial SVD depends on the number of QDWH
Cholesky-based iterations (typically two or three) and the size s
of selected singular values/vectors. Assuming s << Nn and three
iterations to get the polar factor from QDWH, the total number
of operations is 14Nn3, about 66% of the pseudo-inverse based on
the standard SVD. The actual SVD solver occurs now only on the
reduced problem matrix of size s .

Standard QDWH-based
SEVD-based SVD-based partial SVD

QDWH: (4+1/3)Nn3 x #itChol
Algorithmic 9Nn3 22Nn3 QR and GEMM: 4/3Nn3 + 2sNn2 + 2Nns2

complexity SVD: 22s3

Table 1: Algorithmic complexity for various pseudo-inverse
algorithms.

6 HIGH PERFORMANCE GPU-BASED
IMPLEMENTATION

We describe the high performance GPU-based implementation of
the pseudo-inverse of a dense matrix A of size n using the QDWH-
based partial SVD algorithm, described in Section 5.3. The pseudo-
code is highlighted in Algorithm 4 and relies on the MAGMA [4] and
NVIDIA cuBLAS [26] libraries. The code is mostly composed of
dense linear algebra kernels rich in compute-intensive Level 3 BLAS
operations, which makes it GPU-friendly. It can therefore achieve
a decent percentage of the system’s theoretical peak performance.
Our implementation is GPU-resident, i.e., the memory footprint of
the code fits on the GPU’s main memory. MAGMA provides some sup-
port for out-of-core algorithms, in case the GPU’s main memory is
limited or simply the problem is too large to fit on the device. Data
movement will have then to be carefully handled, since the GPU
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interconnect bandwidth (i.e., PCIe bus) is typically more than an or-
der of magnitude slower than the GPU onboard memory bandwidth.
Last but not least, although the pseudo-code is written in single
precision arithmetics to satisfy the computational requirements of
the AO framework, it can be easily extended to other precisions for
a broader application impact.

Algorithm 4 Pseudo-code of the pseudo-inverse matrix calculation
based on the QDWH partial SVD using MAGMA/cuBLAS.

▷ Computing the polar factorUp
1: k = 1, Li = threshold, conv = 100
2: while (conv ≥ 3√eps & |1 − Li | ≥ eps ) do
3: L2 = Li2, dd = 3√(4(1 − L2)/L22 )
4: sqd =

√
1 + dd

5: a1 = sqd +
√
8 − 4 × dd + 8 × (2 − L2)/(L2 × sqd ))/2

6: a = r eal (a1), b = (a − 1)2/4, c = a + b − 1
7: Li = Li × (a + b × L2)/(1 + c × L2)
8: B ←maдma_slaset (MaдmaFull, 0.0, 1.0, B )
9: B ← cublasSдemm (A⊤, A, B )
10: C ←maдma_stranspose (A, C )
11: C ←maдma_sposv (MaдmaUpper, B, C )

12: U k
p ←maдma_slacpy (MaдmaFull, A, U k

p )

13: A← cublasSдeam (C, U k
p , A)

14: U k+1
p ← cublasSдeam (A, U k

p , U k
p )

15: conv ← ∥U k+1
p −U k

p ∥F
16: k = k + 1
17: end while

▷ Up contains the isolated subspectrum of interests
18: B ←maдma_slaset (MaдmaFull, 0.0, 1.0, B )
19: Up ← cublasSдemm (A⊤, A, B )
20: Up ←maдma_sдeqr f (Up , tau )
21: ind =min (f ind (abs (diaд (Up )) < threshold ))
22: Q ←maдma_sorдqr (Up , tau, Q )

23: Q̃ = Q (:, ind :end )
24: Ã← cublasSдemm (Aor iд, Q̃, Ã)

▷ Calculate the SVD on the reduced problem
25: [U ΣṼT ]←maдma_sдesvd (Ã)
26: V ← cublasSдemm (Ṽ , Q̃T , V )

▷ Calculate the pseudo-inverse
27: B ← cublasSдemm (V , Σ−1, B )
28: A+ ← cublasSдemm (B, UT , A+ )

7 EXPERIMENTAL RESULTS AND ANALYSIS
This section describes the experimental results and presents perfor-
mance analysis of the GPU-based implementation for the QDWH
partial SVD used in the pseudo-inverse, using synthetic matrices
and real observational datasets.

7.1 Environment Settings
We perform our experiments on three GPU systems, each equipped
with a different hardware accelerator generation: K80, P100 and
V100 with 12GB, 16GB and 16GB of memory, respectively. The
GPU K80 host is a two-socket 14-core Intel Broadwell system with
128GB of main memory. The GPU P100 and V100 hosts are two-
socket 16-core Intel Haswell systems, each with 128GB of main
memory. We use MAGMA v2.3 and CUDA v9.0 (including cuBLAS) with
GCC compilers. Our ultimate goal is to use the QDWH partial
SVD algorithm to solve the machine learning predictive control
challenge, described in §2.1.1 for the Subaru Coronagraphic Extreme
AO (SCExAO) system [19], deployed on the 8.3m diameter Subaru
Telescope. We compare our QDWH partial SVD solver against
the standard SVD based on the divide-and-conquer solver, since
the symmetric eigendecomposition (SEVD) may raise numerical

issues, as described in Section 5.1. All computations have been
performed in single precision (SP) arithmetics. Performance results
have been averaged over three successive executions. The order of
the numerical accuracy has been recorded for the first run, since
the orders of the subsequent runs are similar.

7.2 Definitions of Testing Matrices
We run the QDWH partial SVD against ill-conditioned synthetic
matrices as well as matrices generated from real observational
datasets. Since the QDWH partial SVD performance is sensitive
to the matrix condition number due to more iterations required
before convergence, ill-conditioned matrices represent the most
challenging testcases for our implementation and are, therefore, the
ones of interests in our herein experimental study. These matrices
have been generated using the testing matrix generator SLATMS
from LAPACK [5] from geometrically distributed singular values.
For the testing matrices generated from real observational datasets,
x and y were constructed from WFS measurements acquired on-
sky on Sept 12, 2017 (UT). The WFS speed was set at f = 2
kHz, and n = 1161 modes were measured. Four data matrices
A, representative of predictive control requirements, were con-
structed for computing N = [1, 5, 10, 15] predictive filter steps from
t = 15 second of WFS measurements. The ultimate matrix sizes are
Nn = [1161, 5805, 11610, 17415] by 29990, respectively.

It will be also interesting to investigate advanced configurations
with higher WFS frequencies and longer period of WFS measure-
ments in the context of future Extremely Large Telescopes (ELT),
which will require solving even larger problem sizes. Since GPU’s
main memory is a scarce resource, out-of-core algorithms (using
CPU’s main memory) and multiple GPUs may enable solving such
large problems with additional data movements. These communica-
tions can be hidden by the large amount of available computations.
Simulating envisioned hardware specifications of ELTs and software
deployment on today’s hardware are critical to identify algorithmic
and implementation performance bottlenecks early on.

7.3 Numerical Accuracy
For the numerical accuracy, we look at three assessment metrics,
which are typical for the SVD: the accuracy of the singular val-
ues, the orthogonality of the singular vectors and the backward
stability [14], as described in Section 7.3 of [28]. Figures 3 show
the numerical accuracy/robustness results of QDWH partial SVD,
performed on the K80 system, using synthetic ill-conditioned ma-
trices. The threshold Li, introduced used in line 1 of Algorithm 4,
is a tunable numerical parameter, which directly influences the
number of requested singular values/vectors (i.e., 3%-7%-10%-13%)
as well as the obtained accuracy/performance. Numerical results
demonstrate the robustness of the QDWH partial SVD method,
by getting accuracy results around the machine precision for SP
computations. The accuracy starts to slightly deteriorate at 13%.
As explained at the end of Section 5.3, the lost digits can be re-
covered by enforcing the first iteration of QDWH to rely on the
QR factorization, which is much more robust numerically than the
Cholesky factorization, as seen in the curves labelled “13% SVD,
QR+PO” of Figures 3. If the threshold Li is even smaller so that a
high percentage of singular values can be eventually selected, the
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Figure 3: Assessing the numerical accuracy/robustness of
QDWH partial SVD on K80 using synthetic ill-conditioned
matrices. Some curves may overlap, due to same accuracy.

accuracy may further deteriorate without possible recovery, due
to the increase of the condition number. The QDWH partial SVD
method is typically robust when extracting less than 15%-20% of
the overall spectrum. This threshold Li can be tuned with a priori
knowledge on the singular value distribution.

Figures 4 provide the numerical assessment using the same met-
rics on matrices generated from observational data. We set the
threshold so that around 10% of the most significant singular val-
ues/vectors are retained in order to fulfill the SCExAO specifications.
The obtained accuracy results are at the level of machine precision
for SP arithmetics, which highlight the robustness of QDWH partial
SVD.

7.4 Performance Results
Figures 5 and 6 highlight the performance comparisons of QDWH
partial SVD against SGESDD using two performance metrics: time
to solution (in seconds) and floating-point operations per seconds
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Figure 4: Assessing the numerical accuracy/robustness
of QDWH partial SVD on K80 using real observational
datasets.

(Gflop/s), respectively. While the former is commonly reported, the
latter allows to assess the performance of the actual implementation
on a given hardware. In particular, Figures 5a, 5b and 5c show the
elapsed time in seconds using synthetic ill-conditioned matrices
on the K80, P100 and V100 systems, respectively. Our QDWH
partial SVD is much faster than SGESDD, achieving up to threefold,
fourfold and fivefold performance speedups on aforementioned
systems. When the required spectrum increases, QR-based QDWH
iterations are favored to ensure proper numerical accuracy and
engender time performance penalties, but still remain faster than
SGESDD.

Figure 5d draws the elapsed time on real observational datasets
for thematrix sizes described in Section 7.2. Our QDWHpartial SVD
outperforms SGESDD by more than fourfold performance speedup.
Furthermore, Figures 6 show up to 1.8 Gflop/s, 7 Gflop/s and 9
Gflop/s performance, which corresponds to 45%, 75%, and 65% of
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Figure 5: Performance comparisons in seconds of QDWH
partial SVD using synthetic ill-conditioned matrices (a, b, c)
and real observational datasets (d).

the theoretical performance peak on the K80, P100 and V100 sys-
tems, respectively. Although the sustained peak performance is
usually a more representative metric, the current performance as-
sessment shows that there is still room for improvement, although
our implementation is able to take advantage of the underlying
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Figure 6: Performance comparisons in Gflops/s of QDWH
partial SVD using synthetic ill-conditioned matrices (a, b, c)
and real observational datasets (d).

hardware resources much more than SGESDD. In fact, the perfor-
mance gap between QDWH partial SVD and SGESDD widens, as
the hardware technology scaling improves. This indicates that our
algorithm is capable of extracting performance, and thanks to its
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inherent compute-bound kernels, benefits from hardware with over-
provisioned floating-point units, which will populate future super-
computers.

8 CONCLUSION AND FUTUREWORK
Wehave implemented a novel QDWHpartial SVD algorithm to com-
pute the pseudo-inverse of a dense matrix. We have demonstrated
its numerical robustness and performance efficiency on various
single GPU hardware generations with synthetic matrices and ma-
trices generated from real observational datasets, in the context
of the Subaru Coronagraphic Extreme AO (SCExAO) system [19],
deployed on the 8.3m diameter Subaru Telescope. Our implementa-
tion outperforms the state-of-the-art SVD implementation SGESDD
based on the divide and conquer solver from MAGMA by up to fivefold
and fourfold performance speedups on synthetic ill-conditioned
matrices and real observational datasets, respectively. The adaptive
optics predictive control and sensor fusion approaches enabled by
faster SVDs will also allow ultra-sharp visible light imaging with
large telescope, and will extend the high performance Extreme AO
correction to extend to fainter stars.

Future works include extension to multiple GPUs using tile al-
gorithms associated with a dynamic runtime system to schedule
various computational tasks and mitigate the data movement over-
head on the underlying hardware resources. We would like also
to investigate the feasibility of using least square methods as a
competitive approach to the pseudo-inverse algorithm. This would
require implementing the QR-based least square linear solver with
an updating mechanism to prevent recomputing the entire factor-
ization, while keeping up with the cadence of the optics hardware.
Last but not least, the optical aberrations at the telescope, due to
the atmospheric turbulences, may be predicted using a statistical
approach instead, based on a supervised machine learning method
by estimating the maximum likelihood [3].
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